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NEAREST-NEIGHBOR ANALYSIS OF A FAMILY OF
FRACTAL DISTRIBUTIONS!

BY CoLLEEN D. CUTLER AND DONALD A. DAWSON

University of Waterloo and Carleton University

In this paper we use a central limit theorem for entropy due to Ibragimov
to obtain limit theorems for linear normalizations of the log minimum
distance when observations are sampled from measures belonging to a family
of fractal distributions. It is shown that in almost all cases the limit distribu-
tion is Gaussian with parameters determined in part by the Hausdorff
dimension associated with the underlying measure. Exceptions to this rule
include absolutely continuous measures which obey the classical extreme
value limit laws.

1. Introduction and preliminaries.

1.1. Introduction. The study of dynamical systems, chaos and fractals has
led to an interest in the relationship between the Hausdorff dimension and the
distribution of nearest neighbors. In the analysis of chaotic systems, functions of
nearest neighbors are often used to obtain numerical estimates of the fractal
dimensions associated with a system [see, for example, Badii and Politi (1985)].
However, the statistical properties of such estimates have not been rigorously
examined. In this paper we study the nearest-neighbor behavior of a family of
distributions on the unit interval [0,1) whose dimension properties are well
understood. These distributions may be regarded as the occupation measures
associated with the mapping T(x) = rx (mod 1) for various choices of distribu-
tion of initial conditions in [0,1). Our primary result is that, under suitable
mixing conditions, in “almost all” cases a certain linear transformation of the log
minimum distance asymptotically follows a Gaussian distribution whose vari-
ance is connected to the entropy and Hausdorff dimension of the original
measure. This result is then extended to the class of measures absolutely
continuous with respect to some member of the original family. This provides
theoretical support for the conjectured or observed log normality of probabilities
in many dynamical systems [see Farmer, Ott and Yorke (1983) and Badii and
Politi (1985)]. Furthermore, a study of the variance term shows that the preci-
sion of dimension estimates based on nearest neighbors can vary widely over a
class of measures, the degree of precision depending on the dimension and
related quantities.

Later in this paper we will examine some special cases which do not exhibit
the Gaussian behavior and we will establish bounds on the asymptotic distribu-
tion of the log minimum distance for these cases.
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1.2. Local Hausdorff dimension and the log minimum distance. We can
connect the concept of Hausdorff dimension (of sets) with probability measures p
on Euclidean N-space by defining a related measure i (the dimension distribu-
tion of p) on the Borel sets of R by
(12.1) A([0,a]) = sup u(D).

dim(D)<a
Here D is a Borel set in Euclidean N-space and dim(D) denotes its Hausdorff
dimension. The measure i describes the manner in which the p-mass is dis-
tributed with respect to the Hausdorff dimension. Cutler (1986) and Cutler and
Dawson (1989) have shown that, in fact, fi is the distribution of the random
variable a(X) defined by

(1.2.2) a(X) = lier(i)r}f(log ¢) 'logu(B(X,¢)),

where X has distribution p and B(X, ¢) is the closed ball of radius & centered at
X. The value a(x) at the point X = x is called the local Hausdorff dimension of
p at x. (This quantity is sometimes called pointwise dimension in the physics
literature.) Cutler and Dawson (1989) have shown that a function of the nearest-
neighbor distance provides a consistent estimator of a(x) under the assumption
that “liminf” in (1.2.2) can be replaced by “lim” at point x. [In this case we say
a(x) is simple at x.] We summarize this result in the following theorem.

THEOREM 1.2.1. Let p be a probability measure on the Borel sets of Eu-
clidean N-space and suppose a{x) is simple at x. Let X,, X,,... be an i.i.d.
sequence of observations from p and let p,(x) = min, _;_,||X; — x|| denote the
nearest-neighbor (or minimum) distance to x from the first n sample points.

Then lim, _, ,(log1/n) 'logp,(x) = 1/a(x) w.p.1.

