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A NOTE ON THE APPROXIMATION OF THE UNIFORM
EMPIRICAL PROCESS

BY PETER MAJOR
Mathematical Institute of the Hungarian Academy of Sciences

Mason and van Zwet gave an approximation of the uniform empirical
process by a Brownian bridge. Their result is a refinement of a result of
Komlés, Major and Tusnady in the case when the process is considered in a
small interval. In this note we show that in such cases a much better
Poissonian approximation is possible which seems to be better applicable in
certain cases. We also prove a multidimensional version of this result, where a
sequence of uniform empirical processes is simultaneously approximated by
partial sums of independent Poisson processes.

1. Introduction. Let ¢, ¢,,..., be a sequence of independent and on the
interval [0, 1] uniformly distributed random variables and define the empirical
distribution function F(t), n=1,2,..., as F(t) = (1/n)#{e;, j <n,¢; < t},
0 <t<1 In this paper we investigate the (uniform) empirical process
Vn (E(t) — t). Mason and van Zwet (1987) proved the following.

THEOREM A. For all n > 1 a Brownian bridge B, (t), 0 <t<1, and a
sequence of independent and on the interval [0, 1] uniformly distributed random
variables ¢, &,,... can be constructed in such a way that the empirical distribu-
tion function F(t) defined with the help of the above €’s satisfies the relation

(1.1) P( sup |n(F,(s) —s) —VnB,(s) > Clogd + x) < Ke ™™
0<s<d/n

with some universal positive constants C, K and A\ forall 0 < x < 0,1 < d < n.

This is a refinement of a former result of Komlos, Major and Tusnady (1975),
where the same estimate is proved in the special case d = n. Theorem A is a real
improvement only for d < nf, where ¢ > 0 can be chosen arbitrarily small. For
such numbers d the empirical distribution function can be much better approxi-
mated in the interval [0, d/n] by a Poisson process. In Theorem 1 formulated
below we present such an approximation.

Let P(t),0 < t < 1, denote a Poisson process with parameter n, i.e, let P(¢)
be a process with independent stationary increments, P,(0) = 0, and let P(v) —
P(u), 0 < u <v < 1, be Poisson distributed with parameter n(u — v).

THEOREM 1. For all n > 1 a Poisson process P,(t) with parameter n on
the interval [0,1] and a sequence of independent and on the interval [0,1]
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uniformly distributed random variables ¢,,..., ¢, can be constructed simulitane-
ously in such a way that the empirical distribution function defined with the help
of these €’s satisfies the relation

P( sup |n(F(s) —s) — (P(s) — ns)| > C) < K exp(—1v/n logn)

0<s<n~2/3

with some universal constants C > 0 and K > 0.

Theorem 1 states that the empirical process can be approximated by a Poisson
process in a small interval in such a way that their difference is bounded by a
constant independent of the sample size n with probability very close to 1. We
formulate a version of this result which states that this difference can be taken
even as zero if we only want that the probability of the exceptional set where
this relation does not hold tend to zero as n — oo.

THEOREM 1'. Let t, — 0 be such that also Vn t,—>0. For al n>1 a
Poisson process P,(t) with parameter n on the interval [0,1] and a sequence of
independent and on the interval [0,1] uniformly distributed random variables
€,..., €, can be constructed simultaneously in such a way that the empirical
distribution function defined with the help of these ¢’s satisfies the relation

P( sup |n(FE,(s) —s) — (PJ(s) — ns)| = 0) - 1.

0<s<t,

As the author learned from an Associate Editor, this result is contained in a
work of Horvath (1990) recently submitted to the Annals in a more general
form. Hence the proof of Theorem 1’ is omitted.

In Theorems 1 and 1’ we have approximated the empirical process by a
Poisson process in a small neighbourhood of zero. This approximation can be
combined by a Brownian bridge approximation of the empirical process in the
remaining domain with the help of Theorem 3 in Komlos, Major and Tusnady
(1975). We formulate this result in the case of Theorem 1’ in the following.

