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MAXIMAL INEQUALITIES FOR MULTIDIMENSIONALLY
INDEXED SUBMARTINGALE ARRAYS?

By Tasos C. CHRISTOFIDES AND ROBERT J. SERFLING
SUNY at Binghamton and The Johns Hopkins University

Some new maximal-type probability inequalities are developed for dis-
crete-time multidimensionally indexed submartingales. In particular, the
basic idea of Chow is abstracted and extended. This leads to a result which
yields extended Kolmogorov inequalities and strong laws, extended
Hijek-Rényi type inequalities competitive with Smythe and an extended
Doob inequality which is counter-intuitive to a counterexample of Cairoli.

1. Introduction and preliminaries. Cairoli (1970) showed (by counter-
example) that certain classical maximal probability inequalities for ordinary
discrete-time submartingales are not (in general) valid for discrete-time multi-
dimensionally indexed submartingales. However, the classical results do in fact
have useful extensions in modified form to the multidimensionally indexed
case, and in this paper we present such maximal probability inequalities. First
we abstract and extend the martingale inequality of Chow (1960) in the form
of our Theorem 2.2. Using Theorem 2.2 as a ‘‘source theorem,” we obtain
maximal inequalities for various special cases. Among them, Corollaries 2.4
and 2.5 are extensions of Doob’s inequality and Kolmogorov’s inequality,
respectively. The maximal inequalities of the paper are further used to produce
a variety of strong laws of large numbers in general forms. In particular,
Theorem 2.8 provides a Kolmogorov strong law for a collection of independent
multidimensionally indexed random variables.

We denote by N” the r-dimensional positive integer lattice and we use bold
symbols to denote the elements of N”. Thus, for example, the symbol n
denotes the vector (n, ny,...,n,), where r is an integer greater than or equal
to 1. Regular italic letters will be used for one-dimensional elements. We will
assume the usual partial ordering for the elements of N’, i.e., for n =

(ny,...,n,) and n' =(n4,...,n") in N’, the notation n < n’ means that
n,<n,foralli=1,...,r. Fori=(i,...,i7,) and j = (j,..., j,), the nota-
tion i <j means that i, <j, for s =1,...,r with at least one inequality

strict. Finally, the notation n — « means that n; > » for j =1,...,r, or,
equivalently, that min, _;_,n; > .
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Let (Q, F, P) be a probability space. Let {F,, n € N”} be a nondecreasing
array of sub-o-fields of F, i.e.,

F,cF,cF, ifn<n,
and let {X,, n € N’} be an array of random variables such that X, is
F_-measurable and integrable for every n. Then we say that {X,,, F,,, n € N}
is a forward martingale if ’
(1.1) E{(X, F,} =X, as.forn<n
As pointed out in Gut (1976), an equivalent condition to (1.1) is

(1.2) an,dP=andP for Ac F,,n<n.
A A

If the equalities in (1.1) and (1.2) are replaced by > , then we say that {X,,, F,,,
n € N} is a forward submartingale.

2. General results on multidimensionally indexed random vari-
ables. The following lemma, an abstract version of Theorem 1 of Chow
(1960), will serve as a basic tool in our development.

LeEMMA 2.1 (Abstract Chow lemma). Let By, B,, ..., B,, be disjoint events
and {d,, k € N} a nonincreasing sequence of nonnegative numbers. Let
{W,, k € N} be a sequence of nonnegative random variables satisfying

(i) P(Bk)sdk[ W,dP, 1<k<m,
B,
and
(ii) [ W,dP < [ W, ,dP, l<l<k<m-1.
B, B,
Let B= U}_B,. Then
m—1
P(B) < ¥ (dy—dyr) E(W,) + d,E(W,) —d,,[ W,dP.
k=1 B¢

Proor. Following Chow (1960), we can write

P(B)= Y P(B) < ¥ dk[B W, dP
(21) k;l k=1 k ~
= Y dif W,dP - ¥ d,f W, dP,
k=1 U.<:B; k=2 Uixr-1B;

where the inequality follows from (i) and the equalities from the disjointness of

the,sets B;. Using (ii), (2.1) can be replaced by

(22) P(B)< Y d,f W,dP - ¥ d,f W,_,dP.
k=1 u k=2

i<eBi Ui<r-1B;
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By rearranging terms, the right-hand side of (2.2) can be written as
rpoid, - diidlu, 8We dP + d,, [gW,, dP, which is bounded by

m-—1
Y (dy—dp ) E(W,) +d,E(W,) - d, [ W,dP. =
k=1 B¢

REMARK. Note that (i) describes the submartingale property if {W,} is
adapted.

