A COMPARISON THEOREM FOR STOCHASTIC EQUATIONS WITH VOLTERRA DRIFTS

By Constantin Tudor

University of Bucharest

A comparison theorem is proved for one-dimensional stochastic equations driven by continuous semimartingales and having Volterra-type drifts. A counterexample which shows that the coefficient of the continuous martingale term cannot be Volterra-type is given. Then the comparison result is used in order to obtain the existence of strong solutions when the Lipschitz condition is replaced by a Hölder-type one.

Assume $(\Omega, \mathscr{F}, P, (\mathscr{F}_t)_{t\geq 0})$ is a filtered probability space satisfying the usual assumptions, that is, \mathscr{F} is complete with respect to P, the null sets in \mathscr{F} belong to \mathscr{F}_0 and the filtration $(\mathscr{F}_t)_{t\geq 0}$ is right-continuous. Let M be a continuous real-valued local martingale, N be a continuous real-valued increasing process and define the increasing process C by $C(t) = t + N(t) + \langle M \rangle(t)$. We introduce the class of functions

$$LS = \left\{ \rho \colon \rho \text{ is strictly increasing, concave and } \int_{0+}^{1} du / \rho(u) = \infty \right\}.$$

For example functions of the form $x|\log x|^{1-\epsilon}$ in the neighborhood of 0 which are strictly increasing and concave are in LS. By using Picard iteration and the stochastic Gronwall lemma [5], we obtain as in Protter [4] the following result.

THEOREM 1. Let Z be a real semimartingale with the control process Q in the Metivier-Pellaumail sense ([3]) and denote L(t) = t + Q(t). Let $F(t, s, \omega, x)$: $R^2_+ \times \Omega \times R \to R$ be a measurable function in all variables. Assume that:

- 1. For every $t, s, x, F(t, s, \cdot, x)$ is \mathcal{F}_s -measurable and for every $t, \omega, x, F(t, \cdot, \omega, x)$ is left-continuous with right-hand limits.
- 2. There exist $\rho \in LS$ and the increasing predictable processes γ , $\gamma^r(r > 0)$ locally L-integrable such that

$$|F(s,s,\omega,x)-F(s,s,\omega,y)|^2 \leq \gamma^r(s)\rho(|x-y|^2)$$

for any r > 0, $s \ge 0$, $\omega \in \Omega$ and $|x| \le r$, $|y| \le r$, and

$$|F(s,s,\omega,x)|^2 \leq \gamma(s)(1+|x|^2)$$

for any $s \geq 0$, $\omega \in \Omega$, $x \in R$.

Received December 1987; revised September 1988.

AMS 1980 subject classification. Primary 60H20.

Key words and phrases. Stochastic integral equations, strong solutions, Volterra drifts.

1542 C. TUDOR

3. $\partial F(t, s, \omega, x)/\partial t$ exists and there are $\rho_1 \in LS$, $\gamma_1: R_+ \to R_+$ locally integrable with respect to Lebesgue measure and the increasing processes γ_2, γ_2^r , r > 0, which are predictable, locally L-integrable and such that

$$\left|\partial F(t,s,\omega,x)/\partial t - \partial F(t,s,\omega,y)/\partial t\right|^2 \leq \gamma_1(t)\gamma_2^r(s)\rho_1(|x-y|^2)$$

for every t, s, ω and $|x| \le r, |y| \le r$, and

$$\left| \frac{\partial F(t, s, \omega, x)}{\partial t} \right|^2 \le \gamma(t) \gamma_2(s) (1 + |x|^2)$$

for every t, s, ω, x .

Then for every adapted process H which is continuous on the right with limits on the left there exists a pathwise unique strong solution of

(1)
$$X(t) = H(t) + \int_0^t F(t, s, X(s-)) dZ(s).$$

The following comparison result holds.

