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THE PROBABILITY OF A LARGE FINITE CLUSTER IN
SUPERCRITICAL BERNOULLI PERCOLATION

By HarRrY KESTEN AND YU ZHANG!

Cornell University

We consider standard (Bernoulli) site percolation on Z% with probability
p for each site to be occupied. C denotes the occupied cluster of the origin
and |C| its cardinality. We show that for p > (critical probability of the
halfspace Z?~* x Z,) one has P,{|C| = n} < exp{—Cy(p)n‘®~1/?} for some
constant Cy(p) > 0. This improves a recent result of Chayes, Chayes and
Newman. The proof is based on a Peierls argument which shows exponen-
tial decay of the distribution of the size of an “‘exterior boundary” of C.

1. Introduction and statement of results. We consider standard
(Bernoulli) site percolation on Z¢, d > 2, in which all sites are independently
occupied with probability p and vacant with probability 1 — p. The corre-
sponding probability measure on the configurations of occupied and vacant
sites is denoted by P,. The cluster of the vertex x, C(x), consists of all vertices
which are connected to x by an occupied path. (An occupied path is a
nearest-neighbor path on Z¢, all of whose vertices are occupied.) By convention
we always include x in C(x), even if x is vacant (in the latter case C(x) = {x}).
For brevity we write C for the cluster of the origin. For any collection A of
vertices, |A| denotes the cardinality of A. The percolation probability is

8(p) = P{IC| = =}
and the critical probability is
p. = p(Z?) = sup{p:6(p) = 0}.

It is well known that 0 < p, < 1. Instead of site percolation on Z¢ one can also
consider site percolation on the graphs (Z,)? X {0,...,%}?"2 or on H¢ =
7% 'x 7, (Z,={0,1,2,...)). In obvious notation we write p/(Z2 X
{0,...,%k}%"2) and p,(H?) for the critical probabilities on these graphs. Fi-
nally, [1] introduced

Pla= I}i_{r:opc(Zi X {0,..., k}7%).

It was recently proved (3] that in fact p7, = p,(H%).
Aizenman, Delyon and Souillard proved in [2] that for p > p, there exists a
constant C; = C(p) < » such that ’

(1.1) Pf|C| = n} > exp{—C;n@~ D/},
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In [8] Kunz and Souillard proved that an inequality in the other direction
holds for p close to 1, while Chayes, Chayes and Newman [5] proved that

(1.2) P,{|C| = n} < exp{—Cy(log n) ~'n@-1/d},

for some C, = Cy(p) > 0 and p > py,. Our main result is that (1.2) can be
improved to

(1.3) P,{|C| = n} < exp{—Cyn“~V/4}, for p > p,(H?).

We remark that its proof, in Section 3, is almost independent of the other

sections.
Of course (1.1) and (1.3) together say that for p > p (H?),

(1.4) n=@-b/d]og P {|C| = n} is of order 1.
It is conjectured that

lim n~@=1/?Jog P {|C| = n} exists and lies in (0,) for p > p,(Z%).
n—oo
However, this is not proven in general, although Alexander, Chayes and
Chayes (private communication) now have a proof when d = 2.

While the proof of (1.2) in [5] relies on invasion percolation, our proof of
(1.3) is a standard Peierls argument applied to a variant of the exterior
boundary of C. Unfortunately, we have to introduce another adjacency rela-
tion to define this boundary. We remind the reader that two vertices u =
(uy,...,ug)and v = (vy,...,v,) of Z¢ are Z%-adjacent if and only if

Zlui -y = 1.
i

We also consider the graph L with the same vertex set as Z¢, but with « and v
L-adjacent if and only if

max |u; — vy = 1.
l<i<d

Next we define, for integral 2 > 1 and u € Z¢, the cube
d
B,(u) = [1[ku;, ku; + k)
i=1

with “lower left-hand corner’ at ku .and the ‘fattened’ clusters
C(x) = Cy(x) = {u € 2¢: By(u) N C(x) + B}.

Note that the B,(u) are disjoint for distinct u; C,(x) represents in some way
the collection of such cubes which intersect C(x). For k = 1, B,(u) consists of
the singleton {u} only, and C,(x) can be identified with C(x) itself.