Lemma 2.1 will be used to obtain bounds for P{max, _, C, Y} > ¢},
where ¢ > 0, {Yy, Fy, £ € N'} is a martingale and {C), k € N} is a non-
increasing array of nonnegative numbers. In order to state the relevant
theorem, some preliminary notation and constructions will be needed. Let

= {max, _, C,Y} > ¢}. For each k define F, =o{Y;, i <k} and A, =
{C;Y; <¢ for i <k, C, Y, >¢}). Note that U, _,A, = A. However, the sets
Ay, due to the lack of linear ordering when r > 2, are not disjoint. Using the
sets Ay, we can construct sets B, which satisfy U,_,Bx=A and are
disjoint, by applying the following algorithm.

m:=1
For k, = 1to n,

For k, = 1 to n,

Fork,.=1ton,
Begin
B(l) =Ak1~-k,_ UicmD,
D, _Ak1~~kr

m:=m+1
End

REMARKS. (a) An explicit expression of the sets B{" in terms of the sets
Ay is possible to derive, but such a formula is notationally messy and compli-
cated. The algorithm orders the sets A,
from each set A,

.....

.....

(b) The order of the loop in the construction of the sets B, is not without
significance. Notice the superscript (1) in the sets B,. If the order of the loop
is changed, then we get a different collection of sets B, with a different
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superscript. For example, if the order in the loop were

For ky, = 1to n,
For k, =1ton,

For %, = 1to n,

then we would have constructed sets B{? and so on. The importance of this is
that we shall in fact obtain r separate bounds for P{max, _, C Y, > €}.

(c) Due to the construction of the sets B, the set Bf'), .., does not belong
to F, 1, ..., but rather to the o-field F, ,,, .., .

(d) It turns out that construction of disjoint sets Dy such that Dy, € F,
and Uy .,Dyx = A is not possible in general, because of the counterexample
provided by Cairoli. If it were, then we could have obtained (3.8) of Doob
(1953), page 317.

Now we are ready to state and prove the following result.

THEOREM 2.2. Let {Yy, F),, k € N"} be a martingale. Suppose that the
o-fields satisfy

(2.3) E{E{*|F\}|F\} = E{*|Fy 11},

where k A1 denotes the minimum of k and 1 taken componentwise. Let
{Cy, k € N} be a nonincreasing array of nonnegative numbers. Then for
e>0,

min { Z (Ck - Ck;s;ks+1)E(Yl4{.)

gp{glgckYk >6) < Jmin ¢ L
(2.4) _ C v+ dP
% k’s’”sf<uz;=13£ii.‘k,>0 Kisins
I#8
< min { Z (Ck - Ck;s;ks-rl)E(Ylt)}’
l<s<r k<n

where Cy 0 = Cy .t ak,,,~#, and Cy=0 if k;>n; for some i=
1,2,...,r.

Proor. We will give the proof for r = 2 (the case r > 2 can easily be
established by induction). Let d, ,, = C, /2, B{Y'= Upl_ BfY,.. Then, by
construction,

P(BY,,) < dklszB L Yig,dP, 1<k <n.

