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KOLMOGOROV AND THE THEORY OF MARKOV PROCESSES

By E. B. DYNKIN

Cornell University

1. Beginning. In 1906-1907 Markov [59, 60] discovered that limit theorems
for independent random variables can be extended to variables “connected in a
chain.” About the same time Einstein [31] started to study mathematically a
physical phenomenon—the Brownian motion. The synthesis of both directions
in Kolmogorov’s celebrated paper [K28]' was the beginning of the theory of
Markov processes. (Kolmogorov called them stochastically determined processes.
The name Markov process was suggested in 1934 by Khintchine.)

Today we distinguish Markov transition functions from measures on path
space which can be constructed starting from such functions and which we call
Markov processes. Measure theory on functional spaces did not exist in 1931, and
Kolmogorov [K28] deals with Markov transition functions; paths are used only
as a heuristic background to motivate definitions and assumptions.

2. Kolmogorov’s program. In modern terms, Kolmogorov introduced a
Markov transition function as a family of stochastic kernels P(s, x; ¢, E) such
that

(1) fP(s, x;t,dy)P(t, y;u,E) = P(s,x;u,E) foreverys <t<u.

Formula (1) is usually called the Chapman-Kolmogorov equation. Kolmogorov
himself used the name of Smoluchowski who had written (1) in a special
situation. After discussing various particular cases, Kolmogorov showed that the
ergodic principle established by Markov for chains holds for broad classes of
general transition functions.

The central idea of the paper is the introduction of local characteristics at
each time ¢ and the construction of transition functions by solving certain
differential equations involving these characteristics. If the state space is at most
countable, then the local characteristic at time ¢ is given by a matrix A ;(¢), and
the corresponding differential equations have the form

J
@ 2 Pa(s,1) = TRy(s, A1)
and
ad .
(3) Egpik(s’ t)= - Z_Aij(s)ij(s, t).
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Following Feller, we call (2) and (3) the Kolmogorov forward and backward
differential equations.

The last part of [K28] is devoted to a class of transition functions in R for
which there exist limits

A(t,x) = limé&™! f (y—x)P(t,x;t+8,dy)
§-0 R
and

B(t,x) = lim (28) " f (y — x)°P(t, x; ¢t + 6, dy).

8§-0 R
Feller suggested for these limits the names drift and diffusion coefficients. A
property of the third moments needs to be postulated to exclude the possibility
of jumps. Assuming, in addition, that the density function f(s, x; ¢, ) of the
measure P(s, x; t, dy) is sufficiently smooth, Kolmogorov proves that it satisfies
the forward differential equation

9 ad
. /(505 69) = = 3o [A(6 (s, %8, )]
+5ay—2[B(t, ¥)f(s, x5t y)]

and the backward differential equation
2

(5) 2-i(s,x58,9) = ~Als, 2) 9= F(5,55 1, ) ~ Bls, ¥) 351(5,55 1, 9).

The equation (4) arises if one is interested in the time evolution of the probabil-
_ ity distribution, and, in fact, a special form of (4) appeared earlier in papers of
~ Fokker [37] and Planck [65]. Kolmogorov was not familiar with these papers in
1931, but since 1934 he called (4) the Fokker-Planck equation. The backward
equation (5) had never appeared before [K28] even in the physics literature.

At the end of the paper, Kolmogorov demonstrates on examples that, for
processes with jumps, integral terms must be added to the right sides of (4) and
(5). He also writes the following multidimensional analogs for equations (4) and

(5):
(4a) 8_ = _Z 8(A f) Ly 9%(B,;f )

Yi i, j 9y ayj

and
a a2f
(58.) = _ZAla ZBijaxiaxj'

i, J

(Wiwth the coeflicients depending only on time, these equations appeared first in
1900 in a paper of Bachelier [2] who already had an intuitive idea of the
Brownian motion.)
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3. Progress in study of Markov transition functions. The program
outlined in [K28] influenced deeply the development of probability theory and
related topics in analysis during the next decades. Construction of transition
functions corresponding to given drift and diffusion coefficients motivated the
work in PDE on fundamental solutions of parabolic differential equations. The
first step was taken by Kolmogorov himself in [K45] where he investigated (4a)
and (5a) on compact Riemannian manifolds. Substantial progress in the study of
these equations (and their generalizations with integral terms) was accomplished
by Feller [33].