Tt is useful to think of C,(x) as a collection of sites of L. Indeed, it is easily
seen that C,(x) is Z?%-connected, and a fortiori L-connected, from the fact that
if u',u” € C,(x), then there exist x’ € B,(x") N C(x) and x” € B, (x") N C(x),
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and these x’ and x” are connected by a path on Z? inside C(x). Finally, we
define A,C(x) as the “exterior boundary’’ on L of C,(x). More precisely,

u € l:u & Cy(x) but u is L-adjacent to a vertex v € Ck(x)}

AC = -
#C(x) {and u is connected to by a Z%-path outside C,(x)

Thus we view A,C(x) as a subset of L. Note the somewhat strange combina-
tion of L-adjacency and Z%-connectedness in this definition (this is meaningful
because Z? is obviously a subgraph of L). It seems that this form of the
definition is needed for Lemma 1 below. We stress that nothing is said about
occupancy or vacancy of the path from u to « in this definition; this would not
even make sense for vertices of L. The existence of the path from u to « merely
excludes from A,C(x) points which are completely ‘“surrounded” by C,(x).
Note again the special case £ = 1. In this case, A;C(x) coincides with the
exterior boundary on L of C(x).

Here, finally, are our results.

THEOREM 1. Forall 0 <p <landk >1,
. 1
,}1_1}; - ;108 Pp{lAkcl =n} = a,(p)
exists and is finite.

Of most interest for us are the situations in which o0,(p) > 0. The next
theorem shows that this is the case for certain p, k.

THEOREM 2. Ford > 8, p > p%, = p(H?) and for d = 2, p > p(Z?) there
 exists a K = K(p, d) such that

g,(p) >0 fork =K.

CoroLLARY 3. (1.3) holds for d >3, p > py, =p(H?) and for d =2,
p > pLZ?.

The final result shows that it is necessary to introduce C, for & > 1. It is
not enough to work with C and its exterior boundary alone (corresponding to
k=1).

THEOREM 4. Ifd > 3 and p(Z%) <p <1 — pZ?), then o(p) = 0.

Note. Throughout this paper C; are strictly positive finite numbers,
which may depend on p, & and d, but not on n. In the sequel we use x, y, z to
denote vertices of the original graph Z¢ and we use u, v, w to denote vertices
which represent a whole box B, of Z¢.
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2. A subadditivity argument to prove Theorem 1. We shall need the
following lemma, which is contained in Lemma (2.23) of [7].

LemMma 1. If C(x) is finite, then A,C(x) is Z%-connected.
The main part of the argument is the following subadditivity lemma.

LEMMA 2. There exists a constant L = L(k,d) and, for all 0 <p <1,
constants 0 < C{(p, k,d) < «© such that

PflA,Cl=m +n + L}

(2.1) s
Pp{lAkcl = n}Pp{IAkcl = m}’ m,n > 1,

PflACl=n +1}

(2.2) _ d
> CPfACl=n} forn=1,L<l<L+(2d+ 5)3°.

Lemma 1 will not be reproven here. It is used in the proof of Lemma 2 (and
again in the proof of Theorem 2). We point out here that Theorem 1 follows
from (2.1) and (2.2). This implication requires only trivial modifications of
standard manipulations with subadditive sequences, as was already pointed
out in the proof of Lemma 2 of [4].

The rest of this section is devoted to the proof of Lemma 2. This proof is
very similar to that of Lemma 1 in [4]. We construct a configuration with |A,C|
approximately equal to n + m from a configuration with |A,C| = n and a
translate of a configuration with |A,C| = m. We advise the reader to look at [4]
" for some of the details which we shall skip.

Proor or LEMMA 2.

SteP (i). The purpose of this step is to prove (2.9) below. Order the vertices
of Z¢ (or L) lexicographically, i.e., set
(2.3) x>y ifforsomei,x; =y,...,% =¥, Xiv1 > Yisr1-
Next, introduce the event

T (m,x) =T (m,x,k) == {|{A,C| = m and the minimal point of C is x}.

Minimality in this definition refers to the ordering (2.3). We need a few simple
observations about 7~ (m,x). First, if AC, # &, but |C| = », then also
|A,C| = ». [Indeed, if u € A,C, then there exist infinitely many distinct u*
outside C, (on a path from u to ). If, in addition, there are infinitely many vt
in C,, then each path from %’ to v’ must contain a point of A,C.] In view of
this, 7-(m, x) with 1 < m < » implies that |C| is finite and A kC is connected
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(cf. Lemma 1). Also A,C must contain points on the positive and negative jth
coordinate axis, 1 <j < d, so that one must have

(2.4) ACc[-m,m]® onT (m,x).
If u € C, and C is finite, then among all points (v,, u,, ..., u ) of C, consider
the one for which v, is maximal. Thus v, > u; and (v; + 1,v,,...,v,) € A,C.