(
kiks
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by the submartingale property. Thus, the requirements of Lemma 2.1 are met
and we have

P(A) =P( fj B,gI;)
ky=1
¥ P(Bg)

ky=1

IA

ny ny;—1
)» { L (dipy-da,ran,) E(Yin,)

ko=1 | k=1

+d, , E(Y" —-d Y', dP
niky ( nlkz) nlkZI;Bselz))C nikg }
or
1 72 n;—1
P(A)<— ) { b (Cklkz - Ck1+1k2)E(YI:1k2) + Cnlsz(Yr:kz)
(2.5) € po=1 k=1

-C [ Y, dP}.
niks (B)© niks

Now, by interchanging the order of the loop in the construction of the sets
Bf)),» we can construct analogous sets B, € F, , and thus obtain

1 ™ ng—1
P(A) < - Y { Y (Cklkz—ck1k2+1)E(Y]::1k2)

k=1 |ky=1
(2.6) '

. +Chon, B(Y} ) = Cin, [( pnc i dP}.

Theorem 2.2 follows from the two inequalities (2.5) and (2.6). 0
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ReEMARKS. (a) The above inequality reduces, for r =1, to the familiar
Chow inequality, as given in Theorem 1 of Chow (1960).

(b) Condition (2.3) is also known as condition F4 [see Cairoli and Walsh
(1975)].

If the array of the coeffficients C}, has a special structure, then the bound in
(2.4) can take a nice form, convenient for establishing asymptotic results as
well as other maximal inequalities. Thus, for example, we have the following
result.

CoROLLARY 2.3. Assume the hypotheses of Theorem 2.2 and that {Y, ,} is
nonnegative. Assume also that there exists a number a > 2 such that C, , >
aCklk2+1 or Cklkz > aCk1+1k2 for all kl’ k2. Then

o
gP{ max Criiy Yok, = s} < 1 h (AFCklkz)E(Yklkz)’
(ky, kp)<(ny,ny) a (ky,ko)<(ny,ny)

where ApC, , denotes the forward symmetric difference of the C, ;’s, i.e.,
ApChit, = Chipy = Criviry, = Crppgr1 T Cryvtrg+1
and C, ,, =0 ifk; >n; fori=1,2.

Proor. Let Cj¥;, = Cj 5, = Cip,1- Then {Ci¥, , (ky, ky) € N?} is a nonin-
. . 2 127 |
creasing array of nonnegative numbers. By applying Theorem 2.2 to the
nonnegative martingale {Y, , } and to the array {Cj},,, (k,k,) € N?Z} the
result follows. O

As an application of Corollary 2.3, we obtain a Hajek—Rényi-type inequality
for a special case. Let {X;;, (i,)) € N2} be an array of independent ran-
dom variables with E(X;;)=0 and E(X?) < e for each (i, ) € N Let
G, G, ) e N2} be a nonincreasing array of nonnegative numbers satisfying

C;j=2aC;,q; or C;;2aC;;,, for all i,; and for some « > 2. Put §;; =

ij = i ij =
L (ky by <G, )X kykye LheN, given & > 0, we can apply Corollary 2.3 to obtain

Lo (arCEH)E(S]).

(i,j)<(nq,ny)

52P< max  C;;|S;;| > e} <

(G, /)=<(ny,ny)

Observe that

a? -1

L (arC3H)E(S5)= L CHE(AS)),
(i,7)<(ny,ng) @@, j)<(nq,ny)
where
AS? =87 —82,;, -8, +8%i_1
with S, = S,; =0. By the independence of the random variables X,;,
E(AS?) = E(X}) and thus we obtain the final form of our Hajek-Rényi-type
inequality,
’ o2
£2P{ max C;S;,| > e} <= Y  CHE(X}).

(i, j)<(ny,ny) - i, )<(ny,ny)
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We should point out that the bound we obtain here for this special case is
sharper than the one obtained by applying Smythe’s Hajek—Rényi-type in-
equality [see Smythe (1974)], or Shorack and Smythe’s inequality [Shorack and
Smythe (1976)]. Smythe’s inequality gives 64X ; ;)< (n, n 2)02 E(X?) as a bound,
whereas the bound obtained above is no greater than 5 ; ;)< (., nz)C2 E(X?).