Measures p for which [i is concentrated on a single atom « are called
exact-dimensional measures. [This term originated with Rogers and Taylor
(1959)]. This is equivalent to stating that a(X) is p-a.s. constant and equal to a.
In dimension estimation in dynamical systems it is generally assumed that the
measure in question is exact-dimensional (an assumption which is supported by
empirical evidence and which can be proven in the case of certain ergodic
systems). In this case it is not unreasonable to select the basepoint X at random
according to p since p-almost all points have the same local dimension. This and
Theorem 1.2.1 leads us to consider the asymptotic behavior of linear transforma-
tions of the quantity (log1/n) '(log p,(X)) — 1/a, where X, X,, X,,... arei.i.d.
observations from p. The main work of this paper is to study this asymptotic
behavior for the family of measures described in the next section.

1.3. The family of measures. Let r > 2 be a fixed positive integer. In
constructing a family of measures on [0,1) we begin with a stationary ergodic
sequence ...,Z_,,Z,, Z,,... of random variables with state space S = {0,1,...,
r — 1} defined over a probability space (2, #, P), where @ =1*_S and % is
the o-algebra generated by the cylinder sets. (The use of a two-sided sequence
is not necessary but permits a convenient notation for entropy and related
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ProoF. The local Hausdorff dimension at x can be calculated by taking
limits over r-adic intervals [Cutler (1986)], and by comparison with (1.3.3) we
then obtain

a(x) = lim (logr=") 'logpu(C,(x)) pas.
= h/logr p-a.s.

If the limit exists over r-adic intervals p-a.s., then it also exists over e-intervals
p-a.s. and so a(x) is simple. O

It should be noted that some of the ideas in Theorem 1.3.1 originated with
Billingsley (1960, 1961, 1978).

1.4. Summary of main results. Let X, X, X,,... be ani.i.d. sequence from a
distribution » which is absolutely continuous with respect to p (where p is
constructed as in Section 1.3). Let a = h/log r and define the linear transforma-
tion L, (X) by

L,(X) = (log n)"*(log r)""*{(log p.( X ) /log1/n) — 1/a}

—(log n) " **(log r)*{1og p,(X) + (log n)/a}.

Then under suitable mixing conditions on the Z; sequence (see Theorems 2.1 and
2.3) we obtain

(1.4.1)

L,(X) -4 N(O, 02/a3),
provided o2 # 0, where o2 = Var(H,) + 2Y.%_, Cov(H,, H;). (This definition of
o? is maintained throughout the paper.)
In addition, for certain cases of o2 = 0 we obtain (pointwise) extreme value

distributions which asymptotically bound the transformation —a(logp,(x) +
(log n)/a). (See Theorem 3.1.)

2. The Gaussian case (62 #+ 0). The key element in the proof of asymptotic
normality of L,(X) [as defined in (1.4.1)] is a central limit theorem for entropy
[due to Ibragimov (1962)] which corresponds to the a.s. result in (1.3.1).

Let the stationary Z; sequence satisfy the strong mixing condition
(2.1) sup  |P(AB) - P(A)P(B)| < B(n),

AeF0 , BeZ®

where #°_ =o(...,Z_,,Zy), > =0(Z,,Z,.,,...) and the mixing coefficient

B(n)!0.
Also define
6(n)= sup E(|P([2,=ilZ_\,Z_,,...)
(2'2) O<i<r—1

—P([2,=ilZ_y,.... Z_,) ).

Then 6(n) is a measure of the degree to which conditioning on the entire past
can be approximated by conditioning on the previous n observations.
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THEOREM 2.1 (Ibragimov). Let the Z; sequence additionally satisfy

(2.3) Y B(n)'? <o forsomed >0,
n=1
(2.4) Y 0(n)"** < oo forsomee > 0.
n=1

Then o¢% < o and n Y% Ylog P(Z,,..., Z,) + nh) -4 N(0,1) provided
o2+ 0.