This argument, applied to each of the positive and negative coordinate direc-
tions, together with (2.4), shows that also

C~kC(—m',m)d and CC(—km,km+k)d onT (m,x).

In particular, T~ (m, x) can occur only for x’s in (—km, km + k)%, and there
exists for each m > 1 an x(m) = x(m, p, k) € (—km, km + k)? for which

(2.5) P{T~(m,x(m))} = (2km + k) "*P{|A,C| = m}.

We fix such an x(m) for the remainder of this proof.
We further note that on T~ (m, x) we even have

(2.6) Cclx;, km + k) X (—km,km + k)* ",

by the minimality of x in C. For any fixed connected set A on Z¢, the event
{C = A} depends only on the vertices in A or adjacent to A. Since C determines

C, and A,C this, together with (2.6), shows that T~ (m, x) depends only on
the vertices in

(2.7) [%, — 1,km + k] X [—km, km + E]*"".

" Analogously to T~ (m, x) we define

T*(m,y) =T*(m,y,k) = {|A,C| = m and the maximal point of C is y}.
This event depends only on the vertices in
(2.8) [—-km,y, + 1] X [—km, km + E]*"".

Now define [y — x(m)l, = (k[(y, — x(m))/k], kl(yy — x5;(m))/E], .. .,
kl(y; — x4(m))/k]), where [a] denotes the smallest integer greater than or
equal to a, and consider the following two events:

T*(n,y)
and
F(y) = {|A,C([y — x(m)], + 4ke,)| = m and the minimal vertex of
C(ly —x(m)], + 4ke,)is X = [y —x(m)], + 4ke; + x(m)}

(e, is the ith coordinate vector). F(y) is the translate by [y — x(m)], + 4ke,
of the event T~ (m, x(m)). Thus P{F(y)} = P{T~(m, x(m))} and F(y) depends

only on the vertices in [y, + 4k — 1,») X Z?¢~1, This set is disjoint from (2.8)
so that F(y) and T"(n,y) are independent. Therefore, for any y € Z<,
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m(y) | ’

Fic. 1. Illustration of w(y) and the construction of w”. % is the point [(y — x(m)),] + x(m) +
4ke;.

n,m>1,
P{T"(n,y) and F(y)} = P{T"(n,y)}P,{T~(m,x(m))}

(2.9) ‘ _
> WPP{T (n,5)}P{|A,C| = m}.

Step (ii). We now imitate [4]. Let w be a configuration for which
T*(n,y) N F(y) occurs. We shall modify o in a “neighborhood of y”’ to obtain
a configuration «” for which |A,C| equals approximately n + m. To construct
»” we first define the path 7(y) from y + e, to [y — x(m)l, + 4k — 1)e, +
x(m) = X — e:m(y) goes first from y + e; to y + 2ke, by (2k — 1) successive
steps e;, then successively takes k[(y, — x,(m))/k]— (y, — x,(m)) steps e;,
1 <i < d, and finally (2k — 1) steps e, (see Figure 1). ®” is now obtained from
o by
(2.10) making occupied all the vertices of ()
and

making vacant all the vertices which are Z%adjacent to a
(2.11) vertex of m(y), but do not belong to C U C(y — x(m)], +
dke)) U mw(y)
(see Figure 1).

We shall write C(w) and C(x, w) for the clusters of the origin and of x,
respectively, in the configuration w. Similarly C(w”) is the cluster of the origin
in the new configuration w”, A,C(w) is the boundary of C,(w), etc. We
conclude this step by proving
Ci(w?) = Cy(w) U Cy([y — x(m)][e + dkey, 0)

(2.12) U{u: B,(u) intersects w(y)}.
(2.12) will be immediate from
(2.183) C(w?) =C(w)UC(|y —x(m)], + 4ke,, w) U (vertices in 7(y)).

