THE MINIMAL EIGENFUNCTIONS CHARACTERIZE THE ORNSTEIN-UHLENBECK PROCESS¹

By J. C. TAYLOR

McGill University

A process (X_t) is equivalent to an Ornstein-Uhlenbeck process if and only if $e^{-\lambda t} f(X_t)$ is a martingale for every $f \ge 0$ on \mathbb{R}^d such that $\Delta f(x) - \langle x, \nabla f(x) \rangle = \lambda f(x)$.

Introduction. In [6] it was shown that the minimal solutions of the parabolic equation $\Delta u(x,t) - \langle x, \nabla u(x,t) \rangle = u_t(x,t)$ on $\mathbb{R}^d \times \mathbb{R}$ determine martingales that characterize the Ornstein–Uhlenbeck process on \mathbb{R}^d . This is a property that the Ornstein–Uhlenbeck process on \mathbb{R}^d shares with Brownian motion on a noncompact symmetric space [5] and several other examples [6].

The Ornstein-Uhlenbeck operator is the basic example of an operator L for which the minimal solutions of the corresponding "heat" equation do not factor into the product of a nonnegative eigenfunction of L times an exponential in t, which is the case for uniformly elliptic operators on \mathbb{R}^d and Brownian motion on a homogeneous space [4].

However, if $u \geq 0$ is a solution of $Lu(x) = \Delta u(x) - \langle x, \nabla u(x) \rangle = \lambda u(x)$, then $e^{-\lambda t}u(x) = v(x,t)$ is a solution of $Lu + u_t = 0$. In addition, if $(X_t)_{t \geq 0}$ is an Ornstein–Uhlenbeck process with initial position x_0 , then $(v(X_t,t))_{t \geq 0}$ is a martingale with expectation $u(x_0)$. In this note the minimal eigenfunctions (minimal nonnegative solutions u of $Lu = \lambda u$) are determined and it is shown that the corresponding martingales characterize the Ornstein–Uhlenbeck process.

For d=1, it is shown that $(e^{nt}H_n(X_t))_{t\geq 0}$ is a martingale for each Hermite polynomial H_n if the minimal eigenfunctions determine martingales. These "Hermite" martingales are used to characterize the process.

For any dimension, the minimal eigenfunctions are given by the formula

$$\int_0^\infty \!\! r^{\lambda-1} \exp \bigl\{ -r^2 + \sqrt{2r} \langle x, \, b \rangle \bigr\} \, dr = K(\lambda \, , \, b; x) \quad \text{for $\lambda > 0$ and $b \in S^{d-1}$}.$$

Hence, the projection onto a line through the origin of a process $(X_t)_{t\geq 0}$ for which $K(\lambda, b; X_t)$ is always a martingale is necessarily equivalent to a real-valued Ornstein–Uhlenbeck process. From this it follows easily that $(X_t)_{t\geq 0}$ is equivalent to an Ornstein–Uhlenbeck process.

Received May 1987; revised September 1988.

¹Materially supported by NSERC Operating Grant A3108 and the IMA (University of Minnesota).

^{*}AMS 1980 subject classifications. Primary 60J60; secondary 60G44.

Key words and phrases. Eigenfunctions, Ornstein-Uhlenbeck process, characterization, martingales.

1056 J. C. TAYLOR

It follows that the Ornstein-Uhlenbeck process on Weiner space $W = \mathcal{C}([0,1],\mathbb{R})$ may be characterized by the martingales of the form

$$\int_0^\infty r^{\lambda-1} \exp\left\{-r^2 + \sqrt{2r} \langle \gamma, X_t \rangle\right\} dr = K(\lambda, \gamma; X_t),$$

for γ a continuous linear functional on Weiner space of norm 1. This leads to the open question of characterizing the functions $\int_0^\infty r^{\lambda-1} \exp\{-r^2 + \sqrt{2r} \langle \gamma, \cdot \rangle\} dr$ in terms of the generator of the process. Are they the minimal eigenfunctions?