Proor. See Ibragimov (1962), Theorem 2.6. Here, however, we are using
natural logarithms. O

In the following p will always denote a member of the family constructed in
Section 1.3 with corresponding Hausdorff dimension a = A/log r. The notation
I(x, ) will refer to a closed interval of radius ¢ centered at x. We define the error
function ¢ by

(2.5) o(x,¢) = (loge) 'logp(I(x,¢)) — a
and the associated error function ¢ (which is computed over r-adic intervals) by
(2.6) é(x,r ") = (logr~™) 'logu(Cy(x)) — a.

From Theorem 1.3.1 it follows that lim,_ _ é(x,7 ") =0 p-as. and
lim,_, o+ ¢(x, €) = 0 p-as.

For the remainder of this section we will assume 62 # 0 and that conditions
(2.3) and (2.4) are met. In the following sequence of lemmas we assume X is a
random observation from p and establish the asymptotic normality of

(log1/¢)'%( X, e).
LEMMA 2.1. n'%(log r)é(X, r ") =4 N(0, 62) as n - oo.

Proor. Noting that n'/?(log r)¢(X, r™") = —n~%(log w(C(X)) + nh) has
the same distribution as —n~'2(log P(Z,,..., Z,) + nh), the result follows from
Theorem 2.1. O

LEMMA 2.2. n'/%(log r)¢(X, r ") >4 N(0,02) as n — oo.

ProoF. Since C(X) ¢ I(X, r ") we have ¢(X, r ") < (X, r ™) and so
(2.7) n*(log r)¢(X, r ") < n'*(log r)$(X, r ™).
To obtain a reverse inequality, let C, (X) and C;(X) denote the r-adic inter-
vals of length r~" located, respectively, to the immediate left and right of
C,(X). Define the ratios R,(X) = u(C,(X))/m(C,(X)) and R, (X) =
w(CH(X))/m(C(X)). (Note these ratios are p-a.s. finite.) We then have
p(I(X,r™")) < p(C (X)) + p(Cy(X)) + n(C/ (X))

(2.8) = p(CX))[ R (X) + R (X) + 1].



FRACTAL DISTRIBUTIONS 261

Hence
¢(X, ") = (log r=") " '(log(p(C,(X))
(2.9) X[Ry(X) + Ry (X) +1])) — @
= $(X,r ") + (logr™") 'log[ R, (X) + R;(X) + 1],
giving the inequality
n?(log r)¢(X, r ") = n**(log ré(X,r ")
- n"V2log[R;(X) + R}(X) +1].

In view of Lemma 2.1, (2.7) and (2.10), the lemma will be proved if we show
lim,_  E(jn""?log[R,(X) + R,(X) + 1]|) = 0.

Now R,(X)+ R}(X)+1 =1 always and so applying Jensen’s inequality
for concave functions we obtain

E(|log[ R, (X) + Ri(X) +1]|) = E(log[ R, (X) + R;(X) +1])
<log E(R;(X) + R} (X) +1).

Therefore it is certainly sufficient to show E(R,(X) + R;;(X) + 1) is bounded
over n. But clearly

E(RI(X) = L #(Gi(ineensin) =1 = 1(G,0,0,...,0).

(2.10)

Similarly, E(R,(X))=1-w(Cy(r—1,r—1,...,r = 1) Therefore 1 <
E(R;(X)+R}(X)+1)<3foral n. O

To extend Lemma 2.2 to a continuous interval width ¢ we define the
integer-valued function n(e) by the relation

(2.11) roMe < g < pm (9D

and approximate ¢(X, €) by ¢(X, r~"®).
LeEmMa 2.3. (log1/e)/2¢(X, &) — o(X, r "@)] >, 0 as e > 0™,
ProoF.
(log1/e)*|¢(X, &) — ¢(X, r )|
< (log1/¢)"*(log1/¢) ""|log n(I( X, €)) — log p(I(X, r"))|
(2.12) +(log 1/¢)"/%log p(I(X, r~"®))||(log ) ™" — (log r~"®) 7
= (log1/¢) " /*|log[w(I(X, &)) /u(1(X, r~"))]|

+(log1/¢)~*(log r=) " og w(I( X, r~®))|log[r~"/e] |
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Now as |log[7~"® /¢]| < log r and (log r~™®)~log p(I(X, r~"™®)) — a p-as., it
follows that the second term of (2.12) converges to 0 p-a.s. Now consider the first
term of (2.12). We have