In turn (2.13) follows from the fact that in w” the vertices of w(y) are
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occupied, as are the vertices of C(w) (including y) and the vertices of
C(y — x(m)l, + 4ke,, ) (including x). Thus, C(w”) certainly contains the
right-hand side of (2.13). It is also not difficult to see that C(w”) cannot
contain more than the right-hand side of (2.13), by virtue of (2.11). Indeed, if z
were a point of C(w?), but not contained in the right-hand side of (2.13), then
consider a Z%path 2z, =2,2;,...,2, =0 from z to the origin, inside C(w?).
There must be a first index s with ‘
(2.14) z,€ C(w) U C(Jy —x(m)], + 4key, ) U (vertices in 7(y)).

Since (2.14) does not hold when s is replaced by 0, but does hold when s is
replaced by r, we have 0 < s < r. But then z,_, is Z%adjacent to C(w) U
C(y — x(m)l, + 4ke,, ») U m(y), but does not belong to this set. If z,_; is
adjacent to C(w) U C(y — x(m)l, + 4ke,, w) and not in =(y), then z,_, is
already vacant in ® and remains so in «”. Otherwise (2.11) forces
2,_, to become vacant in w?, which contradicts z,_; € C(»”). Thus (2.13) and
(2.12) hold.

StEP (iii). In this step we show that
(2.15) n+m-2<|A,C(0”) <n+m+(2d + 5)3%

We begin with the left-hand inequality. Consider a vertex u € A,C(w) but
such that

(2.16) B, (u) does not intersect m(y).
We claim that necessarily also
(2.17) uelCo).

Indeed, u is L-adjacent to some point of C,(w) and hence also to some point of
ék(wy) o) ék(w). Moreover, since C(w) is contained in (—o, y,] X Zd‘} [cf.
*(2.8)], we must have ku, <y, + k, but u & C,(w) and u L-adjacent to C,(w).
By (2.12) and (2.13) this means that also B,(u) N C(w”) = & so that u &
C,(0?), unless B,(u) intersects m(y). But the latter class of vertices u has
been excluded in (2.16), so that still # & C,(»*). Finally, there exists a Z%-path

0 =u,u',u?... from u to « outside C,(w). We show that there also must
exist such a path outside C,(w”). This will then prove that u € A,C(w”). To
find the required path, note that if kui +% — 1<y, and u'¢ C,(»), then
also u' ¢ C,(w?), since C,(w”) \ Cy(w) contains only vertices v with kv, +
k — 1>y, Thus, if ku’ + k — 1 <y, for all i, then the path u° u?, ... itself
lies outside C,(w”). We therefore only have to investigate the case for which
there exists a smallest index j such that ku{ + %k — 1> y,. First assume
j =0. Since u®=u is still adjacent to C.(w) we also have kul <y, + k.
Furthermore, (2.16) implies that for some 2 <i < d we have y; < ku; = ku!
or y; > ku? + k. For the sake of argument, let y, > kul + k and kul <y, <
ku® +k — 1 (see Figure 2). Then the path u’=u, u'=u +e;, u'=
u+8, — (G —1ey, i > 2, lies outside C,(w”). Similar paths exist whenever
j = 0.If j > 1, then by the minimality of j we must have u/ — u’/~' = ¢, and
either kui '<y, <kui"'+ k-1 or kui <y, <kuj+k — 1. Since
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R K.

B (u +eq-e,

Fi1c. 2. Construction of a path from u to » outside (fk(wy ).

u'~!' ¢ Clw) and u’ & C,(w), we have y & B,(u/~1) U B,(u’). We
therefore have for / =j — 1 or j and some 2 <i < d,

ku! <y, <kul+k -1 and (y; <ku'ory,>kul+k).

We can now continue the path from u’ in the same way as we did in the case
J = 0. This completes the proof of (2.17) whenever u € A,C(w) and (2.16)
holds.

In the same way we prove that (2.17) holds for all « in A,C(y — x(m)], +
4ke,, ») which satisfy (2.16). Thus A,C(w”) contains the sets

(2.18) A,C(w) and A,C(y —x(m) + 4ke,, )

with the possible exception of points u for which B,(u) does intersect (y).
Since C(w) € (=, y,1 X 2%~ ! and C(y — x(m)], + 4ke,, w) C [y, + 4k, o) X
Z%-1 the boundaries in (2.18) are disjoint and of size n and m, respectively.
[Note that |A,C(y — x(m)], + 4ke,, w)| = m on F(y), because F(y) is the
translate of T~ (m, x(m)) by a vector whose coordinates are integral multiples
of k.] The left-hand inequality of (2.15) is now obvious.