Separate local characteristics were introduced in [K28] for various concrete
classes of transition functions. In 1934 Kolmogorov [K58] suggested the follow-
ing unification. A Markov transition function P(s, x; ¢, E') can be interpreted as
a family of operators 7,7 which transform probability distributions at time s to
probability distributions at time ¢ > s. The equation (1) can be rewritten in the
form TfT} = T for s < ¢t < u. In the stationary case, the operators T = T,_,
satisfy the equation 7,7, = T,.,, and one can expect that T, = e’ for some
linear (in general, unbounded) operator A. The infinitesimal operator (or the
generator) A can be defined by the formula

A = Lm (T, - I)/t,
tl0

where I is the identity operator. (In the nonstationary case an analogous limit
depends on s and its existence is a certain regularity assumption.) Kolmogorov
has not given any precise definition of the generator A. This was a done later.
Generators became an important tool in the theory of Markov processes after
Feller’s work [34] on one-dimensional diffusions. It turned out to be more fruitful
to interpret the 7;° as operators

THf(x) = [P(s, x5 ¢, dy) ()

acting on functions rather than on measures. Feller restricted himself to semi-
groups T, which preserve the space of continuous functions. In general, T, can be
considered as acting on the space of all bounded measurable functions.

A stationary Markov transition function Py(x, dy) is called symmetric (with
respect to a measure m) if

/A m(dx)P,(x, B) = /B m(dx)P,(x, A)

for all £, A and B. For such functions, the semigroup 7, preserves the space
L%(m) and a natural substitute for the infinitesimal operator A is the Dirichlet
form &(f, g) which is an extension of the bilinear form — (fAgdm. The theory
of symmetric Markov processes based on using Dirichlet forms, started by
Fukushima, has been developed by a number of authors (see the bibliography in
[39]). )

The symmetry of a transition function Py(x, dy) is closely related to the time
reversibility of the corresponding Markov process. Kolmogorov [K85] investi-
gated these properties for diffusions on compact differentiable manifolds. Under
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mild restrictions on the coefficients A; and B;;, he proved the existence and
uniqueness of a stationary probability dlstnbutlon and he evaluated the back-
ward transition function P (x, dy). Then he established necessary and sufficient
conditions for time reversibility which he defined by the equation P=P To
find these conditions, he rewrites (5a) in an invariant form by introducing the
Riemannian metric associated with B;; and by using the covariant derivatives in
this metric. Time reversal of Markov chains had been introduced earlier in
[K70]. (Still earlier Schrodinger [69] investigated time reversal for some one-
dimensional diffusions.)

An important class of degenerate diffusions [with det(B,;) = 0] appeared in
[K57]. Let a physical system be described by n coordinates q,,...,q, and n
velocities ¢,, ..., g,. Since the velocities determine the change of coordinates
during any time interval, the process is a diffusion in a 2n-dimensional space for
which the matrix B;; has rank n. (In the simplest case of a free Brownian
particle, such a model was first introduced by Uhlenbeck and Ornstein in [75]).
Time reversal for the processes studied in [K57] was the subject of the disserta-
tion [82] of Yaglom, who was at that time Kolmogorov’s student. An analytic
study of degenerate parabolic PDE was started in the thesis of Piskunov [64],
another student of Kolmogorov. A survey of recent progress in this field can be
found in [38].

4. Stochastic processes and measures on functional spaces. The inter-
action between Markov processes and PDE is much richer than just the relation-
ship between transition functions and their local characteristics. Already in 1933,
Kolmogorov and Leontovich [K42] evaluated the probability of hitting a unit
disk by the planar Brownian motion during time ¢ and the probability distribu-
tion of the position at the hitting time. These probabilities, as functions of the
~ initial state, satisfy the heat equation outside the disk, with certain boundary
" conditions. The authors used this result to express the mathematical expectation
of the area for the Wiener sausage and to get an asymptotic formula as ¢ — oo
for it (a problem proposed by S. I. Vavilov). Many interesting results on the size
of the Wiener sausage have been obtained by the next generations of mathemati-
cians (see [54] for references).