PROPOSITION. In addition to the processes P(t) and F,(t) in Theorem 1’ a
process B,(s), t, <s <1, can be constructed which is the restriction of a
Brownian bridge to the interval [t,,1] in such a way that

(1.2) P( sup |VnB,(s) — n(E,(s) —s)| > Clogn + x) < Ke™*,
t,<s<l1

where C >0, K >0 and A\ > 0 are appropriate constants and the processes

B,(s), t,<s <1, and P(t), 0<t<t, are conditionally independent with

respect to the events nF,(t,) =k forallk = 0,1,... .

Theorems 1 and 1’ can be useful if we want to investigate the limit distribu-
tion of a sequence of random variables which is obtained when a sequence of

functions %, are applied to the empirical processes, i.e., when the functional
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may also depend on n. Such a problem is investigated, e.g., in the paper of
Cso6rgo, Csorg6, Horvath and Mason (1986). If the functional %, depends only
on the values of the empirical process in the interval [0, ¢,], then by Theorem 1’
the uniform empirical process can be replaced by a standardized Poisson process
and the limit distribution of our sequences will be the same after this replace-
ment. A Gaussian approximation does not always work, because the Gaussian
approximation of the empirical process is not as good as the Poissonian one. If
the functional %, depends on the values of the empirical process on the whole
interval [0, 1], but this dependence is much stronger on the interval [0, ¢,], then
Theorem 1’ can be applied together with the proposition. Theorem 1 can be
useful if we want to get better information about the error committed by the
Poissonian approximation.

Another problem where the Gaussian approximation is not always applicable
and a Poissonian approximation may be useful is the investigation of the law of
iterated logarithms for the empirical process in small intervals. This problem is
studied in Kiefer’s (1972) paper. If one tries to study this problem in the usual
way, then one has to apply the Borel-Cantelli lemma several times, and the
main technical problem is to check whether certain sums of probabilities are
convergent or divergent. If one substitutes these probabilities by those suggested
by the Gaussian approximation one gets in certain cases wrong results, because
the error committed by this substitution is too large. On the other hand,
Theorem 1 would allow us to make a Poissonian approximation also in such
cases. Nevertheless, it is more appropriate to have a result which automatically
guarantees that the empirical process can be replaced by a Poisson process in
such problems. This is done by Theorem 2 formulated below, or more precisely
by its part (b).

THEOREM 2. (a) Foralln =1,2,..., and 3> a > 0 a sequence &, ¢,,..., ¢,
of independent and on the interval [0, 1] uniformly distributed random variables
can be constructed together with a sequence P|(t), Py(t),..., P(t), of indepen-
dent Poisson processes with parameter 1 on the interval [0,1] in such a way that

-

forallm = 0,1,2,..., where the constants C(m) depend only on m.

(b) For any 8 > 0 an infinite sequence ¢, ¢,,... of independent random
variables with uniform distribution on the interval [0,1] and an infinite se-
quence of independent Poisson processes Py(t), Py(t), ... with parameter 1 on the
interval [0,1] can be constructed in such a way that

k

k(F(t) —t) = ¥ (P(t) - ¢)

J=1

P| sup sup

k<n 0$t<n_“/2+“)

(1.3)

< C(m)n—2(m+1)a

(14) P|sup sup

n O<t<p~1/2-8

n(E,(t) — t) - é(Pj(t) —t)

<oo)=1.
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Part (b) of Theorem 2 implies in particular that the restrictions of the
empirical processes to the intervals [0, ¢,], ¢, — 0, satisfy the same law of
iterated logarithms as the averages (1/n)X™ , P(t) of independent Poisson
processes restricted to the same intervals [0, ¢,], if n'/2*%, - 0 with some
8 > 0. Hence the problems investigated by Kiefer can be reformulated to equiva-
lent problems about the sums of independent Poisson processes. The condition
t, <n"127% could be slightly weakened, but it is not essential, since it is
satisfied in the most interesting and important case, namely when ¢, = [ L(n)]/n
and L(n) is bounded or slowly tends to infinity.