Theorem 2. Let A_1 , A_2 : $R_+^2 \times \Omega \times R \to R$, B: $R_+ \times \Omega \times R \to R$ be measurable functions such that:

(a) A_i , $\partial A_i(t, s, \omega, x)/\partial t$ are continuous, bounded and

$$A_1(\cdot, x) \ge A_2(\cdot, y), \qquad \partial A_1(\cdot, x)/\partial t \ge \partial A_2(\cdot, y)/\partial t \quad \text{if } x \ge y.$$

(b) There exist ρ_1 , $\rho_2 \in LS$, γ_1 : $R_+ \to R_+$, γ_1 locally integrable with respect to Lebesgue measure and γ_2 , γ_3 : $R_+ \to R_+$ which are locally C-integrable and such that for every t, s, ω , x, γ and i = 1 or i = 2,

$$\begin{aligned} \left| A_i(t, s, \omega, x) - A_i(t, s, \omega, y) \right|^2 + \left| \frac{\partial A_i(t, s, \omega, x)}{\partial t} - \frac{\partial A_i(t, s, \omega, y)}{\partial t} \right|^2 \\ & \leq \gamma_1(t) \gamma_2(s) \rho_2(|x - y|^2), \end{aligned}$$

$$|B(s,x)-B(s,y)|^2 \leq \gamma_3(s)\rho_2(|x-y|^2).$$

Let X_1, X_2 be solutions of

(2)
$$X_i(t) = X_0 + \int_0^t A_i(t, s, X_i(s)) dN(s) + \int_0^t B(s, X_i(s)) dM(s),$$

where X_0 is a \mathcal{F}_0 -measurable random variable. Then $X_1(t) \geq X_2(t)$ a.s. for every $t \geq 0$.

PROOF. Assume i = 1 in (b). Then by Theorem 1, X_1 is the unique strong solution of (2). For $\varepsilon > 0$ let X^{ε} be the strong solution of

$$(3) \hspace{3cm} X^{\epsilon}(t) = X_{0} + \int_{0}^{t} B(s, X^{\epsilon}(s)) dM(s) + \int_{0}^{t} [A_{1}(s, s, X^{\epsilon}(s)) + \epsilon] dN(s) \\ + \int_{0}^{t} \left(\int_{0}^{s} [\partial A_{1}(s, u, X^{\epsilon}(u)) / \partial s + \epsilon] dN(u) \right) ds$$

(see [5], Theorem 1).

By the functional comparison theorem of Mel'nikov [2], Theorem 2, we have $X^{\epsilon}(t) \geq X^{\eta}(t)$ for $\epsilon > \eta$ and $X^{\epsilon}(t) \geq X_2(t)$ a.s. Of course $\lim_{\epsilon \to 0} X^{\epsilon}(t) = X_1(t)$ a.s. from which the conclusion is clear. \square

REMARK 1. Theorem 2 holds if we take B a Volterra coefficient which is independent of space variable.

REMARK 2. Theorem 2 fails if B is of Volterra-type and depends on the space variable.

Indeed we consider $X_0 = -1$, N(t) = t for all t, M a Brownian motion,

$$A_1(t,s,\omega,x)=0, \qquad A_2(t,s,\omega,x)=1,$$
 $B(t,s,\omega,x)=rac{t-1}{s-1}x\lambda_{R\setminus(1-\epsilon,1+\epsilon)}(s)$

for all t, s, ω, x and for some $\varepsilon > 0$.

Let, for $a \ge 0$, $\{M^a(t)\}_t$ be the Brownian motion after a and let ξ^a be the exponential martingale defined by $\xi^a_t = \exp\{M^a(t) - t/2\}$. Then for $t \ge 0$ we have

$$\begin{split} X_1(t+1+\varepsilon) &= (t+\varepsilon)\xi_t^{1+\varepsilon} \bigg[-\frac{1}{\varepsilon} + \int_0^{1-\varepsilon} \frac{X_1(s)}{s-1} \, dM(s) + \int_0^t \! \left(\xi_s^{1+\varepsilon}\right)^{-1} \frac{ds}{(s+\varepsilon)^2} \bigg], \\ X_2(t+1+\varepsilon) &= (t+\varepsilon)\xi_t^{1+\varepsilon} \bigg[1 + \int_0^{1-\varepsilon} \frac{X_2(s)}{s-1} \, dM(s) \bigg]. \end{split}$$

Utilizing the law of the iterated logarithm, one obtains that

$$\lim_{t\to\infty}\int_0^t \left(\xi_s^{1+\varepsilon}\right)^{-1}\frac{ds}{\left(s+\varepsilon\right)^2}=\infty\quad \text{a.s.}$$

and this implies that $\lim_{t\to\infty} P(X_1(t) > X_2(t)) = 1$.