1 < p(I(X, &) /u(I(X, r~9)) < p(I(X, r~"O70)) /p(I(X, 1))

< [I‘L(Cn_(e)—l(X)) + ""(Cn(e)—l(X)) + P(Cr:;e)—l(X))]/P(Cn(e)(X))
using the same notation as in (2.8). It follows that

E(1(Crg- i X)) /8(Cu( X)) = (1 = 1(Cog-ar = 1,..., 7 = 1)),
E(""(Cn(e)—I(X))/’J‘(Cn(e)(X))) =r,
E(”"(Cr:L(e)—l(X))/”(Cn(E)(X))) = r(l - ”(Cn(e)-l(o"“’o)))'

Hence
(2.13) 1< E(p(I(X, ) /p(I(X, r™®))) < 3r.
Now by the argument used in the proof of Lemma 2.2 we conclude

lim (log 1/e) " E(|log[n(I(X, &) /n(1(X, )] |) = 0

and so the first term of (2.12) converges to 0 in mean. O
THEOREM 2.2. (log1/¢)/*(log r)/%p(X, &) =4 N(0,0%) as ¢ > 0*.

Proor. Noting that
n(e)*(logr)e(X, r~®) = (log ""(e))l/z(log ) 26(X, rm®),
we obtain
|(10g 1/¢)*(log r)?¢(X, &) — n(e)*(log r) (X, r'"(e))|
= |(log 1/8)1/2(log ")1/2¢(X, e) — (log ,.n(e))l/?(log r)1/2¢(X, r—n(e))|

< (log r)1/2(10g1/8)1/2|q>(X, ) — ¢(X, r )]
+ (log r)1/2|4>(X, rom@)] |log[r‘"(‘)/s] l.

In the second term of (2.14) we have used the inequality |x'/% — y'/?| < |x — y|
for x, y > 1. From Lemma 2.3 we know that the first term of (2.14) converges to
0 in distribution. The second term of (2.14) tends to 0O p-a.s. because
llog[r~™®/¢]| < logr and ¢(X, r™) — 0 p-as. The required result now fol-
lows by applying Lemma 2.2. O

(2.14)

THEOREM 2.3. Let p defined as in Section 1.3 satisfy the mixing conditions
(2.3) and (2.4) with o2 + 0. Let X, X;, X,,... be an i.i.d. sequence from p and
let L (X) be as defined in (1.4.1). Then

L(X) >4 N(0,6%/a®) asn — oo.
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ProoF. Let P, =TI¥n denote the usual product measure corresponding to
the sequence X, X,, X,,... . For each y € R, let

e.( ) = exp(—y(log n)/*(log r) /% — (log n) /).
Then for fixed x we have
P[L,(x) <y]) = P[oa(x) > e(5)])
= {1 - p(I(=, e(2)}"

={1- 8n(y)“+"""""(”’} [using (2.5)]

= {1 - exp(aloge,(y) + (108 £,()¢(x, en( )}
Setting Z,, ,(x) = —(log1/e,())"/*(log r)/*p(x, £,()), we obtain

Py([Ly(x) <3]) = f,,n(Z,,a(x)),

where
fon(2) = {1 - explaloge,(y) + 2(log 1) (log1/e,(3)""*))
when z < a(log r)/2(log1/¢,( ¥))*/* and vanishes when
z > a(log r)/*(log1/,())"”.
Note 0 < f, , < 1. Randomizing over the basepoint x, we obtain
P(ILAX) <3]) = [£.n( 2, (x))n(dx) = E(,,4(2,,1))-

Note Z, 2 N, 02) by Theorem 2.2. From the Skorohod represen‘catlon
theorem there exist Z and { n}n on some probability space such that Z

Z, . Zy ~4 NQO, o )and 5, —>Z w.p.1. Hence
(2.15) P([LAX) <)) = E(£,4(Z,..))-

Now for fixed y and z and sufficiently large n we can, by expanding &,(y), write
f,,a(2) = {1 - n! exp(—a(log r)~*(logn)"*