2. The proof of Theorem 1 and the proposition. Let F(x) = F,(x) denote
the (right continuous) Poisson distribution function with parameter A and
G(x) = G, ,(x) the (right continuous) binomial distribution function with pa-
rameters n and p. The following Lemma 1 plays an important role in the proof
of Theorem 1. In Lemma 1 two random variables are constructed with distribu-
tions F and G which are close to each other if the parameters A, n and p are
appropriately chosen. We apply the quantile transformation, i.e., we make the
following construction. Let y be a uniformly distributed random variable on
[0,1] and put

(2.1) ¢=k ifF(R)<y<F(k+1),k=0,1,...,
(2.1) n=%k ifG(k)<y<G(k+1),k=0,1,....
Clearly £ has a distribution F and 7 a distribution G. We prove the following.

LEMMA 1. Choose A = np and p = n~%/? for the parameters of the distribu-
tion functions F and G. There is a constant C > 0 and a threshold n in such a
way that for n > n, the random variables § and n defined by (2.1) and (2.1)
satisfy the relation

lE—ml <C ifé<n.

Proor. It is enough to show that under the conditions of Lemma 1 there is
some C > 0 such that
(2.2) G(x—C)<F(x)<G(x+C) ifx<vn.

Let f(k) and g(k), £ =0,1,2,..., denote the density functions of F and G.
We shall prove (2.2) with the help of the following relations. There are some
integers C > 0 and n > n, such that if n > n,, then

(2.3) 1-G(Wn -C)>1-F@Hn)>1-GWn + 0),
(2.3) g(k—C)>f(k)>g(k+C) ifnp+C<k<yn,
(2.3") g(k—C)<f(k) <g(k+C) if0<k<np-C.

[We define g(k) = 0 for £ < 0 in (2.3”).] Relations (2.3)-(2.3”) imply (2.2) (with
constant 2C instead of C). Indeed, by summing up (2.3) and (2.3") for j =k,
E+1,....,Yyn — 1, we get that 1 — G(k— C)>1— F(k)>1— G(k + C) for
np + C < k < y/n and relation (2.3”) similarly implies that G(k — C) < F(k) <
G(k + C) for 0 < k < np — C. Finally, for |k — np| < C these relations imply
that G(k — 2C) < F(k — C) < F(k) < F(k + C) < G(k + 2C).
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To prove (2.3) and (2.3') we estimate the ratios [g(k)]/[ f(k)] and
[f(k + D1/ f(k)]. Since A = np,
g(k) B n(n-1)---(n—k+1)

= 1-p)err
f(k) nk(l _p)k ( p)
k-1 j
= exp{n(p +1log(l —p)) —klogl —p) + ¥, log(l - ;)}
j=0
and
Tt = =lof+ 1o+ |
2.4 ——— =exp{O| np% + kp + — for 2 < yn.
(2.4) 700) p\O|np® + kp + —
Since p = n~?/2 the last relation implies that
8(k)
2.5 al<—=<a fork<yn
(25) 7

with some 1 < a < o0 and

(2.5) ‘%—1 <an '3 if |k — np| < %
Since

f(k+1) A
(2.6) f(k)  k+1’

the relations [f(% +/)1/[ f(k)] > (3)’ and [f(k ~/)I/[f(k)] < (£)’ hold if
k > 3np and 0 < j < np/4. These inequalities together with (2.4) imply (2.3") for
3np < k < Vn with a sufficiently large C which is independent of n. Rela-
tion (2.3") for k < np/2 can be proved similarly. Since A = n'/?, relation (2.6)
also implies that [f(k —)1/[f(R)] < — in"'3)/ <1~ (j/4)n"'/® and
[F(R+DI/LR]>A+n"Y3) >1+jn"Y3if >np+ C and j < C with
a sufficiently large C > 0 independent of n. This relation together with (2.5")
implies (2.3") for np + C < k < 3np. A similar estimation of [ f(k + j)I/[ f(k)]
for £ < np — C yields (2.3”) in the remaining domain np/2 < k£ < np — C. To
prove (2.3) it is enough to check that [ f(%)]/[1 — F(k)] and [g(k)]/[1 — G(k)]
are bounded away from zero (and naturally also from infinity) for 2 > Vn — C
and then the estimates given on [ f(k + 7)1/[ f(%)] and [g(%)]/[ f(k)] imply the
required inequality. Lemma 1 is proved. O