In the beginning, probabilistic intuition played about the same role in the
theory of stochastic processes as physical intuition in analytical mechanics or
mathematical physics. Only after a rigorous theory of measure on functional
spaces was developed, did probabilistic arguments gain the power of mathemati-
cal proof. The first construction of a measure on the space of continuous
functions is due to Wiener [79]. However, this construction is rather special and
not applicable to more general situations. Only Kolmogorov’s book [K40] and,
especially, his theorem on measures on infinite products, have given a start to a
general theory. Still Kolmogorov’s theorem leads to a measure on the space of all
functions without any regularity properties and a fundamental question was how
to restrict it to a space of decent functions without changing the finite-dimen-
sional distributions. One of the first results in this direction was Kolmogorov’s
criterion of continuity in terms of two-dimensional distributions. (Kolmogorov’s
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proof was first published in [72].) The key role in developing measure theory on
functional spaces was played by Doob (see [13, 16]). Doob’s monograph [17]
opened a new period in theory of stochastic processes.

Two classes of processes play a special role: processes with independent
increments and martingales. The study of the first class has been inspired by
their relationship to sums of independent random variables, and it has been
facilitated by the invariance of the set of exponential functions under the
corresponding semigroups. Pioneering results were obtained by de Finetti in
1929. In 1932, Kolmogorov [K34, K35] described all homogeneous processes with
independent increments and finite variance. The general description is due to
Lévy. Soon thereafter Khintchine gave a simple direct proof of Lévy’s formula.
(See [41] and [55] for references.)

Martingale theory was initiated and developed by Doob and substantially
advanced by Meyer and others (some elements can be found in earlier work of
Lévy and Ville; see bibliographies in [17], [47], [61] or [80]). The theory is based
on the general conditioning introduced in [K40]. Kolmogorov also proved an
important estimate for the maximum of a submartingale in terms of the expecta-
tion at the final moment (he worked with sums S, of independent random
variables, but used only the fact that (S, — ES,)? is a submartingale; the
extension to what we call now submartingales is due to Bernstein [3]).

In the theory of Markov processes, measures corresponding to all possible
initial times ¢ and states x are considered and the dependence of probabilities on
t and x plays a crucial role. Dealing simultaneously with many measures
presents some additional problems which have been discussed in [23, 24] and,
more recently, in [71].

5. Stochastic analysis. Progress in the theory of stochastic processes made

it possible to apply direct probabilistic arguments for solving analytical prob-
"lems. Stochastic analysis has evolved (based on the integration on functional
spaces), thereby enriching classical analytical methods in mathematics and
creating new possibilities for applications to science and engineering.

The central place in stochastic analysis belongs to It6’s stochastic differential
equations which allow one to construct paths of a diffusion directly from paths
of the Brownian motion without using PDE. The construction can be carried out
in many dimensions as simply as in one dimension and it works for degenerate
diffusions as well. First published in [48], Itd’s theory was extended to processes
with jumps, with the Brownian motion replaced by processes with independent
increments in [49]. [A different version of stochastic differential equations was
discovered independently by Gihman (see references in [40]).] It6’s stochastic
calculus has gained new strength and flexibility from the introduction of integra-

" tion with respect to a martingale (Kunita and Watanabe; Meyer) and from the
martingale approach of Stroock and Varadhan [74] to stochastic differential
equatlons An excellent presentation of the subject and its history can be found
in books of Ikeda and Watanabe [47] and of Williams and Rogers [80].