The right-hand inequality in (2.15) follows similarly from the fact that
u € A,C(w”) implies u € A,C(w) or u € A,C(y — x(m)], + 4ke,, w) or u is
L-adjacent to a vertex v with B(v) N w(y) # &. We leave the details to the
reader.

StEP (iv). Still in imitation of [4], we try to reconstruct o form w”. It is not
clear that y can be uniquely determined from the configuration «”, but we
shall show that given w” (and m) there are at most 4% possible choices for y.
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Write H(r) for the half space [r, ) X Z¢~1. Now recall that A,C(»”) and
A, C(w) U A,C(y — x(m)], + 4ke,, w) differ at most by vertices u which are
equal to or are L-adjacent to a vertex v with B(v) N 7(y) # @ [cf. Step (iii)]. In
particular, the part of A,C(w”) in H((y, + 5k)/k) contains at most m — 1
points [since A,C(y — x(m)], + 4ke,, ) has cardinality m and contains
u, — e,, where u is the unique vertex with ¥ € B(u,)] so that A,C(w) has at
most (m — 1) points in H((y, + 5k)/k). For similar reasons the part of
A,C(w?) in H((y, + k)/k) contains all of A,C(y — x(m)], + yke,, ») except
u,— e, and it contains u, — e; + e, € A,C(w”), so that its cardinality is at
least m. Thus, if A is the smallest integer for which the cardinality of
A,C(w?) N H(A) is at most m — 1, then

y1 +k <kA <y + 5k.
Thus there are at most 4% choices for y, + 1. Since there is only one point of
C(w?) in the hyperplane {u: u, = y; + 1}, namely y + e,, we see that there are
at most 4% choices for y + e, and hence also for y, (as claimed).

Once we have chosen y,, there are at most C; possible configurations
which could lead to the given w”, where C; depends on d and % only, since w
differs from ®” only on vertices within distance 5% form y. We can now
proceed more or less as in (8.7) of [4]. Fix n and m, and for any configuration
&, let N(&) be the number of configurations

e J{T"(n,y) NF(y)}
Yy

for which w” = &. Then, by the above, N(&) < 4kC;. Moreover
P{n+m-2<|AC|<n+m+ (2d + 5)39)
> P{&: N(o) > 0}
= (4kC;) 'E,(N(&))

(2.19)
> (4kC)) ' Y P{é: & = w” for some w in T (n,y) N F(y)}
y

> G ¥ PAT*(n,y) N F(y)).
y

Here E, denotes expectation with respect to P,. In the last inequality we used
the fact that

P{&: @ = w’ for some w in T*(n,y) N F(y)}
2 Cy(p, k,d)P,{T"(n,y) N F(y)}

for some C,(p,k,d) > 0, again because w” differs from «» on a bounded
number of sites only; Cg = C,(4kC;)~ 1. Finally, we use (2.9) and the identity

{1A,C) =n} = U {T"(n,y)} (adisjoint union!)
y
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Fic. 3. A typical A(k,r). The solid lines belong to A(k, r); the dashed lines are in the boundary of
A(k, r), but do not belong to A(k,r).

to obtain from (2.19) that
Pi{n+m-2<|A,Cl<n+m+(2d + 5)3%)
Cs P.{|A,C| = n}P{|A,C| = m) 1
> — =n =m}, n,mx=1,
(m+1)d pl k | p' k

for some Cg > 0, independent of n, m. Finally, this proves that there exists
some j, = jo(n, m, k, p) € [-2,(2d + 5)3%]and a Cy = Cy(k, p) > 0 such that

PflACl =n +m + j,}

. C
(2.20) > »_

(m+1)

SteP (v). We now simultaneously prove (2.2) and complete the proof of
(2.1). (2.2) will be proven by attaching [very much as in Steps (ii)-(iv)] to a
cluster C with |A,C| = n some special clusters in such a way that we have
good control over the size of the boundary of the combined cluster. The control

of this boundary size will rest on (2.21).
Consider the following subsets of Z¢:

A(k,r) =[0,kM) X [—k,2R)*" "\ [k(M - r), EM) x [0, k)* !

for r=0,1,...,M — 1 with M = (6d + 15)3% + 3. (See Figure 3.)
The set of all © € Z* such that B(u) intersects A(k, r) is

A(k,r) =10, M) x [—1,r1]d-1 N [M = r, M) x {0}

Its boundarx A, A(k, r) is defined as the set of vertices L-adjacent to Ak, r)
but not in A(k%, r). Thus

AA(k,r) =[0,M) x ([-2,2]°"* N [-1,1]°7Y)
u{-1,M} x[-2,2]*'u [M— r, M) x {0})¢L

The cardinality of A,A(k,r) is written as A,. The only fact of importance
about these cardinalities is that

(2.21) A,=Ag+r, O0=<r<M.