COROLLARY 2.4. Let {Yy,F,, k € N"} be a martingale satisfying (2.3).
Then

2.7 P Y, >el < mi Y .. dP).
( ) € <11?:x}1( k s} min Z[Uk B k;s;n,

l<s<r
i#s

Proor. Immediate from Theorem 2.2 with C, = 1forallk <n. O

ReEMARK. The above corollary is an extension of one of the three Doob
inequalities, namely inequality (3.8) of Doob (1953), page 317. Thus, despite
Cairoli’s counterexample, we see that Doob’s inequality indeed has an exten-
sion to the case of multidimensional index. Although (2.7) appears cumber-
some, in fact it is powerful and efficient enough to yield easily the following
extended Kolmogorov-type inequality.

COROLLARY 2.5. Let {Yy, Fy, k € N} be a martingale satisfying (2.3).
Then for ¢ > 0,

(2.8) e?P{max|Yy| > e} <4 'E(Y).
k<n
Proor. We prove the result for » = 2. The case r > 2 follows by induction.
By Corollary 2.4 we have
ezP{ max  |Y,,|=> e}

(kl, kz)S(nl,ng)

< min Zf Y2, dP, Zf Y2, dP
B(1) 172 B(z) 172
ko=1 kikgy k=1 =1Dkk,
o, max Y2, dP, 5 f max Y7, dP}
(2.9) kz—l 1Bk, R2 k=1 URZ_1Be 1

I/\

mm{ maxY demaxY,MzdP}

min E maxY1k2 ,E(maxYklnz)}
k

= 4{B(maxrz,) + B(mox ) [ B(maxvsy, - mav,

}
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Observe that {Y,?, , F, , , ky > 1} and (Y2, , F}, , > 1} are both nonnegative
submartingales, so that, by Theorem 3.4 of Doob (1953), page 317, we have

e?P max > ¢
{(kl,kz)s(nl,nz)l 1k2| }
(2.10) <4E(Y2,) - +|E(max¥2,, - maxy;
- ( ”1”2) 2 II}SX nikgy II]IQ?.X kingy
2
= 4E(Yn1n2)

Thus the proof is complete. O

REMARKS. (a) Corollary 2.5 has also been obtained by Smythe (1974) (see
his Lemma 1.1). Other Kolmogorov-type inequalities for multidimensionally
indexed martingales were proved by various other authors including Wichura
(1969) and Zimmerman (1972).

(b) As (2.10) suggests, the bound obtained is not the best possible. One
expects, for example, that if the martingale Y, , is not symmetric with respect
to the two indices, the second term in the rlght hand side of (2.10) will be
positive.

The next corollary is a general form of the strong law of large numbers,
extending the Corollary of Chow (1960).

CoroLLARY 2.6. Assume that {Y, , )} and {C, ,} satisfy the conditions of
Corollary 2.3. Assume also that there exists a number p > 1 such that
E(Y?,) <, E(AYF, ) >0,

ning

(2.11) Y Cr, E(AYP, ) <w
nqy,ng

and

(2.12)

Z CnlNE(anlN - Yfl—lN) < », Z CII\)Tan(YIGng - Yl‘gnz—l) < @,
ng

foreach N € N.

Then
CnlnzYnln2 -0 a.s.as(ny,ny) = o,
where AYP  denotes the backward symmetric difference of the Y’s.

ning
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Proor. Let &£ > 0. By Corollary 2.3 we have

a? — 1

——&7P  sup CnlnzYnMZs}
a (nl,nz)Z(N,N)

< Z (AFCrl;lnz)E(erlnz)
(ny,ng)=(N,N)

= CﬁNE(YlgN) + E Crf]an(Aerlnz)
(ny,ng)=(N+1,N+1)

+ Z Cﬁan(Yanz - Ylenz—l)
ny=N+1

+ X CPNE(YPy—YP_iy).
n,=N+1

By condition (2.11) and the Kronecker lemma for random fields [Martikainen
(1986)] we have

(o] Y E(AY?,)—0, N-w,
(ny,ny)<(N,N)
ie.,
CivE(YEy) >0 as N - .
From this and conditions (2.11) and (2.12) we have that
P{ sup CrnYon, = :—:} -0 as N -,
(ny,ng)=(N,N)

A standard argument completes the proof. O

The following variation of the above result avoids the rather restrictive
condition on the coefficients C,, but imposes another condition.