To work with the state of a Markov process at any stopping time, a strong

version of the Markov property is needed. Doob [15] proved such a property for
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processes in denumerable spaces. Broad conditions under which the strong
Markov property holds have been established in [30] and, independently, in [4]
(particular cases have been treated in [43] and [66]). For strong Markov pro-
cesses, a local characteristic can be defined by passing to the limit in space rather
than in time. The characteristic operator ¥, introduced this way in [24], has
some advantages in comparison with the infinitesimal operator: Obviously, ¥ is
local if paths are continuous; the diffusion, corresponding to a differential
operator L can be defined as a continuous stochastic process for which U f = Lf
for all f € C? (which implies that L must be the second order elliptic differen-
tial operator, possibly, degenerate); using characteristic operators it is easier to
investigate mathematical expectations related to a Markov process.

A fundamental role in stochastic analysis is played by additive functionals
and transformations related to these functionals, such as random time change,
killing or mass creation (the Feynman-Kac formula), the Girsanov transforma-
tion.... A number of results on this subject and related topics have been
obtained at a seminar on Markov processes at Moscow University in the 1950’s
and 1960’s. Work done in the 1950’s was reported in [22]. A substantial part of
the monograph [24] was based on these results.

By using random time change and killing, it is possible to construct, starting
from the Brownian motion, all one-dimensional continuous strong Markov pro-
cesses (the corresponding class of generators was introduced first analytically by
Feller in [35]). The construction is described in the monographs [24] and [50].
The latter contains also the first rigorous proof of Lévy’s results [566] on the fine
structure of the Brownian motion in R!.

Ideas of Kakutani [52, 53] and Doob [18, 19] prepared the soil for Hunt’s
beautiful probabilistic potential theory [44]. A systematic presentation of this
theory with many important contributions of the authors is contained in [5].
Spectacular progress in probabilistic potential theory was made possible by the
“théorie générale” of stochastic processes developed by Meyer and Dellacherie
(see [61, 10] and, for a more recent presentation, [11]). The most complete
exposition of probabilistic potential theory in its relation to classical analytic
theory is contained in [21].

6. The countable case. The study of processes in a countable state space
had a great impact on the earlier development of Markov theory. The countable
case first appeared in [K28], and its systematic study was launched in 1936 in
[K70] and [K68] (see [K81] for complete proofs). The main objective was to
describe the asymptotic behavior of the transition probabilities P,;(n) in n steps
as n — . Kolmogorov introduces the partition of the state space into an
inessential part and classes of essential states. Each class K consists of d
periodic subclasses and, for every i, j € K, and in the same periodic subclass

6) lim P,,(kd) = M;' ask — oo,
koo J JJ

where M. is the mean recurrence time to j [if n is not divisible by d, then
P, j(n) = 0]. Within one class, either all M;; < co (positive class) or all M;; = oo
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(null class). For a positive class the limits (6) define the only stationary probabil-
ity distribution. This was a very far-reaching extension of Markov’s original
results for finite chains consisting of one class. Doeblin worked independently in
the same direction. He also solved some problems posed by Kolmogorov (see
[12]). A nice presentation of Kolmogorov’s theory is given in [36]. More precise
asymptotic results have been obtained by Chung, Derman, Orey and others (see
[6] for references). Generalizations to the uncountable case due to Doeblin,
Chung and others are described in [67].

Processes in a countable space, with a continuous time parameter were
investigated in [K186]. The author was interested in differential properties (in
particular, in local characteristics) of a stationary transition function P,;(¢)
(assuming that it tends to the unit matrix as ¢]0). Earlier Doob [14, 15] had
proved the existence of the (finite or infinite) derivatives q,; = P/,(0). It is clear
that

and, for every ¢,
(8) , ZQijS‘IiS 0,
J#i
where q; = —gq;;. If the number of states is finite, then a stronger statement than
(8) holds, namely
9) Zqij=qi<°°‘
J#i

