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A COMPARISON THEOREM FOR STOCHASTIC EQUATIONS
WITH VOLTERRA DRIFTS

By CONSTANTIN T'UDOR
University of Bucharest

A comparison theorem is proved for one-dimensional stochastic equations
driven by continuous semimartingales and having Volterra-type drifts. A
counterexample which shows that the coefficient of the continuous martin-
gale term cannot be Volterra-type is given. Then the comparison result is
used in order to obtain the existence of strong solutions when the Lipschitz
condition is replaced by a Holder-type one.

Assume (2, #, P,(#,),-,) is a filtered probability space satisfying the usual
assumptions, that is, # is complete with respect to P, the null sets in # belong
to %, and the filtration (%,),., is right-continuous. Let M be a continuous
real-valued local martingale, N be a continuous real-valued increasing process
and define the increasing process C by C(¢) = ¢ + N(¢) + (M )(t). We introduce
the class of functions

1
LS = {p: p is strictly increasing, concave and f du/p(u) = oo}.
0+

For example functions of the form x|log x|' ¢ in the neighborhood of 0 which are
strictly increasing and concave are in LS. By using Picard iteration and the
stochastic Gronwall lemma [5], we obtain as in Protter [4] the following result.

THEOREM 1. Let Z be a real semimartingale with the control process @ in
the Metivier—Pellaumail sense ([3]) and denote L(t) =t + Q(t). Let
F(t,s,w,x): R2X Q2 X R > R be a measurable function in all variables. As-
sume that:

1. For every t,s,x, F(t,s, - ,x) is %-measurable and for every t,w,x,
F(t, -, w, x) is left-continuous with right-hand limits.
2. There exist p € LS and the increasing predictable processes vy, y'(r > 0)
locally L-integrable such that
2
|F(s,s,0,x) — F(s,s,0, )" < v"(s)o(Ix — 5%)

foranyr>0,s>0,w€ Qand|x|<r, |y <r, and
|F(s, s, w, x)|2 <7y(s)(1 + |x?)
“for any s > 0, weﬂ,xeR.‘
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1542 C. TUDOR
3. dF(t, s, w,x)/dt exists and there are p, € LS, v;: R,— R, locally inte-

grable with respect to Lebesgue measure and the increasing processes Yy, Y3,
r > 0, which are predictable, locally L-integrable and such that

|0F(t, 5, 0, %) /9t — 3F(t, 5,0, ) /0¢[" < 1(£)¥5(s)p(lx — ¥I2)
for every t,s,w and |x| <r, |y| <r, and
|0F(t, 5,0, 2)/0t]" < v(t)va(s)(1 + |xI?)

for every t, s, w, x.

Then for every adapted process H which is continuous on the right with limits
on the left there exists a pathwise unique strong solution of

1) X(t) = H(t) + j(;tF(t,s, X(s —)) dZ(s).

The following comparison result holds.

THEOREM 2. Let A, A, R2XQ2X R > R, B: R.XQ X R - R be mea-
surable functions such that:

(a) A, A (¢, s, w, x)/dt are continuous, bounded and
Al(" x) 2 AZ(" y)9 aAl(',x)/at 2 aA2(" y)/at lfx =Y.

(b) There exist p,, p, € LS, v;: R,— R, v, locally integrable with respect to
Lebesgue measure and v,,v,: R,— R, which are locally C-integrable and such
that for every t, s, w,x, yandi=1ori= 2,

|Ai(2, 5, 0, %) — A(t, 5,0, y) " +|0Ai(t, 5, 0, %) /0t — DA,(t, 5,0, ¥)/3¢]"
< n(8)va(s)ea(lx — 51%),
|B(s,x) — B(s, y)|2 < v4(s)o5(lx — ¥1%).