P{|A4C| = n}P{|A,C| = m}.
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We now define the events
F(y,r) ={C(Iy1s + 4ke;) = [y], + 4ke; + A(k, 1)}

This is the translate by [y1, + 4ke, of the event {C = A(k, r)}, and therefore,
there exists some constant C,, = C,o(p) > 0 such that

Pp{F(y,r)}choa 0<r<M.

A repetition of the argument in Steps (i)—(iv) with F(y) replaced by F(y, r)
and x(m) by 0 shows that there exists some C;; = Cy;(p) > 0 such that for
each r < M we can find a j, € [—2,(2d + 5)3%] with

(2.22) Pp{|AkC| =n+ /\r +Jl} = CIICIOPp{IAkCI = n}.

In principle, j, may depend on n and r. However, the construction of steps (ii)
and (iii) yields for each o in T*(n,y) N F(y, r) a configuration w” for which
A kC(wy) and

AC(w) U AC(y], + dhey, 0)
= 0,C(w) U (Ty1/k] + 4,132/k, ... [ya/k1) + A Ak, T)

differ only by a subset of those vertices « which are L-adjacent to a v with
B@) N w(y) # &, or for which B(u) N w(y) # &. The path 7(y) runs from
y +e; to[yl, + (4k — e, and it does not depend on r. The difference
between A,C(w”) and the set (2.23) depends only on (y) and the shape of
[yl, + 4ke, + A(k,r) near [yl, + 4ke, and is therefore also independent of r.
Consequently also |A,C(w”)] — n — A, depends on C(w), y and n only, but not
on r. A small modification of Step (iv) now yields (2.22) for some j; indepen-
dent of r (but possibly dependent on n).

Since A, +j; = Ag + r +j, varies from Ay +j; to Ag +j; + M —1=2+
ji +(6d + 15)3% + 2 as r varies from 0 to M — 1, we immediately obtain
(2.2) with L = A, + 2(2d + 5)3%. Finally, (2.1) follows from (2.20) and

(2.23)

Pp{lAkCl =n+m+1L} > CHCIOPP{|AkC| =n+m+j},

which is just a special case of (2.22) with n replaced by n + m + j, and r =
22d + 5)3% — jo —Jj;- O '

3. A Peierls argument to prove Theorem 2. Theorem 2 and Corollary
3 are known for d = 2 (cf. [6], Theorems 5.1 and 5.3), so we restrict ourselves
to d > 3 in this section. Recall the definition

d
B,(u)=T1[ku;, ku; + k).
4 1

We now introduce two more boxes, whose linear dimensions are 3k and 5k,
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|'"I
B
u

™

Fic. 4. The boxes B = B,(u), B' = Bj(u) and B" = Bj(u) and a path r for the property .

respectively, and have the same center as B,(u) (see Figure 4):

d
Bi(u) = [1[ku; — k, ku; + 2k],
1

d
By(u) = [][ku; — 2k, ku, + 3k].
1

Note that B’ and B" include their full topological boundaries. We shall say
that the vertex u € L has property m, if there exists an occupied Z%-path r
from B}(u) to the topological boundary of Bj(u) which is not connected by an
occupied path in Bj(u) to B,(u). Clearly, whether » has property 7, or not
depends only on the vertices in Bj(u).

Consider a vertex u of A,C and assume O ¢ Bj(u). Then, by definition
there exists a vertex v of C, which is L-adjacent to u. In particular, B,(v) C
Bj(u), and there exists a vertex x of C in B,(v) € Bj(u) which is connected
by an occupied path r in C to the origin. Since 0 & Bj(w), r connects Bj(u) to
the boundary of Bj(u). On the other hand B,(z) N C = & (since u € A,C),
" so that r cannot be connected to B,(«). Thus u has property m,. In other
words every u € A,C with 0 & B}(u) has property 7, and (by virtue of
Lemma 1)

{]A,C| = n} c {3 Z%connected set of n vertices which intersects
the positive and negative first coordinate axes and
contains at least n — 6 vertices with property
).
Since the events {z has property =,} and {v has property =,} are independent
as soon as max;|u; — v, > 6, a standard Peierls argument (compare for
instance [6], proof of Lemma 5.3) now shows that there exists an ¢ = &(d) such
that

(3.1)

(3.2) P {0 has property 7} <&
will imply
(3.3) P {right-hand side of (8.1) occurs} < C, exp(—Cyn)

for some constants 0 < C,, Cy < . Therefore, Theorem 2 is implied by the
following proposition.
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ProposITION 1. Ifp > p7,, then (3.2) holds for all sufficiently large k.