ProoFr oF THEOREM 1. The argument of the proof is very similar to that
of Lemma 1 of Komlos, Major and Tusnady (1976). Let us construct a pair
of random variables (£, n) with distributions F and G satisfying Lemma 1.
Let ¢f,¢5,... be a sequence of independent uniformly distributed random
variables on [0, 272/%] and &{,e),... a sequence of independent uniformly
distributed random variables on [n~%/31] such that the pair (£, 7) and
the sequences ¢, €},..., ¢, ¢),... are independent of each other. Put
nky(s) = #{ej,e;<s, j<m}, P(s)= #{ej,e/<s, j<¢} for s<n 2?3
and define n(F,(s) — F(n™??)) = #(e/, e/ <s, j<n-n} if n?P<s<1
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and P(s) — P(n~%?) as a Poisson process with parameter n on the interval
[n~2/3,1] independent of the above defined process P,(s), 0 < s < n~2/%. Then
E(s) can be considered as an empirical distribution function (corresponding to
the sample obtained from the random permutations of ei,..., €, &’,..., &,_,),
since it has the prescribed conditional distribution under the condition n = k.
Similarly, P(s), 0 < s < 1, is a Poisson process with parameter n. On the other
hand, |nE,(s) — P(s)| < |£ — n| for 0 < s < n~?/%, Hence by Lemma 1,

P( sup 5 In(E(s) —s) — (P(s) — ns)| > C)
O<s<n~%3
<P(¢—n >C) <P(¢>Vn).
Since
P(¢ > Vn) < const.P(¢ = Vn)

= const.exp{ -n'2 + Yynlogn — log(\/E!)}

sKexp{—éx/ﬁlogn}, ’
the above estimates imply Theorem 1. O

PROOF OF THE PROPOSITION. The conditional distribution of the process
n[(F(s) —s) — (F(t,) — t,)], t,<s <1, under the condition nF(¢,) =%k
agrees with the distribution of an empirical distribution function multiplied by
n — k from a sample of n — % elements with uniform distribution on the interval
[¢,,1]. Hence we can construct, with the help of Theorem 3 of Komlés, Major
and Tusnady (1975), a Brownian bridge B,(u), 0 < u < 1, on the conditional
probability space P(-|nF,(¢,) = k) such that

(s —t,
| [nl(B(s) - E) - (s - )] - =,
t,<s<1 “
(2.7) > Clogn + x|nF,(t,) = k) < Ke™*,

Since the distribution of B,(-) does not depend on £ it is a Brownian bridge also
with respect to the original unconditional probability.

By Lemma 2 of Komlds, Major and Tusnady (1975) a standard Gaussian
random variable £, can be constructed with the help of the quantile transforma-
tion in such a way that

(2.8) P(|/nt,(1 = t,) ¢, - n(F,(t,) — t,) > C) < Ke ™.

Since F,(t,) is independent of B,(-) the random variable £,, which is obtained as
a transformation of the random variable F,(t,) — t, with some randomization, is
also independent of it. Define

tn

—[s— 1-s
B,(s) = 1—tan(1_t)+1_t\/tn(1—tn)£n, t,<s<1l.
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We claim that the above defined process B,(s) satisfies the proposition. It is a
Gaussian process and simple calculation shows [by using the 1ndependence of
B,(-) and £,] that it has the covariance function s(1 — s’) for t, <s <s’ < 1.
The processes B,(-) and P,(-) are conditionally independent w1th respect to the
condition F,(t,) = k. We have to prove relation (1.2).