1. Computation of the minimal eigenfunctions. Let $Lu(x) = \Delta u(x) - \langle x, \nabla u(x) \rangle$ denote the generator of the Ornstein-Uhlenbeck process on \mathbb{R}^d . Using a scaling in x by $\sqrt{2}$ and the computations in [3] the minimal solutions K(y;x,t) of the equation $Lu=u_t$ on $\mathbb{R}^d \times \mathbb{R}$ are easily computed. One may also simply calculate by Martin's method as in [3] starting from the formula for the fundamental solution $G(x,t;y,s)=P_{t-s}(x,y)$ if s < t and s < t otherwise, where

$$P_t(x, y) = \left[1/2\pi(1 - e^{-2t})\right]^{d/2} \exp\left\{\left(-1/2(1 - e^{-2t})\right) \|e^{-x} - y\|^2\right\}.$$

These solutions are the functions

$$K(y; x, t) = \exp\{-(e^{-2t} - 1)||y||^2 + \sqrt{2}e^{-t}\langle y, x \rangle\},\,$$

where $y \in \mathbb{R}^d$. One immediate consequence of the strict positivity of these functions is the following lemma.

LEMMA 1.1. A positive solution u of $Lu + u_t = 0$ on $\mathbb{R}^d \times (a, b), -\infty \le a < b \le +\infty$, which vanishes continuously on $\mathbb{R}^d \times \{b\}$ is identically 0. Consequently, if u is a positive solution of $Lu + u_t = 0$ on $\mathbb{R}^d \times \mathbb{R}$, then $\int P_t(x, dy)u(y, s) = u(x, s - t)$, where $(P_t)_{t \ge 0}$ is the transition semigroup for the Ornstein-Uhlenbeck process on \mathbb{R}^d .

PROOF. To prove the first statement, it suffices to prove the analogous statement for the operator $Lu-u_t$. For this the proof of Theorem 3 in [4] applies without change. The second statement is an immediate consequence as $w(x,t)=u(x,s-t)-\int P_t(x,dy)u(y,s)$ is a positive solution on $\mathbb{R}^d\times(-\infty,s)$ that vanishes on $\mathbb{R}^d\times\{s\}$. \square

Let u be a positive solution of the equation $Lu = \lambda u$ on \mathbb{R}^d . Assume u(0) = 1. As $v(x, t) = e^{\lambda t} u(x)$ is a solution of $Lv = v_t$ there is a unique probability μ on \mathbb{R}^d such that $v(x, t) = \int K(y; x, t) \mu(dy)$. Now

$$e^{\lambda a}v(x,t)=v(x,t+a)=\int K(y;x,t+a)\mu(dy).$$

The minimal functions for the heat equation are normalized so that K(y; 0, 0) = 1. The shift in time determines an isomorphism of the cone of positive solutions

so $K(y; x, t + a)/K(y; 0, a) = K(e^{-a}y; x, t)$. As a result the measure μ satisfies (*) $e^{\lambda a}\mu(dy) = K(e^{a}y; 0, a)\mu_a(dy),$

where

$$\int f(y)\mu_a(dy) = \int f(e^{-a}y)\mu(dy), \qquad a \in \mathbb{R}.$$

Let $\nu + m\varepsilon_0 = \mu$, where $m = \mu(\{0\})$. Then $\nu_a + m\varepsilon_0 = \mu_a$ and so $\lambda = 0$ if $m \neq 0$. Assume that $\lambda \neq 0$.

For any Borel set $A \subset \mathbb{R}^d$ and $b \in S^{d-1}$ let $A(b) = \{s > 0 | sb \in A\}$. As $\mu(\{0\}) = 0$, there is a regular conditional probability π such that $\mu(A) = \int 1_{S^{d-1}}(b)\pi(b,A(b))\eta(db)$, where η is the projection onto S^{d-1} of μ . Condition (*) implies that for every nonnegative measurable function f on $(0,\infty)$ and $a \in \mathbb{R}$,

$$e^{\lambda a} \int_{(0,\infty)} \pi(b,ds) f(s) = \int_{(0,\infty)} \pi(b,ds) f(e^{-a}s) \exp\{(1-e^{-2a})s^2\},$$

from which it follows that for each $b \in S^{d-1}$, $\pi(b, ds)$ is absolutely continuous w.r.t. the Lebesgue measure on $(0, \infty)$ and, its density $\varphi(b, s)$ satisfies the equation

$$\varphi(b, s) \exp\{\lambda a - (e^{2a} - 1)s^2\} = e^a \varphi(b, se^a).$$

Setting s = 1 and $r = e^a$ gives $\varphi(b, r) = C(b)r^{\lambda - 1}e^{-r^2}$. Therefore,

$$\begin{split} e^{\lambda t}u(x) &= \int_{S^{d-1}} \biggl[\int_0^\infty \varphi(b,s) \exp\bigl\{ -(e^{-2t}-1)s^2 + \sqrt{2} e^{-t}s\langle b, x \rangle \bigr\} \, ds \biggr] \eta(db) \\ &= \int_{S^{d-1}} C(b) \biggl[\int_0^\infty s^{\lambda-1} \exp\bigl\{ -s^2 e^{-2t} + \sqrt{2} e^{-t}s\langle b, x \rangle \bigr\} \, ds \biggr] \eta(db) \\ &= \int_{S^{d-1}} e^{\lambda t} C(b) \biggl[\int_0^\infty r^{\lambda-1} \exp\bigl\{ -r^2 + \sqrt{2} r\langle b, x \rangle \bigr\} \, dr \biggr] \eta(db). \end{split}$$