The principal step in the proof is Lemma 3 below, which is basically already
in [1]. We shall first show how Proposition 1 follows from this lemma and then
indicate the proof of Lemma 3. From now on we have no need of the graph L.
“Connectedness” and “path” always refer to Z¢ in the sequel. The notation
A & B (A < B in C) is used for the event that there exists an occupied path
from some vertex in A to some vertex in B (from some vertex in A to some
vertex in B and lying in C). B denotes the topological boundary of B.

LeMMA 3. Letp > p; 5. Then there exist an integer L and a 6 > 0 such that
foralln > 2L and x,y € [0,n]?1 X [0, L],

Pp{x oyin[0,n]? X [0,L]} = 5.

ProoF oF ProPOSITION 1 FROM LEMMA 3. First we choose K, such that for
all 2 > K,

P,{ B,(0) is not connected to «} <¢/2.

Such a K, exists because p > p; , > p(Z?). If there exists an occupied path
from B,(0) to «, then it has a piece ry, say, in B}(0) which connects B,(0) to
dB}(0). If r is any occupied path from B/(0) to dB}(0), and if r & r; in B}(0),
then r & B,(0) in B}(0). Therefore, for & > K,

P,{0 has property ,}

€
(3.4) <5+ P,{3 occupied paths r; from B,(0) to dB;(0)
and r from B/(0) to dB}(0) such that r
and r; are not connected in B}(0)}.

We decompose the event in the second term in the right-hand side with respect
to the initial points x; € B,(0) and x € B}(0) of r; and r, respectively. There
are at most |BJ(0)|> possible choices for (x,,x). The last term in (3.4) is
bounded by

Y. P{x < dB}(0), x; < dB}(0) but x is not

3.5 . .
(3.5) **  connected to x, by an occupied path in B}(0)}.

To estimate the summands in (3.5) we introduce some more notation:
. . , d
D;=[-k—j(L+1),2k +j(L + 1)]°.

The D; are boxes surrounding’ B;(0). We also define

&; = o-field generated by the vertices in D;
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L+] B|

Aj Dj+I

F16.5. The “annulus” A; and a connection illustrating (3.6).

and the “annuli”
A; =D, \ interior of D,
(see Figure 5). We claim that for all y, 2 € dD;
(3.6) Pp{y ©zin Aj|S; } = 8% on {y and z are occupied}.
To prove (3.6) consider first the case where y and z both lie on the same face
of D;, say
(3.7) Ya=24=2k +j(L+1).
Take y' =y + e4, 2’ = 2 + e4 so that
yy=2,=2k+j(L+1)+1.
Consider the ‘“slab’’ of thickness L,
S=[-k—j(L+1),2k+j(L+1)]*"
X[2k +j(L+1)+1,2k+ (j+ 1)(L +1)].

S is contained in D;,; \ D; CA; and contains y’, 2’ in one of its faces. By
Lemma 3

Py o2 in S} = 6.
Since S N D; = & we even have
Py «2z'in 8%} =2 6.
Clearly {y and z occupied} and {y’ © 2’ in S} together imply y & z in A;.
Consequently (3.6) holds under (3.7). If instead of (3.7)
yy=2k+j(L+1) and 2z, ,=2k+j(L+1),

then connect y' to ¢ = (y;,...,¥4-2,2k +j(L+ 1)+ 1,2k +j(L +1)+ 1)
and t' to 2’ == (2y,...,24_9,2k + j(L + 1) + 1, z,). The conditional probabil-
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ity, given &, of both connections existing is at least 62 (by the FKG inequal-
ity). A glance at Figure 5 should convince the reader that (3.6) holds in all
cases.
(3.6) immediately shows that
P{x and x, are both connected to dD; . ; but not to each other in D;,,|x
(3.8) and x; are both connected to dD;, but not to each other.in D}
<1 -8 ’
Indeed, once the conﬁguration in D; is fixed, we merely pick any y in dD;
which is connected to x in D; and any z in dD; which is connected to x; in D
and apply (8.6) to this y, z. We then have a condltlonal probability at least 83
of connecting y and z, and hence x and x, in D;,,. Iteration of (3.8) shows
that