We remark first that (2.7) also implies that

P
(2.9)

n[(F(s) = F(t,)) = (s — t,)]
—t,

n[(F(s) - F(t,) = (s = t,)]

sup
t,<s<l

- (= E LB 3

Moreover, we claim that

> Clogn + x) < Ke™*

P| sup

t,<s<l1

(2.9)

T=¢yB |
n( n) n 1 —_ tn
(with possibly different constants C, K and A). To prove (2.9') we have to show
that a negligible error is committed if the coefficient of B(:) in (2.9),
n(1 — F,(t,)), is replaced by /n(1 — ¢t,) . This follows from the estimate

> Clogn + x) < Ke™*

ts;ugl(‘/n(l—t)—1/n(1—F(t))) ( i) > x
<P(n(=6) = p(T=E (&)1 > V&) + B[ sup (By(s)l > V&)

2

Now we can write for {, < s < 1,

»/773,,(8) - n(F(s) -s)
= {Jntn(l ) €, — n(Fy(t,) - t,))

—[(s—t,
+{ n(l—tn)Bn(1 _tn)

“n[E(s) - F(t,) - (s - m]}

< P(\/ﬁan(tn) -t > l\/:)7) + Kexp(—g) < Ke™™*,

1-s
= —I(¢,) + I(s, t,).
]. - to
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Since the term Iy(t,) is bounded in (2.8) and the term Iy(s, t,) in (2.9'), the last
identity implies (1.2). The proposition is proved. O

3. The proof of Theorem 2. First we formulate a lemma which is proved
similarly to Theorem 1.

LEMMA 2. Given some positive integer nand B > 0, let &,,. .., §, be indepen-
dent Poisson distributed random variables with parameters n™# and v,,...,1,
independent random wvariables such that P(n;=1)=1-P(n;=0) = n=h,
J=1,...,n. A sequence ¢, ..., ¢, of independent, uniformly distributed random
variables on [0,1] and a sequence P(t),..., P(t), 0 <t <1, of independent
Poisson processes with parameter 1 can be constructed in such a way that
k

k(Fy(s) = s) = X (B(s) - s)

J=1

sup sup
I<k<no<s<n®

(3.1)

k

2 (&—m;)

j=1
where the functions F(-) are the empirical distribution functions defined with
the help of the above ¢’s.

= sup

1<k<n

2

Lemma 2 enables us to reduce part (a) of Theorem 2 to a simpler problem.
Namely, if we have a sequence ¢, ..., ¢, of independent uniformly distributed
random variables on [0,1] and a sequence Py(¢),..., P(t),0 < t < 1, of indepen-
dent Poisson processes with parameter 1 define £, = P(n~/?*%) and 7, =
JE(n=0/2%0) — (j = DF;_(n~0/2*9), j=1,...,n,where F,, j=1,..., n,are
the empirical distribution functions defined with the help of the sample ¢, ..., ¢;.
Then Lemma 2 implies that a new sequence of independent uniformly dis-
tributed random variables on [0,1], &, j=1,...,n, and a new sequence of
independent Poisson processes with parameter 1, P(t), j=1,...,n can be
constructed in such a way that

k

k(F(s) = s) = X (B(s) - s)

J=1

sup sup
l1<k<ng<g<p (1/2+®

= sup k(Fk(n—(1/2+a)) _ n—(1/2+a))
1<k<n
k
-y (1’j~(n_(1/2+"‘)) _ n—(l/2+a)) )
Jj=1

This relation enables us to drop sup, ., ,-a2+» from (1.3) and to consider only
the argument ¢ = n~/2+9 jnstead.

ProOF OF LEMMA 2. Let ¢, €5,... , be a sequence of independent uniformly
distributed random variables on [0, n~#] which is independent of the random
variables ¢ and n, put S, =%X%_ ¢ and T, =%X%_ 9, k=1,...,n. If 5, =1
define ¢, = ¢; with [/ = ¢,. Define the Poisson process P,(t) in the interval
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[0, n7#] in the following way: It has jumps in the points €jy...s &5y, with
J=8,.,+1 j+p=S, df S,_;+1>8,, then it has no jumps in this
interval.) Define the Poisson processes P,(¢), 0 < ¢ < 1, in such a way that on
the interval [0, n~#] they agree with the already defined Poisson processes and
the processes Py (¢) — P(n#), n"P<t<1, k=1,2,..., are independent
of the processes Py(t), 0 <t <n"#, and of each other. Otherwise they are
arbitrarily defined. Finally, let ¢{’, &, ... be a sequence of independent uniformly
distributed random variables on the interval [n~#,1], which is independent both
of the sequence ¢/, &5,... and the 7’s, and define ¢, = ¢} if 1, = 0. Then the
sequences ¢, ..., €, and P(t),..., P,(t) have the prescribed distributions. On the
other hand, relation (3.1) holds, since for all 1 < k& < n,

sup
0O<s<n™B

k
k(Fy(s) = s) = gl(l’j(S) - s)

