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THE MINIMAL EIGENFUNCTIONS CHARACTERIZE THE
ORNSTEIN-UHLENBECK PROCESS!

By J. C. TAYLOR
MecGill University

A process (X,) is equivalent to an Ornstein—Uhlenbeck process if and only )
if e Mf(X,) is a martingale for every f=>0 on R? such that Af(x) —

(x,Vf(x)) = Af(x).

Introduction. In[6]it was shown that the minimal solutions of the parabolic
equation Au(x, t) — (x,Vu(x,t)) = u(x,t) on R X R determine martingales
that characterize the Ornstein—Uhlenbeck process on R This is a property that
the Ornstein—Uhlenbeck process on R¢ shares with Brownian motion on a
noncompact symmetric space [5] and several other examples [6].

The Ornstein—Uhlenbeck operator is the basic example of an operator L for
which the minimal solutions of the corresponding “heat” equation do not factor
into the product of a nonnegative eigenfunction of L times an exponential in ¢,
which is the case for uniformly elliptic operators on R¢ and Brownian motion on
a homogeneous space [4].

However, if u > 0 is a solution of Lu(x) = Au(x) — {(x,Vu(x)) = Au(x),
then e *u(x) = v(x, t) is a solution of Lu + u, = 0. In addition, if (X,),  is an
Ornstein—Uhlenbeck process with initial position x,, then (v(X,,t)),., is a
martingale with expectation u(x,). In this note the minimal eigenfunctions
(minimal nonnegative solutions u of Lu = Au) are determined and it is shown
that the corresponding martingales characterize the Ornstein—Uhlenbeck pro-
cess.

For d = 1, it is shown that (e™H,(X,)),., is a martingale for each Hermite
polynomial H, if the minimal eigenfunctions determine martingales. These
“Hermite” martingales are used to characterize the process.

For any dimension, the minimal eigenfunctions are given by the formula

fwr"‘lexp{—rz +V2r(x,b)}dr=K(\,b;x) forA>0and b S* .
0

Hence, the projection onto a line through the origin of a process (X,),., for
which K(A, b; X,) is always a martingale is necessarily equivalent to a real-val-
ued Ornstein-Uhlenbeck process. From this it follows easily that (X,),., is
equivalent to an Ornstein—Uhlenbeck process.
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1056 J.C. TAYLOR

It follows that the Ornstein—Uhlenbeck process on Weiner space W =
#([0, 1], R) may be characterized by the martingales of the form

foor"‘lexp{ —r2 4 ‘/2_;<'y, Xt>} dr=K(\,v; X,),
0

for y a continuous linear functional on Weiner space of norm 1. This leads to the
open question of characterizing the functions [°r*~'exp{—r?+ V2r(y,-)}dr
in terms of the generator of the process. Are they the minimal eigenfunctions?

1. Computation of the minimal eigenfunctions. Let Lu(x) = Au(x) —
(x,vVu(x)) denote the generator of the Ornstein-Uhlenbeck process on R
Using a scaling in x by v2 and the computations in [3] the minimal solutions
K(y; x, t) of the equation Lu = u, on R? X R are easily computed. One may
also simply calculate by Martin’s method as in [3] starting from the formula for
the fundamental solution G(x, t; y,s) = P,_(x, y) if s <t and = 0 otherwise,
where

_ d, _ _
P(x, y) = [1/27(1 — e7)] & exp{(—1/2(1 — e7))lle”x — ¥|?}.
These solutions are the functions
K(y;x,t) = exp{—(e 2 = 1)[|¥|> + V2e Ky, x)},

where y € R% One immediate consequence of the strict positivity of these
functions is the following lemma.

LEMMA 1.1. A positive solution u of Lu + u,=0 on R?X (a,b), —o0 <
a < b < + oo, which vanishes continuously on R% X {b} is identically 0. Conse-
quently, if u is a positive solution of Lu + u,=0 on R X R, then
[P(x, dy)u(y, s) = u(x,s — t), where (P),., is the transition semigroup for
the Ornstein—Uhlenbeck process on R?.