1544 C. TUDOR

Theorem 3. Let $A(t,s,\omega,x)$: $R_+^2 \times \Omega \times R \to R$, $B(s,\omega,x)$: $R_+ \times \Omega \times R \to R$ be such that:

- (a) A, $\partial A(t, s, \omega, x)/\partial t$ are bounded and continuous.
- (b) There exist $\rho \in LS$ and $\gamma: R_+ \to R_+$ locally C-integrable such that

$$|B(t,x) - B(t,y)|^2 \le \gamma(t)\rho(|x-y|^2).$$

Let X_0 be a \mathcal{F}_0 -measurable random variable. Then there exists a strong solution of

(4)
$$X(t) = X_0 + \int_0^t A(t, s, X(s)) dN(s) + \int_0^t B(s, X(s)) dM(s).$$

PROOF. Choose a sequence of functions A^n such that:

- (i) $A^n(t, s, \omega, x) \setminus A(t, s, \omega, x)$, $\partial A^n(t, s, \omega, x)/\partial t \setminus \partial A(t, s, \omega, x)/\partial t$ for all s, t, ω, x .
- (ii) A^n , $\partial A^n/\partial t$ are bounded and satisfy the Lipschitz condition. According to Theorem 1, there is a pathwise unique strong solution X^n of

(5)
$$X^n(t) = X_0 + \int_0^t A^n(t, s, X^n(s)) dN(s) + \int_0^t B(s, X^n(s)) dM(s).$$

By Theorem 2 we have

$$X^{1}(t) \geq X^{2}(t) \geq \cdots \geq X^{n}(t) \geq \cdots$$
 P-a.s. for all $t \geq 0$.

Next we show that $X(t) = \lim_{n} X^{n}(t)$ is a solution of (4). Let $\{\sigma(n)\}_{n}$ be a sequence of stopping times reducing M. Then

$$E\left[\sup_{t\leq\sigma(n)}\left|\int_{0}^{t}(B(s,X^{n}(s))-B(s,X(s)))\,dM(s)\right|^{2}\right]$$

$$\leq 4E\left[\int_{0}^{\sigma(n)}\left|B(s,X^{n}(s))-B(s,X(s))\right|^{2}d\langle M\rangle(s)\right]\to 0$$

by the dominated convergence theorem. Therefore

$$\int_0^t B(s, X^n(s)) dM(s) \to \int_0^t B(s, X(s)) dM(s)$$

in probability, uniformly on every compact interval. Since

$$\begin{aligned} \left| A^{n}(t, s, X^{n}(s)) - A(t, s, X(s)) \right| \\ &\leq \sup_{x \in [X(s), X^{1}(s)]} \left| A^{n}(t, s, x) - A(t, s, x) \right| \\ &+ \left| A(t, s, X^{n}(s)) - A(t, s, X(s)) \right| \to 0, \end{aligned}$$

it follows by the dominated convergence theorem that

$$\int_0^t [A^n(t,s,X^n(s)) - A(t,s,X(s))] dN(s) \to 0 \quad \text{P-a.s. for all t.}$$

The above computation justifies the passing to the limit in (5). \Box

REMARK 3. Theorem 3 includes as a special case the result of Mel'nikov [2], Theorem 1, and generalizes to a certain extent some results of Barlow and Perkins [1] in the continuous case.

REFERENCES

- [1] BARLOW, M. T. and PERKINS, E. (1984). One-dimensional stochastic differential equations involving a singular increasing process. Stochastics 12 229-249.
- [2] MEL'NIKOV, A. V. (1983). Stochastic equations and Krylov's estimates for semimartingales. Stochastics 10 81-102.
- [3] METIVIER, M. and PELLAUMAIL, J. (1980). Stochastic Integration. Academic, New York.
- [4] PROTTER, P. (1985). Volterra equations driven by semimartingales. Ann. Probab. 13 519-530.
- [5] TUDOR, C. (1984). Sur les solutions fortes des équations différentielles stochastiques. C. R. Acad. Sci. Paris Sér. I 299 117-120.

FACULTY OF MATHEMATICS UNIVERSITY OF BUCHAREST 14 ACADEMIEI ST. 70109 BUCHAREST ROMANIA