%( = (2/a) yltog ) (105 r) " + (/)] )},

which shows that, for all z # a*Z2y, lim, . f, .(2) = f(2), where fy=
I _ ., 4?2y, Furthermore, it is easy to see that for each ¢ > 0 the convergence of

fyn tO fy is uniform over the set (— o0, a®%y — &) U (a3/ + ¢, 00). Since the

event [Z, = a*?y] has probability 0, we conclude f, AZ, ) = fy(Zy) w.p.1.
Applying the bounded convergence theorem, we obtain

(216) tim E(f,.(Z,.,)) = E((Z)) = [* wy(2 2)"V2 oxp(— £2/20%) dt.

But from (2.15) this is equivalent to L (X) =4 N(0, 6*/a’). O
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To extend this result to measures absolutely continuous with respect to pu, we

w111 let P* denote the restriction of P to the space of one-sided sequences
= T1S. It then follows that » < p if and only if P < P*, where P is the

dlstrlbutlon on Q* induced by ». [That is, P(Z, =i,...,Z,=1i,]) =
v(C(iy,-..,1,)).] It will be more convenient to consider two-sided sequences S0
we will let P denote any absolutely continuous extension of the one-sided P to
events on {, so that we have P < P when » < p.

If Y is a random variable we will let ||Y||, denote the %, norm of Y,
specifying the underlying probability measure when necessary. We will need the
following lemma in the proof of Lemma 2.5.

LEMMA 24. Let {F,}, be a sequence of events in a probability space
(Q, &, P) and suppose there exists y = 0 such that lim,,_, . P(F, N C) = yP(C)
for all C in a o-field generating . If P < P, then lim,, P(Fn) =y.

Proor. See Billingsley (1968), Theorem 16.2. O

LEmMMA 25. Let the Z; sequence under distribution P have entropy h and
satisfy the conditions of Theorem 2.1. Let o2 be the asymptotic variance
obtained under P in Theorem 2.1. Suppose P < P. If the Z; sequence is now
sampled according to P, then we still obtain

n~%(log P(Z,,...,Z,) + nh) =4 N(0,62).

Proor. From Lemma 2.2 of Ibragimov (1962) and the proof of Theorem 2.6
of Ibragimov (1962) we obtain

(2.17) E n_1/2( i H,—log P(Z,,..., Zn))‘ — 0 under P,

z=1n
(2.18) n‘l/z( Y H,+ nh| -4 N(0,0%) under P,
(2.19) i |Hy — E(Ho|#;)||, < 0 under P,

i-1
where !, = o(Z_,,..., Z;). We will first show
(2.20) n~12 i H, + nh| >, N(0,02) under P.
i=1

Let S, = n~ /%X ,H, + nh) and choose a sequence of integers p, such that
P.Too and n™'?p, > 0. Let S; =n"V*Z7_, H;+ (n — p, + Dh). As in the
proof of Theorem 16 3 of B1111ngs1ey (1968) we obtain

(2.21) 1S, = S| =p0
(2.22) S, >4 N(0,62) under P.
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We wish to show S} =, N(0, 62) under P. This will use Lemma 2.4. Let C be a
finite-dimensional cylinder in % and for each Borel set B, let N(B) =
[5(2m6%) "/ 2exp(—t2/20%) dt. Choosing B = (— 0, b] for b € R and letting
.93;” =0(Z;,Z;.1,---,2Zy) for j < k, we obtain

|P([S; € BN C) - N(B)P(C)|
P([s; € B] n C) - P([E(S;1%2"#) € B] n C))|

<

EE L |m[B(sagn) < B] o 0) - H{[B(sagn ) < B]) PO
+|P([E(s;1#2m~7) € B])P(C) - N(B)P(C)|.
Now