COROLLARY 2.7. Assume that Y, is nonnegative and that {Yy} and {Cy}
satisfy the conditions of Theorem 2.2. Assume that there exists a numberp > 1
such that E(YP) < . Assume also that for some 1 <s <r

Z CII:E(Ylf - Ylf;s;ks—l) < and Z Cll(’;s;NE(Ylf;s;N) <®
k . k
(213) i#ts
for each N € N.

Then
CyYy >0 as.ask >

ProoF. As usual, we prove the result for r = 2. Let ¢ > 0. Assume without
loss of generality that (2.13) is valid for s = 2, i.e.,

Y CPLE(YE, —YP, 1) <o and Y CryE(YPy) <
n

ning
(ny,ny)
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for each N € N. By Theorem 2.2,

e”P{ sup CrnyYuin, = s}
("1’ ng)Z(N, N)

=< Z (Crflnz - Crfln2+1)E(Yr£n2)
(nl’ ng)Z(N, N)

o .
= Z CrleE(anlN) + Z Crflan(anlnz - anlnz—l)'
n,=N (ny,n9)=(N,N+1)

It is clear by condition (2.13) that

P sup c, .Y 25}—>0 as N — «,

ningTning
(ny,ny)>(N,N)

and the result follows. O

Using standard arguments (by first showing the result for symmetric
random variables and then using desymmetrization), one can show that Corol-
lary 2.7 contains the following generalization of Kolmogorov’s strong law of
large numbers.

THEOREM 2.8. Let S, = L _,X, where the X,’s are independent with
E(X,) =0 and E(X?) < » for each k. Assume that ¥, [E(X2)/|k|?] < «.
Then

In|"1S, >0 a.s.m > x,

ReEMARKS. (a) The above result has also been obtained by Klesov (1981) as
an application of his strong law of large numbers for multidimensionaly

indexed martingales.
(b) Notice that for r = 1 the above result states the ordinary Kolmogorov

strong law of large numbers.

Analogues of the above results for reverse martingales are not difficult to
derive. Let {F,, n € N”} be a nonincreasing array of sub-o-fields of F, i.e.,

FoF,0F, forn<n'

Then (assuming X, is F,-measurable and integrable for every n) we say that
{X,, F,, n € N} is a reverse martingale if

(2.14) E{X,|F,} =X, as.forn<n'
As in the case of forward martingales, we have an equivalent condition to
(2.14), namely .
(2.15) [X,dP= [ X,dP for AcF,,m<n.
E A A

{X,, F,, n € N} is said to be a reverse submartingale if the equalities in
(2.14) and (2.15) are replaced by > .
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An analogue of Theorem 2.2 is given by

COROLLARY 2.9. Let {Yy, Fy, k € N’} be a reverse submartingale. Suppose
that the o-fields satisfy A
(2.16) E{E{+|F\}IFy} = E{*|Fy 1},
where k V' 1 denotes the maximum of k and 1 taken componentwise. Let
{Cy, k € N} be a nondecreasing array of nonnegative numbers. Then for
e>0

8P<nr<nka§NCkYk }

< min Z (Ck - Ck;s;ks—l)E(Yl-:)

l<s<r n<k<N

(2.17)
— Cx.sin Y., dP
i#s
=< min { Z (Ck - Ck;s;ks—l)E(Y;)}7
l<s<r n<k<N
where Cy, = 0 if k; < n; for somei=1,2,...,r

The analogue of Corollary 2.5, i.e., a Kolmogorov-type inequality for reverse
martingales, can be stated as

CoROLLARY 2.10. Assume that {Yy, Fy, k € N} is a reverse martingale
satisfying the conditions of Corollary 2.9. Then for £ > 0,

\ 2 r—1 2
(2.18) € P{nggN|Yk| > e) < 4" 1E(Y2).

REMARKS. Corollaries 2.9 and 2.10, besides being of general interest, are
used in Christofides and Serfling (1990) to obtain bounds for the rate of
convergence in the strong law of large numbers for U-statistics, as well as to
establish an invariance principle for generalized U-statistics.
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