From this it follows that $\lambda > 0$. Thus there is a measure η on S^{d-1} such that

$$u(x) = \int_{S^{d-1}} K(\lambda, b; x) \eta(db),$$

where

$$K(\lambda, b; x) = \int_0^\infty r^{\lambda-1} \exp\{-r^2 + \sqrt{2} r\langle b, x \rangle\} dr.$$

On the other hand, if η is a measure on S^{d-1} and

$$u(x) = \int K(\lambda, b; x) \eta(ds)$$
 and if $v(x, t) = \int K(y; x, t) \mu(dy)$,

where

$$u(A) = \int 1_S^{d-1}(b) \pi(b, A(b)) \eta(db)$$

it follows from the above that $v(x, t) = e^{\lambda t}u(x)$.

Therefore, since η is the projection of ν onto S^{d-1} , it follows that there is bijection (order-preserving) between the cone of positive solutions u of $Lu = \lambda u$ and the cone of positive measures on S^{d-1} . As a result, the minimal solutions of the equation $Lu = \lambda u$, $\lambda > 0$, are the functions $K(\lambda, b; \cdot)$. This completes the proof of the following theorem.

THEOREM 1.2. Let u be a positive solution of the equation $Lu = \lambda u$. If $\lambda \neq 0$, then $\lambda > 0$ and

$$u(x) = \int_{s^{d-1}} C(b) \left[\int_0^\infty r^{\lambda-1} \exp\left\{-r^2 + \sqrt{2} \, r \langle b, x \rangle\right\} \, dr \right] \eta(db).$$

Up to a multiplicative constant, the minimal solutions of the equation $Lu = \lambda u$, $\lambda > 0$, on \mathbb{R}^d are the functions $K(\lambda, b; x)$, $b \in S^{d-1}$, where

$$K(\lambda, b; x) = \int_0^\infty r^{\lambda-1} \exp\{-r^2 + \sqrt{2} r\langle b, x \rangle\} dr.$$

Further, if $\lambda = 0$ the only nonnegative solutions are the constants.

Remark 1.3. When d=1, there are two minimal functions K_{λ}^{\pm} , where

$$K_{\lambda}^{\pm}(x) = K(\lambda, \pm; x) = \int_{0}^{\infty} r^{\lambda-1} \exp\{-r^2 \pm \sqrt{2} rx\} dr.$$

This formula appears on page 60 of Titchmarsh [7] with a difference due to scaling.

2. Two corresponding entire families of martingales. Assume that d=1. Then, for each $\lambda>0$, $K(\lambda,+;x)$ and $K(\lambda,-;x)$ form a fundamental set of solutions of the equation $y''-xy'-\lambda y=0$. They are analytic in λ if Re $\lambda>0$. Another set of fundamental solutions $y_0(\lambda,x)$ and $y_1(\lambda,x)$ are given by the series solutions of the equation $y''-xy'-\lambda y=0$. They are

(0)
$$y_0 = 1 + \lambda x^2 / 2! + (\lambda + 2) \lambda x^4 / 4! + \cdots + (\lambda + 2n - 2)(\lambda + 2n - 4) \cdots (\lambda + 2) \lambda x^{2n} / (2n)! + \cdots$$

and

(1)
$$y_1 = x + (\lambda + 1)x^3/3! + (\lambda + 3)(\lambda + 1)x^5/5! + \cdots + (\lambda + 2n - 1)(\lambda + 2n - 3)\cdots(\lambda + 1)x^{2n+1}/(2n + 1)! + \cdots$$

(cf. [1], page 157, with $\sqrt{2}x$ replaced by x and $-\alpha/2$ by λ).

It is not hard to see that $y_0(x) = y_0(\lambda, x)$ and $y_1(x) = y_1(\lambda, x)$ are entire functions of λ for x fixed.