Proor. To prove the first statement, it suffices to prove the analogous
statement for the operator Lu — u,. For this the proof of Theorem 3 in [4]
applies without change. The second statement is an immediate consequence as
w(x, t) = u(x,s — t) — [P(x, dy)u(y, s) is a positive solution on R? X (— 0, 8)
that vanishes on R? X {s}. O '

Let u be a positive solution of the equation Lu = Au on R% Assume u(0) = 1.
As v(x, t) = eMu(x) is a solution of Lv = v, there is a unique probability p on
R< such that v(x, ) = [K(y; x, t)u(dy). Now

er(x, t) =\v(x, t+a)= fK(y; x,t+ a)p(dy).

R

The minimal functions for the heat equation are normalized so that K(y; 0,0) =
1. The shift in time determines an isomorphism of the cone of positive solutions
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so K(y; x,t + a)/K(y,0,a) = K(e”%y; x, t). As a result the measure p satisfies
(+) eru(dy) = K(e%;0, a)u,(dy),

where

[HDmaay) = [fe=y)u(dy), aeR.

Let v + mey, = p, where m = u({0}). Then », + me; = p, and so A =0 if
m # 0. Assume that A # 0.

For any Borel set A C R? and b€ S9! let A(b) = {s > 0|sb € A}. As
p({0}) = 0, there is a regular conditional probability = such that p(A) =
[1ga-1(b)7(b, A(D))n(db), where 7 is the projection onto S¢ ! of pu. Condition
(*) implies that for every nonnegative measurable function f on (0, c0) and
a €R,

e"“'/('o,w)w(b, ds)f(s) = f(o,oo)ﬂ(b’ ds)f(e % )exp{(1 — e~?*)s?},

from which it follows that for each b € S9!, #(b, ds) is absolutely continuous
w.r.t. the Lebesgue measure on (0,00) and, its density ¢(b, s) satisfies the
equation

¢(b, s)exp{Aa — (e2* — 1)s?} = e“%(b, se?).
Setting s = 1 and r = e“ gives @(b, r) = C(b)r*~'e "". Therefore,

eMu(x) = Ld_l[fowxp(b, s)exp{ —(e % — 1)s% + V2 e 's(b, x)} ds]n(db)
= [Sd_lC(b)[fows“exp{—s“’e—‘” +V2e's(b, x)} ds]n(db)

= fd e"‘C(b)[fwr"_lexp{ —r?+v2r(b,x)} dr]n(db).

8-t 0

From this it follows that A > 0. Thus there is a measure n on S¢! such that
u(x) = [ K(X, b x)n(ab),
Sd—l
where
K(\, b;x) = foor"‘leip{ —r*+y2r(b,x)} dr.
0
On the other hand, if 5 is a measure on S*' and
u(x) = [K(\, b;2)n(ds) andit o(x,¢) = [K(y;x, )u(dy),

where

%

v(4) = [127}(b)n(b, A(b))n(db)

it follows from the above that v(x, ¢) = eMu(x).
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Therefore, since 7 is the projection of » onto S~ it follows that there is
bijection (order-preserving) between the cone of positive solutions u of Lu = Au
and the cone of positive measures on S?~!. As a result, the minimal solutions of
the equation Lu = Au, A > 0, are the functions K(A, b; -). This completes the
proof of the following theorem.

THEOREM 1.2. Let u be a positive solution of the equation Lu = Au. If
A#0, then A >0 and

u(x) = fsd_lC(b)[‘/(;oork‘lexp{ —r?+V2r(b,x)} dr|n(db).
Up to a multiplicative constant, the minimal solutions of the equation Lu = A\u,
A > 0, on R? are the functions K(\, b; x), b € 8?71, where
K(\ b;x) = '/:or"‘lexp{—ﬂ +V2r(b, x)} dr.
Further, if A = 0 the only nonnegative solutions are the constants.

REMARK 1.3. When d = 1, there are two minimal functions K,*, where
Kif(x) =K\, +;x) = fwr"‘lexp{—rz + V2 rx} dr.
0

This formula appears on page 60 of Titchmarsh [7] with a difference due to
scaling.