PROOF OF THEOREM 2. (a) By Lemma 2 it is enough to construct a sequence
of independent Poisson distributed random variables £,,..., £, with parameter
n~@/2*9 and a sequence of independent random variables m,,...,7,,
P(n;=1)=1-P(n; = 0) = n~ 42" in such a way that

f(%‘%)

Jj=1

(3.2) P| sup

1<k<n

>m| < C(m)n—Z(m+1)a

for all m =0,1,.... Let us consider two independent Poisson processes
Py(t) and Py(t) with parameter 1 and define £, = P(jn~(/2*9) —
P((j— DHn @2*®y j=12 ..., n To define n; let us first introduce the
random variables £/ = Py(js) — P,((j — 1)s), j=1,...,n, where e *=
(1 — n=/2*Dexp(n=/2**), Let m, = 1if £, + £/ > 1 and zero otherwise. Then
both sequences £,,..., £, and 7,,..., n, consist of independent random variables
with the right distribution. [Observe that P(n;=0)=P({,=0,¢ 1 =0) =
exp(—n~ /20 — gy =1 — n~1/2+9 ] It remains to show that the above de-
fined £;’s and s satisfy (3.2). Observe that X*_(n,—£;) <Xk ¢/ and
Yh (& —my) <Zh & with§=¢ —1if £>0and £ = 0if £ = 0. Hence

k
sup Y (n;—§&)>m

l<ks<n j=1

(3.3) P < C(m)n~2m+De

sP(Z§;2m+1

J=1

(here we use the fact that Z;;l ¢/ is a Poisson distributed random variable with
parameter ns < n~2%) and

M=

P( sup f‘, (&—m)>m

l<ksn j=1

sP( 'jzm+1)

1

J

3.4 "
(3.4) < exp(—2a(m + 1)log n)E exp(2alogn Yy .ﬁj)
j=1

= (Eexp(2af, logn))"n=2m+ve,
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We claim that E exp(2a£, log n) < 1 + C/n with some C > 0 independent of n.
This inequality together with (3.4) and (3.3) imply (3.2) and hence also part (a) of
Theorem 2. We have

- © exp( —n-1/2+® 4 9 jal
Eexp(2a£1 log n) <1+ Y xp( Jjalogn)

( ) -+ De+1/2)
; +1)!
j=1 J :

<1+ Z — pU-D-12-1 4 ¢
(J+ 1)' n

for0<ac< 3.

(b) Let us fix some ;>8>0 and apply part (a) with «a =8 and 27
n =0,1,... . Because of formula (1.3) in the special case m = 0 we can construct
a sequence of independent Poisson processes P{")(¢),..., P{®)(t) with parameter
1 and a sequence of independent uniformly distributed random variables on
[0,1], &™,..., &, in such a way that

k
Y. P(t) = kF{™(t) for0 < t <27 /2*Omand all k = 1,...,2"
j=1

< 02727,

(The upper index in F{™ denotes that this empirical distribution function is
constructed with the help of the sample &™,..., ¢5?).) We may assume that the
above defined sequences eﬁ") and P(™ are 1ndependent for different n. Define
Py(t) = P(7) _on(t) and &; = &P _on for o <j<2"1'n=0,1,2,.... Then rela-
tion 3.5) 1mp11es that the events A,

(3.5)

5 B(t) = KE(¢) - (2" — DFy_1(0)

j=
forall0 <t < 27"/2*9 and 2" < k < 2”“},

satisfy the relation
0
Y P(4,) < .
n=1

Hence by the Borel-Cantelli lemma there is a random threshold n(w) such
that for n > n(w),

k
Y P(t) —t=k(F(t) —t) — (2" = 1)[Fp_y(2) — £]
j
forall2” < k < 2"*land t < k("1/2+9)

with probability 1. The last relation implies part (b) of Theorem 2. O
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