PROPOSITION 2.1. Let (Ω, \mathcal{F}, P) be a probability space with an increasing filtration $(\mathcal{F}_t)_{t\geq 0}$ and let $(X_t)_{t\geq 0}$ be a process on \mathbb{R} adapted to the filtration. If for all $\lambda > 0$, $e^{-\lambda t}K(\lambda, X_t) = M_t^{\lambda}$ is a martingale with respect to the filtration, then $\forall z \in \mathbb{C}$, $e^{-zt}y_0(z, X_t)$ and $e^{-zt}y_1(z, X_t)$ are also martingales.

PROOF. Since all the terms in the series for $y_0(\lambda, x)$ are positive, the fact that $e^{-\lambda t}y_0(\lambda, X_t)$ is a martingale implies that the series

$$1 + zE[X_t^2]/2! + (z+2)zE[X_t^4]/4! + \cdots + (z+2n-2)(z+2n-4)\cdots(z+2)zE[X_t^{2n}]/(2n)! + \cdots$$

is an entire function of z. Consequently, for any set $B \in \mathcal{F}$, $z \to \int_B y_0(z, X_t) dP$ is an entire function and so $e^{-zt}y_0(z, X_t)$ is a martingale. Let

$$Y_t(z) = y_1(z, X_t) = X_t + (z+1)X_t^3/3! + (z+3)(z+1)X_t^5/5! + \cdots + (z+2n-1)(z+2n-3)\cdots \times (z+3)(z+1)X_t^{2n+1}/(2n+1)! + \cdots$$

First consider the integral of Y_t over the sets $A(\pm) = \{\pm X_t > 1\}$. By hypothesis, $K(\lambda, \pm; X_t) \in L^1$ and since $2K(\lambda, +; X_t) = C_0 y_0(\lambda, X_t) + C_1 y_1(\lambda, X_t)$, this implies that $Y_t = y_1(\lambda, X_t) \in L^1$. Consequently,

$$\int_{A(\pm)} |Y_t(z)| dP \leq \int_{A(\pm)} |y_1(|z|, X_t) |dP < \infty.$$

Consequently, for any set $B \in \mathcal{F}$, $B \subset \{|X_t| > 1\}$, $z \to \int_B Y_t(z) dP$ is an entire function.

To complete the proof, it suffices to consider the integral of $Y_t(z)$ over $\{|X_t| \leq 1\}$. Since $|X_t| \leq 1$, the series $\int_B Y_t(z) \, dP$, $B \in \mathcal{F}$, $B \subset \{|X_t| \leq 1\}$ converges for all z by comparison with the series

$$1 + (|z| + 1)/3! + (|z| + 3)(|z| + 1)/5! + \cdots + (|z| + 2n - 1)(|z| + 2n - 3) \cdots (|z| + 3)(|z| + 1)/(2n + 1)! + \cdots$$

COROLLARY 2.2. If for all $\lambda > 0$, $e^{-\lambda t}K(\lambda, X_t) = M_t^{\lambda}$ is a martingale with respect to the filtration, then $\forall n \geq 0$, $e^{nt}H_n(X_t)$ is a martingale, where $H_n(x)$ is the nth Hermite polynomial.

PROOF.
$$Cy_0(-2n, x) = H_{2n}(x)$$
 and $Cy_1(-2n - 1, x) = H_{2n+1}(x)$. \square

Remark 2.3. If for all $\lambda > 0$, $e^{-\lambda t}K(\lambda, X_t) = M_t^{\lambda}$ is a martingale with respect to the filtration, then $e^{-t-X_t^2/2}$ is a martingale.

PROOF. If
$$u(x) = e^{x^2/2}$$
, then $u''(x) - xu'(x) = u(x)$. Hence, $u(x) = a_0 y_0(1, x) + a_1 y_1(1, x)$. \Box

3. A characterization of the Ornstein-Uhlenbeck process on \mathbb{R} . Corollary 2.2 and Remark 2.3 make it possible to use "Hermite" martingales to analyze the process in $L^2(\mathbb{R}, e^{-x^2/2})$.