2. Two corresponding entire families of martingales. Assume that d =
1. Then, for each A > 0, K(A, +; x) and K(A, —; x) form a fundamental set of
solutions of the equation y” — xy’ — Ay = 0. They are analytic in A if Re A > 0.
Another set of fundamental solutions yy(A, x) and y,(A, x) are given by the
series solutions of the equation y” — xy’ — Ay = 0. They are

Yo=1+Ax2/21+ (A + 2)Axt/4l + - -

0

© +(A+2n-2)(A+2n—4) - (A + 2)Ax?/(2n)! + - -
and

(1) =2+ (A+1)x3/31+ (A + 3) (A + 1)x5/5!1 + - -

+(A+2n-1)(A+2n-3)--- (A + x> /2n + 1)+ -

(cf. [1], page 157, with 2 x replaced by x and —a/2 by A).
It is not hard to see that yy(x) =y (A, x) and y,(x) = y,(A, x) are entire
functions of A for x fixed.

ProrosiTION 2.1. Let (2, %, P) be a probability space with an increasing
filtration (#,),., and let (X,),. , be a process on R adapted to the filtration. If
for all A > 0, e ™K (A, X,) = M)} is a martingale with respect to the filtration,
then V z € C, e~ *yy(z, X,) and e *'y,(z, X,) are also martingales.
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Proor. Since all the terms in the series for y,(A, x) are positive, the fact
that e *y,(A, X,) is a martingale implies that the series

1+ 2E[X2]/2!+ (2 + 2)2E[ X}] /4! + - -
+(z+2n-2)(z+2n—4)--- (2 +2)2E[X2"]/@2n)! + -

is an entire function of z. Consequently, for any set B € #, z = [py(z, X,) dP
is an entire function and so e~ *‘y/(z, X,) is a martingale.
Let

Y (2) =y(2,X,)=X,+ (z+1)X2/3!+(2+ 3)(z+ )X} /5! + - --
+(z+2n-1)(z+2n-3)---
X(z+3)(z+ DX /2n+ 1)+ --- .

First consider the integral of Y, over the sets A(+) = {+X, > 1}. By hypoth-
esis, K(A, +; X,) € L' and since 2K(A, +; X,) = Coy(A, X,) + Ciyi(A, X)),
this implies that Y, = (A, X,) € L'. Consequently,

[ 1¥(2)|dP< [ |x(zl, X,)|dP < oo.
A(%) A()

Consequently, for any set B € #, B C {|X,| > 1}, z = [gY,(2) dP is an entire
function.

To complete the proof, it suffices to consider the integral of Y,(z) over
{IX, < 1}. Since |X,| <1, the series [3Y/(2)dP, B€ %, B C {|X,| <1} con-
verges for all z by comparison with the series

14 (2] + 1) /3'+ (2] + 3)(2| + 1) /5! + - -
+(2] +2n—1)(]z2| +2n—3) --- (2] + 8)(jz] + 1)/(2n + 1)!+ --- . OO
COROLLARY 2.2. If for all A > 0, e ™MK (A, X,) = M)} is a martingale with

respect to the filtration, then ¥V n > 0, e™H (X,) is a martingale, where H,(x) is
the nth Hermite polynomial.

PrOOF. Cy(—2n,x) = H,,(x)and Cy,(—2n — 1,x) = H,, . (x). O

REMARK 2.3. If for all A >0, e"*K(A, X,) = M} is a martingale with
respect to the filtration, then e~*~*//2 is a martingale.

PrROOF. If u(x) = e*/2, then u”(x) — xu'(x) = ﬁ(x). Hence, u(x) =
a1, x) + a;»(1,x). O

3. A characterization of the Ornstein-Uhlenbeck process on R. Corol-
lary 2.2 and Remark 2.3 make it possible to use ‘“Hermite” martingales to
analyze the process in LR, e~ *"/2).
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If p € 42(R) and p(x) = ¢(x)e * /2, then by Cramér [2]
¢(x) = ¥ {a,/n!}H,(x)e 72,
n=0

where the series converges uniformly and absolutely to ¢. The coefficients
a, = (p, H), where (f, g)=(1/27)"%f(x)g(x)e */*dx. In addition, if
(P,); o is the transition semigroup of the Ornstein—Uhlenbeck process, then

() B = T (ayn)RH ) = T (a/nle " H(x).