"S,{ - E(S,ﬂ.%',i"_”") , under P

<n2 Y |, - B(HZ)|,
o

=n"2 ) ”Hpnﬂ' - E(Hp,ﬁil‘g';?.n_p") 2
i=0

n—p,

cn Y |, B(H, 70
i=0

p,,+i| (ppti)—ti

2

[since p, + 2i < 2n — p, ]
n—p,

=n"V2 Y |Hy— E(H,Z")|
i=0

2
[using stationarity of H, under P]
<n V2 Y |H, - E(H)|#%,)],.
i=0
Thus, applying (2.19), we can conclude
(2.24) lim ||S; — E(S;| %2 )
n—o

,=0 under P.
From (2.22) and (2.24) we then obtain
(2.25) E(S;|#2"Pr) -4 N(0,6%) under P,

which shows that the third term on the r.h.s. of (2.23) tends to 0 as n — c0. To
show that the first term on the r.h.s. of (2.23) also tends to 0, we note that

|P([S; € B] n C) - P([E(8;1%2"") € B] n C)
(2.26) < P([S;> b] n [E(S;|#2"P) < b])
+ P([S; < b] N [E(S;|#27) > b]).
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But for any positive integer £ we have
P([s; > b] n [E(S)1%2m7) < b))
< P([|s; - E(s;1 %) | > 1/k]) + P([S; € (b,b + 1/E]]).
Therefore from (2.22) and (2.24) we conclude
limsup P([S; > b] N [E(S;| %2 7) < b]) < N((b,b + 1/E]).

n— oo

Letting 2 — oo we get
lim P([S; > b] n [E(S;1%2%) < b]) =o0.

This shows that the first term on the r.h.s. of (2.26) tends to 0 as n — co. The
second term on the r.h.s. of (2.26) also tends to 0 by the same argument.
Therefore the first term on the r.h.s. of (2.23) tends to 0 as n — oo.

Consider the second term on the r.h.s. of (2.23). Since C is a cylinder set there
exists a finite positive index k such that C € %% . Then from the mixing
condition (2.1) under P we have

|P([E(s;1727) € B] n C)-P([E(S;1 £, ) € B|)P(C)| < B(p, - k),
which tends to 0 as n = oo. Thus we have established
(2.27) lim P([S; € B]nC) = N(B)P(C)
for all cylinder sets C and all Borel sets of the form B = (— o, b]. By applying
Lemma 2.4 we can conclude that S; =, N(0, 02) under P. Now (2.21) plus the
fact P < P gives |S; — S,| =5 0 and so we obtain S, >, N(0, 0%) under P.

Now (2.17) gives |S, — n~Y?(log P(Z,,..., Z,) + nh)| —»p 0 and hence also
IS, — n=%(log P(Z,,..., Z,) + nh)| = 0. Thus we obtain

n~2(log P(Z,,...,Z,) + nh) >4 N(0, ¢?)

under P. O

We now prove the main result.

THEOREM 2.4. Let p defined as in Section 1.3 satisfy the mixing conditions
(2.3) and (2.4) with 62+ 0. If v < p and X, X;, X,,... is an i.i.d. sequence
from v, then

L,(X) -4 N(0,06%/a®) asn — oo.

ProoF. If the basepoint X is randomly selected according to »,
then the distribution of n~'/%(logu(C(X)) + nh) is the same as that of
n~Y*(log P(Z,,...,Z,) + nh) when the Z/s are sampled according to P.
Hence from Lemma 2.5 we obtain

(2.28) n'2(logr)é(X,r ") = —n"*(log p(C,(X)) + nh) >, N(0,02),
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when X is distributed according to ». Letting ¢~a,, and ¢, denote the error
functions of » over r-adic intervals and e-intervals, respectively, i.e.,

(%, r™") = (log r™") "'log »(C,(x)) — @,

(2.29)
$,(x, €) = (loge) ' log »(I(x, ¢)) — a,

we see that
n/?(logr)|é(X, 1) = ¢,(X, r7")| = n™%log[»(C (X)) /n(C( X))]|.

As v < p we have lim,_,  v(C(X))/m(C(X)) = f(X) r-as., where f is the
Radon-Nikodym derivative of » with respect to u. Since f is v-a.s. positive and
finite we conclude

lim n'2(log r)|$(X,r ™) — ¢,(X,r )| =0 ras.
n—o

Now, applying (2.28), we obtain
(2.30) n?(log r)¢,(X, r ") -4 N(0,02) asn — o,

when X is distributed according to ».