If $\varphi \in \mathscr{C}_{\mathcal{C}}^{\infty}(\mathbb{R})$ and $\varphi(x) = \phi(x)e^{-x^2/2}$, then by Cramér [2]

$$\phi(x) = \sum_{n=0}^{\infty} \{a_n/n!\} H_n(x) e^{-x^2/2},$$

where the series converges uniformly and absolutely to ϕ . The coefficients $a_n = \langle \varphi, H_n \rangle$, where $\langle f, g \rangle = (1/2\pi)^{1/2} \int f(x) g(x) e^{-x^2/2} dx$. In addition, if $(P_t)_{t \geq 0}$ is the transition semigroup of the Ornstein–Uhlenbeck process, then

$$(*) P_t \varphi(x) = \sum_{n=0}^{\infty} \{a_n/n!\} P_t H_n(x) = \sum_{n=0}^{\infty} \{a_n/n!\} e^{-nt} H_n(x).$$

THEOREM 3.1. Let (Ω, \mathcal{F}, P) be a probability space with an increasing filtration $(\mathcal{F}_t)_{t>0}$ and let $(X_t)_{t>0}$ be a process on \mathbb{R} adapted to the filtration.

filtration $(\mathscr{F}_t)_{t\geq 0}$ and let $(X_t)_{t\geq 0}$ be a process on \mathbb{R} adapted to the filtration. For $\lambda > 0$ let $M_t^{\pm \lambda} = e^{-\lambda t}K(\lambda, \pm X_t)$. The following conditions are equivalent:

- 1. The process is equivalent to the Ornstein-Uhlenbeck process with initial position x_0 .
- 2. $\forall \lambda > 0$, $(M_t^{+\lambda})_{t \geq 0}$ is a martingale with expectation

$$\int_0^\infty r^{\lambda-1} \exp\left\{-r^2 + \sqrt{2} r x_0\right\} dr$$

and $(M_t^{-\lambda})_{t>0}$ is a martingale with expectation

$$\int_0^\infty r^{\lambda-1} \exp\left\{-r^2 - \sqrt{2} r x_0\right\} dr.$$

PROOF. Lemma 1.1 shows that $(1) \Rightarrow (2)$. To show the converse, note that for any $\varphi \in \mathscr{C}_{\mathcal{C}}^{\infty}(\mathbb{R})$,

$$\left| E\left[\varphi(X_t) | \mathscr{F}_s \right] - \sum_{k=0}^n \left\{ a_k / k! \right\} E\left[H_k(X_t) | \mathscr{F}_s \right] \right| < \varepsilon E\left[e^{X_t^2/2} | \mathscr{F}_s \right] = \varepsilon e^{(t-s) + X_s^2/2}$$

if

$$\left|\varphi(x)-\sum_{k=0}^n\{a_k/k!\}H_k(x)\right|<\varepsilon e^{x^2/2}.$$

Hence, by (*)

(1)
$$E\left[\varphi(X_t)\right] = \sum_{n=0}^{\infty} \{a_n/n!\} E\left[H_n(X_t)\right]$$

$$= \sum_{n=0}^{\infty} \{a_n/n!\} e^{-nt} H_n(x_0) = P_t \varphi(x_0)$$

and

$$E\left[\varphi(X_t)|\mathscr{F}_s\right] = P_{t-s}\varphi(X_s).$$

From (2) it follows that the process is Markov and by (1) it has the correct distributions. \Box

REMARK 3.2. The theorem remains true if the time interval is restricted to say [0, T].

4. A characterization of the Ornstein-Uhlenbeck process on \mathbb{R}^d .

Theorem 4.1. Let (Ω, \mathcal{F}, P) be a probability space with an increasing filtration $(\mathcal{F}_t)_{t\geq 0}$ and let $(X_t)_{t\geq 0}$ be a process on \mathbb{R}^d adapted to the filtration. For $\lambda>0$ and $b\in S^{d-1}$, let $M_t^{\lambda,\,b}=e^{-\lambda t}K(\lambda,\,b;\,X_t)$. The following conditions are equivalent:

- 1. The process is equivalent to the Ornstein-Uhlenbeck process with initial position x_0 .
- 2. $\forall \lambda > 0$ and $b \in S^{d-1}$, $(M_t^{\lambda, b})_{t>0}$ is a martingale with expectation

$$\int_0^\infty r^{\lambda-1} \exp\{-r^2 + \sqrt{2} \, r \langle \, b , x_0 \rangle \} \, dr.$$

PROOF. $(1) \Rightarrow (2)$ by Lemma 1.1.