THEOREM 3.1. Let (2, %, P) be a probability space with an increasing
filtration (#,), , and let (X,),. , be a process on R adapted to the filtration.

For A >0 let M** = e MK (A, +X,). The following conditions are equiva-
lent:

1. The process is equivalent to the Ornstein—Uhlenbeck process with initial
position x,,.
2. V A >0, (M), , is a martingale with expectation

foorx_lexp{ —r? +2rx,} dr

0

and (M), , is a martingale with expectation
fwrx‘lexp{ —r? —V2rx,} dr.
0

ProoF. Lemma 1.1 shows that (1) = (2). To show the converse, note that for
any ¢ € 4(R),

E[o(X)%] - ¥, (k) E[H(X)%]

k=0

< eE[eX‘Z/ZI.Z,] = gelt-9)+X2/2

if

2
< ge* /2,

o(x) - éo{ak/k!}ﬂm)

Hence, by (*)

E[p(X)] = T {a,/n)E[H,(X,)]
(1) n:O
= go {a,/n!}e "H,(x,) = Pp(x,)
and .
@) - E[p(X)%] = P_9(X,).

From (2) it follows that the process is Markov and by (1) it has the correct
distributions. O
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REMARK 3.2. The theorem remains true if the time interval is restricted to
say [0, T'].

4. A characterization of the Ornstein—-Uhlenbeck process on R,

THEOREM 4.1. Let (2, #, P) be a probability space with an increasing
filtration (%,),., and let (X,),, be a process on R? adapted to the filtration.

For A >0 and b€ S, let MM® = e MK(A, b; X,). The following condi-
tions are equivalent:

1. The process is equivalent to the Ornstein—Uhlenbeck process with initial
position x,.
2. VA>0andbe S (M}?),,, is a martingale with expectation

foor"'l exp{ —r? + V2 1r(b, x,)} dr.
0

Proor. (1) = (2) by Lemma 1.1.

(2) = (1). For every b € 8971, ((b, X,)),., is equivalent to a one-dimensional
Ornstein—Uhlenbeck process. Consequently, the paths of (X,),., are almost
surely continuous. From this (1) follows immediately because: (i) (X,),., is an
Ornstein—Uhlenbeck process on R¢ if and only if (B,), . , is a standard Brownian
motion, where e’X, + X, = B, s = e? — 1; and (ii) a standard Brownian mo-
tion is characterized by having its projection on any unit vector a one-dimen-
sional Brownian motion. O

REMARK 4.2. Also, by an obvious change of coordinates, the above result
may be used to characterize the Ornstein—Uhlenbeck process on R” with genera-
tor

non %u
Lu(x)= ¥ ¥ cum(x) = (x,vu(x)),

i=1 =1

where (c;;) is positive definite.

5. The Ornstein-Uhlenbeck process on Weiner space. The Ornstein—
Uhlenbeck process on Weiner space is a process (X,),., on the Banach space
W = €([0, T'], R?) with the following property. For any finite number of contin-
uous linear functionals v;, 1 < i < n, on W the process (X,), . o, where

X,(0) = (<Yl’xt("’)>’ <72»xt("’)>"'-’ <Yn’xt(w)>)

is an Ornstein—Uhlenbeck process on R™ with generator
2

n n a u
Lu(x) = ) Zcum(x) - <x,Vu(x)>,

i=1j=1

and c¢;; = (v, v,)u (see [8]). In particular, for any y € W', ((y, X,));s, is an
Ornstein—Uhlenbeck process on R with generator Lu(x) = ||y||4u"(x) — xu'(x).
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Assume the process on W starts from w, = X,,. Then (X,),. , is equivalent to
the Ornstein-Uhlenbeck process on W started from w, if and only if for all
y € W and A >0, e MK(A,(1/|17llg){7,X,)) is a martingale with expectation

KN, A/ )Y Wo))-
This raises the question as to whether the functions K(A, (¥, -)) on W, with

lIYllz = 1 and fixed A > 0, are the minimal solutions of the equation Lu = Au in
some sense, where L is the generator of the Ornstein—Uhlenbeck process on W.
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