Noting that Lemmas 2.2 and 2.3 as well as Theorem 2.2 go through unchanged
for ¢, (with p replaced everywhere by »), we conclude that L, (X) —,
N(0, 02/a?) as claimed, since (as seen in the proof of Theorem 2.3) this is a direct
consequence of Theorem 2.2. O

Thus we see that in the Gaussian case introduction of a density does not
change the limiting distribution of L,(X) (although it may affect the rate of
convergence to the limit). Essentially, the effects of a density are insignificant
compared to the basic variability already present.

It should also be noted that the quantity 62/a® is not bounded over the class
of measures p (even for fixed r). This can be seen by considering the case of
independent Z,’s and taking a limit as P([Z, = i]) tends to 1 for some particu-
lar i.

3. Degenerate cases (02 = 0). Here we examine the asymptotic behavior of
(log1/n)~'log p,(x) in certain degenerate cases. Since o? = Var(H,) +
2¥%_, Cov(H,, H;) there are two basic types of solution to % =0:

1. H, is P-a.s. constant.
2. H, is not constant but Var(H,) = —2X%_, Cov(H,, H,).

The number of solutions is related to the dependence structure of the Z f
sequence. In the case that the Z;’s are independent we have H; = log P(Z;) and
the only solutions are therefore of the type 1 variety, occurring when all states i
of positive probability are equally likely. In Theorem 3.1 we classify the possible
behaviors in the independent case.

By EV(a, b) we mean an extreme value distribution with location parameter
a and scale parameter b, having distribution function F(x) = exp[ —e~*~9/%]
for —c0 < x < c0.
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THEOREM 3.1. Let ...Z_,,Z,, Z,,... be a sequence of i.i.d. random vari-
ables with state space S = {0,1,...,r — 1}. Foreachi € S let p, = P(Z, = i]).
Let v < ., where p is constructed as in Section 1.3 and suppose X;, X,,... is an

i.i.d. sequence from v.

(a) If p,=1/r for alli € S, then p coincides with the Lebesgue measure on
[0,1), « = 1 and

—(log p,(x) + logn) >, EV(log2f(x),1)

for v-almost all x in [0,1), where f is the density function of v.

(b) Suppose r > 3 and there are exactly k nonzero p;’s 2 <k <r—1). If
p; = 1/k for each nonzero p, we obtain a = log k/logr and finite constants
¢, < ¢, such that for v-almost all x,

liminf Py([G,(x) < y]) = exp(—e~(~ @~ log /(=)

and

limsup Py([G,(x) < y]) = exp(—e Y~ logf(x)),

n— oo

where G, (x) = —a(log p,(x) + (log n)/a) and f is the Radon—Nikodym deriva-
tive of v with respect to n. Thus, asymptotically, G,(x) oscillates between the
two extreme value distributions EV(c, + log f(x),1) and EV(c, + log f(x),1).

PRrOOF. Case (a) follows from more general results [Theorem 4.1 and Corol-
lary 4.2 of Cutler and Dawson (1989)] concerning distributions in N-space which
are absolutely continuous with respect to some local Hausdorff measure. In our
restricted case (a) this result is completely the consequence of a specific behavior
of the error function ¢,. Since p agrees with the Lebesgue measure on [0,1) we
get a =1 and (log ¢)¢,(x, €) = log »(I(x, £))/e. Thus the existence of a density
for » is equivalent to the »-as. existence of the finite pointwise limit
lim,_, y+(log €)¢,(X, &). In turn this can be shown to be equivalent to producing
an extreme value limit distribution [see the technique in Case (b)]. Alternatively,
the result in Case (a) can be obtained by applying classical extreme value theory
[see, for example, Leadbetter, Lindgren and Rootzén (1983)] since the distribu-
tion of | X; — x| will be in the domain of attraction of a type 3 min-stable (in this
case exponential) distribution when » has a density.