Let X,, X, be solutions of

@) X(t) =X+ ['At, 5, %(s)) dN(s) + [[B(s, Xi(s)) dM(s),

where X, is a %,measurable random variable. Then X,(t) > X,(t) a.s. for
every t > 0.
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PrROOF. Assume i =1 in (b). Then by Theorem 1, X, is the unique strong
solution of (2). For £ > 0 let X* be the strong solution of

Xe(t) = X, + jO‘B(s, X(s)) dM(s) + [[A(s, s, X(s)) + ¢] dN(s)
(3) °

+ fo‘(fos[aAl(s, u, X¥(u))/ds + €] dN(u)) ds

(see [5], Theorem 1). :

By the functional comparison theorem of Mel'nikov [2], Theorem 2, we have
X*(t) > X"(t) for e > n and X%(¢) > X,(t) as. Of course lim,_, (X (¢) = Xy(¢)
a.s. from which the conclusion is clear. O

REMARK 1. Theorem 2 holds if we take B a Volterra coefficient which is
independent of space variable.

REMARK 2. Theorem 2 fails if B is of Volterra-type and depends on the
space variable.

Indeed we consider X, = —1, N(¢) = ¢ for all ¢{, M a Brownian motion,

At s,w0,x) =0, Ayt s,0,x) =1,

B(t,s,0,x) = xAR\(l e1+6(S)

for all ¢, s, w, x and for some & > 0.

Let, for a > 0, {M%(¢)}, be the Brownian motion after @ and let £ be the
exponential martingale defined by £ = exp{M%t) — t/2}. Then for £ > 0 we
have

X(t+1+e) ‘(t"'e)glﬂ[ e +f01 ssl(S) dM(s) +f (&™) (s ise)z]’

1+/” 2()dM( )]

Xy(t+1+¢e)=(t+e)§*

Utilizing the law of the iterated logarithm, one obtains that

ds
l+e =
Hw/(g ) (st 8)2 oo as.

and this implies that lim,_,  P(X,(¢t) > X,(¢)) = 1.
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THEOREM 3. Let A(t,s,w,x): RZXQ@XR-> R, B(s,w,x): R,XQX
R — R be such that:

(a) A, dA(L, s, w, x)/3t are bounded and continuous.

(b) There exist p € LS and y: R, — R locally C-integrable such that

2
IB(t,x) = B(¢, y)|" < v(t)o(Ix — ¥*).

Let X, be a #measurable random variable. Then there exists a strong solution
of

4  X(2) =X0+f0€4(t,s, X(s)) dN(s) +f0‘B(s, X(s)) dM(s).

Proor. Choose a sequence of functions A” such that:

(i) A™(t, s, w, x) N A(L, s, w,x), IA™L, s, w,x)/0t\ JA(L, s, w,x)/dt for
all s, ¢, w, x.

(i) A", dA"/dt are bounded and satisfy the Lipschitz condition. According to
Theorem 1, there is a pathwise unique strong solution X" of

(5)  X™(t) =X, + jO‘Aﬂ(t,s, X"(s)) dN(s) + jO‘B(s, X"(s)) dM(s).

By Theorem 2 we have
XY(t) 2 X%(t)> -+ >X"(t)> --- P-as.forallt>0.

Next we show that X(¢) = lim,X"(¢) is a solution of (4). Let {o(n)}, be a
sequence of stopping times reducing M. Then
2]

< 4E[f0"‘")|B(s, X"(s)) - B(s, X(s))|2d(M)(s)] -0

E’[ sup

t<o(n)

[(B(s, X7(s)) ~ B(s, X(s))) dM(s)

by the dominated convergence theorem. Therefore
f‘B(s, X"(s)) dM(s) — j‘B(s,X(s)) dM(s)
0 0
in probability, uniformly on every compact interval. Since

|A"(¢, s, X"(s)) — A(t, 5, X(s))]

< sup  |A%(¢,s,x) - A(t, s, x)|
x€[X(s), X'(s)]

+]A(¢, s, X"(s)) — A(t, s, X(s))| - 0,
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it follows by the dominated convergence theorem that
fo‘[A"(t, s, X"(s)) — A(t, s, X(s))] dN(s) » 0 P-as.forall ¢.
The above computation justifies the passing to the limit in (5). O

REMARK 3. Theorem 3 includes as a special case the result of Mel'nikov [2],
Theorem 1, and generalizes to a certain extent some results of Barlow and
Perkins [1] in the continuous case.
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