Doob established that (9) is equivalent to the following property: For every
separable process corresponding to the matrix @ = (g;;), the discontinuity times
form a well-ordered set. Moreover @ determines the process uniquely until the
first accumulation time T of discontinuities. Doob also has given examples of @
to which many processes correspond (they differ by their behavior at time T'). In
[K186] Kolmogorov proved that g;; < oo for i # j and he constructed examples
where, for some i, g; = 00 or g; < 0o, but the sum in (8) is smaller than g;. He
also conjectured that finite derivatives P/(¢) exist for all ¢ > 0. [K186] is written
without any reference to paths, but behind Kolmogorov’s examples there was an
intuitive idea of an entrance boundary of a process. The present author was a
student in Kolmogorov’s seminars on Markov processes in 1945 and 1946 where
this idea was discussed on a heuristic level. It took several years before
Kolmogorov published rigorous proofs. Meanwhile Lévy [57] presented a deep
informal analysis of possible path behavior. He suggested calling a state i stable
_if g; < oo and instantaneous if g; = co. He thought that-no process with only
instantaneous states exists. Later counterexamples to this statement were pub-
lished by several authors. Kolmogorov’s conjecture on the differentiability of
P, (t) was proved, under some restrictions, by Yushkevich, Austin, Chung and
Reuter. The first complete proof is due to Ornstein [63]. More detail on work
inspired by [K186] can be found in [6] and in Yushkevich’s comments on [K186]
in [K471].
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7. Boundary theory. Let @ satisfy (9). To get all right-continuous pro-
cesses corresponding to @ (all of them have @ as their characteristic operator),
one needs to know the possible behavior of paths at the first accumulation time
of discontinuities. Similarly, one can be interested in the possible behavior of a
diffusion in a domain D after the first exit time from D. Both problems can be
stated in terms of boundary conditions determining generators. Feller [34]
succeeded in describing all such boundary conditions in the simplest case of a
one-dimensional diffusion. Wentzell [78] considered the multidimensional case.
The work on Wentzell’s boundary conditions (see references in [68]) lead to
Motoo’s theory of the boundary processes [62]. In the countable case, the first
step is to construct a suitable boundary, in fact, two boundaries—exit and
entrance. Such a construction, motivated by Martin’s theory of positive har-
monic functions, was suggested by Doob in [20] and substantially improved by
Hunt in [45] (see also [27]; for an extension to general state spaces see [28, 29]
and references there). Behaviour of Markov processes on the boundary was
studied in [7] and [25] in the countable case and in [26] for a class of processes
related to the classical boundary value problem with oblique derivative. Martin
boundary theory is an important tool for investigating the limit behavior of
paths as ¢ — oo0-and for determining all stationary distributions.

8. Branching processes. Initially, Kolmogorov became interested in
branching processes because of their applications to genetics. Two papers [K101,
K286] are devoted to such applications.

Branching processes were the subject of Kolmogorov’s seminar at Moscow
University in 1946-1947. In fact, the general concept of a branching process with
many types of particles and even the name “branching processes” appeared at
this seminar for the first time. The results obtained there (see [K139], [K140]
‘and [81]) stimulated intensive work in the years to come. The progress in the
1950’s and 1960’s was presented in monographs of Harris [42], Sevast’yanov [70]
and Athreya and Ney [1] which also contain their own significant contributions
to the subject. Processes with several types of particles introduced in Kol-
mogorov’s seminar are related to particle systems which combine branching with
a Markov transition mechanism in a finite state space. Analogous theory for an
arbitrary state space was developed in [51] and [46]. A related class of measure-
valued processes has been studied by Watanabe [77], Dawson [8] and others (see
the bibliography in [9]).

9. Concluding remarks. Kolmogorov’s ideas have influenced, directly or
indirectly, almost all work on Markov processes. Only a small part of it could be
covered in one article and, inevitably, the choice was conditioned by my own
interest and limited knowledge. I apologize for omissions and possible uninten-
tional misrepresentations. Some important directions in the modern theory of
Markov processes were left out in our survey. They are covered in the following
recent monographs: diffusion on manifolds, Malliavin’s calculus [47]; infinite
particle systems [58]; limit theorems for sequences of Markov processes [32];
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large deviations [73, 76]; applications of Markov processes to various problems in
PDE (small parameter, quasilinear equations, etc.) [38].
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