(2) \Rightarrow (1). For every $b \in S^{d-1}$, $(\langle b, X_t \rangle)_{t \geq 0}$ is equivalent to a one-dimensional Ornstein–Uhlenbeck process. Consequently, the paths of $(X_t)_{t \geq 0}$ are almost surely continuous. From this (1) follows immediately because: (i) $(X_t)_{t \geq 0}$ is an Ornstein–Uhlenbeck process on \mathbb{R}^d if and only if $(B_s)_{s \geq 0}$ is a standard Brownian motion, where $e^t X_t + X_0 = B_s$, $s = e^{2t} - 1$; and (ii) a standard Brownian motion is characterized by having its projection on any unit vector a one-dimensional Brownian motion. \square

REMARK 4.2. Also, by an obvious change of coordinates, the above result may be used to characterize the Ornstein-Uhlenbeck process on \mathbb{R}^n with generator

$$Lu(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}(x) - \langle x, \nabla u(x) \rangle,$$

where (c_{ij}) is positive definite.

5. The Ornstein-Uhlenbeck process on Weiner space. The Ornstein-Uhlenbeck process on Weiner space is a process $(X_t)_{t\geq 0}$ on the Banach space $\mathbf{W} = \mathscr{C}([0,T],\mathbb{R}^d)$ with the following property. For any finite number of continuous linear functionals γ_i , $1 \leq i \leq n$, on \mathbf{W} the process $(X_t)_{t\geq 0}$, where

$$X_{t}(\omega) = (\langle \gamma_{1}, \mathbf{X}_{t}(\omega) \rangle, \langle \gamma_{2}, \mathbf{X}_{t}(\omega) \rangle, \dots, \langle \gamma_{n}, \mathbf{X}_{t}(\omega) \rangle)$$

is an Ornstein-Uhlenbeck process on \mathbb{R}^n with generator

$$Lu(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}(x) - \langle x, \nabla u(x) \rangle,$$

and $c_{ij} = \langle \gamma_i, \gamma_j \rangle_H$ (see [8]). In particular, for any $\gamma \in \mathbf{W}'$, $(\langle \gamma, X_t \rangle)_{t \geq 0}$ is an Ornstein–Uhlenbeck process on \mathbb{R} with generator $Lu(x) = \|\gamma\|_H^2 u''(x) - xu'(x)$.

Assume the process on **W** starts from $w_0 = \mathbf{X}_0$. Then $(X_t)_{t\geq 0}$ is equivalent to the Ornstein-Uhlenbeck process on **W** started from \mathbf{w}_0 if and only if for all $\gamma \in \mathbf{W}'$ and $\lambda > 0$, $e^{-\lambda t}K(\lambda, (1/\|\gamma\|_H)\langle \gamma, \mathbf{X}_t \rangle)$ is a martingale with expectation $K(\lambda, (1/\|\gamma\|_H)\langle \gamma, \mathbf{w}_0 \rangle)$.

This raises the question as to whether the functions $K(\lambda, \langle \gamma, \cdot \rangle)$ on **W**, with $\|\gamma\|_H = 1$ and fixed $\lambda > 0$, are the minimal solutions of the equation $Lu = \lambda u$ in some sense, where L is the generator of the Ornstein-Uhlenbeck process on **W**.

REFERENCES

- [1] BOYCE, W. E. and DIPRIMA, R. C. (1986). Elementary Differential Equations and Boundary Value Problems, 4th ed. Wiley, New York.
- [2] CRAMÉR, H. (1925). On some classes of series used in mathematical statistics. Proc. Sixth Scand. Math. Congress, Copenhagen 1925 399-425.
- [3] CRANSTON, M., OREY, S. and RÖSLER, U. (1983). The Martin boundary of two-dimensional Ornstein-Uhlenbeck processes. In *Probability, Statistics and Analysis* (J. F. C. Kingman and H. Reuter, eds.). *London Math. Soc. Lecture Note Ser.* 79 63-78. Cambridge Univ. Press, Cambridge.
- [4] KORANYI, A. and TAYLOR, J. C. (1985). Minimal solutions of the heat and Helmholtz equation and uniqueness of the positive Cauchy problem on homogeneous spaces. *Proc. Amer. Math. Soc.* 94 273-278.
- [5] TAYLOR, J. C. (1987). Minimal functions, martingales and Brownian motion on a non-compact symmetric space. Proc. Amer. Math. Soc. 100 725-730.
- [6] TAYLOR, J. C. (1988). Do minimal functions characterize a diffusion? Probab. Theory Related Fields. To appear.
- [7] TITCHMARSH, E. C. (1946). Eigenfunction Expansions Associated with Second-Order Differential Equations. Clarendon, Oxford.
- [8] WATANABE, S. (1984). Lectures on Stochastic Differential Equations and Malliavin Calculus. Springer, Berlin.

DEPARTMENT OF MATHEMATICS McGill University 805 Sherbrooke Street West Montréal, Québec Canada H3A 2K6