For case (b) it follows that the local dimension a = logk/logr because
w(C (X)) = k™" p-a.s. We will prove case (b) via the following lemma.

LEMMA 3.1. If p satisfies the conditions in case (b), then, for all x in the
support of p, —logk < (loge)p(x, ) <log3k for all ¢ >0. If v < p with
Radon-Nikodym derivative f, then there exist finite constants ¢, < c, such that
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liminf, | ;+(log e)¢,(x, &) = ¢; + log f(x) v-a.s. and limsup,_, o+(log &), (x, &) =
¢, + log f(x) v-a.s.

Proor. We have
(8.1) (log £)¢(x, &) = log p(I(x, €)) — (log k/log r)log .
From (3.1), (2.8), (2.11) and the conditions in (b) we have
(loge)¢(x, €) < log p(I(x, r~™9~D)) — (log k/log r)log r~™®
< log3k~ =D 4 p(e)logk
= log 3k.
Similarly, for x in the support of p,
(log €)4(x, €) > log u(I(x, ")) ~ (log &/lo r)log r~ ("~
> logk ™ + (n(e) — 1)logk
= —logk,

which proves the first part of the lemma. To prove the second part note that for
v-almost all x we can write

(log &) 9,(x, e) = log(v(I(x, &))/n(I(x, £))) + (loge)d(x, ).
Since » < p we have lim, _, ,+ log(v(I(x, €))/u(I(x, €))) = log f(x) v-a.s. To com-
plete the proof, it is therefore sufficient to show the existence of ¢; < ¢, such
that

T(x) = lielil)(i)gf(log e)o(x,e) =c, pas.,

3.2 .
(3.2) Ty(x) = limsup(loge)p(x,e) =c, p-as.
e—0"
Identifying each point x with its base r expansion x;, x,,..., we can express

Ty(x) = Ty(xy, xy,...) and Ty(x) = Ty(xy, x,,...). Interpreting the digits {x;} as
a particular realization of the {Z;} sequence, it is then straightforward to show
that each of T and T, is P-a.s. equal to some function measurable with respect
to the tail o-algebra I=NY_0(Z,,Z,,,,-..). For if n is any positive integer
and x is not an r-adic rational, then for sufficiently small ¢ >0 we get
I(x, &) € C(x) and thus

=

I(x,¢) = {ylyl =Xy Jp=X,and | 3 yrTt = Yo

i>n i>n
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Hence

W15, 0) = P2 = 502, = 5, )P [| 2= S

|
- k‘”P([ < ]) was.

which does not depend on x,,..., x,. In view of (3.1) this shows that T, and T,
are P-as. equal to tail functions and from the Kolmogorov 0-1 law we conclude
the existence of ¢, and c, satisfying (3.2). We know that ¢, and c, are finite
because of the bounds established in the first part of the lemma and we can say
¢, # ¢, because if ¢, = c¢,, then p is absolutely continuous with respect to
Lebesgue measure which puts us in case (a). O

YZri— Y

i>n i>n

Proor oF THEOREM 3.1(b). For x € [0,1) we have
Py([Gu(x) <v]) = Po([pa(x) > exp(—(y + logn)/a)]) .

= {1 - »(I(x, ai(0)))}"

(3.3) [where a,(y) = exp(—(y + log n)/a)]
= {1 — a,(y)erem %(y)»}” [using (2.5)]
= {1+ (e77/n)elloBaoz a,,(y»}”.

Now a,(y)l0 slowly, ie, lim,_,  a,,(y)/a,(y) =1 and so from Lemma 3.1

we get

liminf (log a,(¥))#,(x, a,(y)) = ¢; + log f(x) v-as.,

limsup (log a,(y))¢,(x, @,(¥)) = ¢, + log f(x) r-as.

n—oo

Applying this to (3.3) completes the proof. O

When dependence is introduced among the Z;’s we will also obtain type 2
solutions. Although these cases have not been examined we would not expect
pointwise limit laws (as in type 1) but perhaps asymptotic stable laws for certain
renormalizations of L (X).
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