P,{x and x, are both connected to dD; but not to each other in D;}

<(1- 63)j
Thus, as long as D, ¢ B;(0), or equivalently j(L + 1) < &, the summand of
(8.5) is bounded by (1 -8 3)1 Consequently (3.5) is at most

. Z (1 _ 63)lk/(L+1)J < (5k + 1)2d(1 _ 83)lk/(L+1)J,

where || is the largest integer less than or equal to a. Proposition 1 follows.
O

Proor or LEMMaA 3. We only indicate the proof since most ideas are already
in Lemma 4.3 of [1]. Assign i.i.d. uniform random variables on [0, 1], U(x), to
the vertices x of Z¢. Call x ¢-occupied if U(x) < t.If p > p7, find an L and a
P such that

p>p>p (22 x[0,L]"7?).
Now let x,y € [0,n]?~! x [0, L] for some n > 2L. Without loss of generality

let 0 <x;, <n/2,1<1i<d, and, for simplicity, assume n even. We shall show
that

n
(39) Plxo|=,x,,%5...,%5.1,0|in[0,n]* " x[0,L]} =6
P 2

for some 6 > 0, independent of x, y, n. The lemma will then follow by
combining a number of paths which connect vertices z and 2z’ with z; = 2/ for
all i #j and 2! = n/2 for some choice of j < d — 1.

To prove (3'9) we observe that there exists some 6, = 6,(p) > 0 such that

n
Pp{ﬂ p-occupied path r from x to {5}

(3.10) X[xg,n] X ci:ll[aéi,xi +L]x][0,L]

in [xl, 2] X [2,n] X dr[l[xl,x + L] x [O,L]} >0,
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~N
~

Fic. 6. Projections of paths r and s in (3.10) and (3.11) onto the subspace {x: x; = 0, i > 3},

[because B > p(Z% x [0, L]°~2)] (see Figure 6). Similarly

n
PP{EI p-occupied path s from (E s Xy vy Xg_1 0) to

(3.11) {x;} X [x5,n] X d]__Il[xi,xi + L] x[0,L]in

[xl, 2] X [x5,n] X dnl[x,,x + L] x [0, L]} >,

The projections of the paths r and s in (3.10) and (3.11) on the two-dimen-
sional subspace {x:x; = 0, i > 3} must intersect in some point (2, 2,), say.
Then r contains a point a = (2;,25,a3,...,a4) and s a point B =
(24, 29, b3, ..., b)) With x; < a;, b; <x;+ L,3<i<d-1land0 <a, b, <L.
Now, when we know for each vertex whether it is p-occupied or not, then we
know whether r, s, @ and B exist. If they do, then conditionally on all this
information, there is still a conditional probability of at least

p—p\-'”
1_

that « and B are connected by a p-occupied path in {z} X {2z} X
[1¢-'[x;, x; + L] x [0, L]. If such a connection exists, then x is connected to
(n/2 Xg,...,%g_1,0)in [0,n]%71 X [0, L]. Therefore (3.9) holds for

O

p—D
=

1-p

ProoF oF COROLLARY 3. We shall restrict ourselves to d > 3. Fix & such
that o,(p) > 0. Then

(3.12) {|C| =n) c{k?n <|C, <n}c{Csn? V¢ <|A,C| <}

for some Cy > 0. The last inclusion follows from the fact that the projection of
C, on some coordinate hyperplane {u: u; = 0} must have cardmanty greater
than or equal to C3n@~ /% (see [5], Theorem 6). If this holds for i = 1, say,
then for each point (0 Usg,...,U,) in the projection of C, onto {u,; = 0} there
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must be some point (7, u,, ..., u ) in AC,. (3.12) and Theorems 1 and 2 show
that for large n \
(3.13) PICl=n} < Y exp(— zo,m),

C3n@-Vid<m<oo

which proves Corollary 1. [Theorem 1 can be avoided in this proof: Some form
of (3.13) can be obtained directly from the Peierls argument at the beginning
of this section.] O

4. Proof of Theorem 4. This proof is very similar to [2]. By means of the
ergodic theorem we show that there is a probability of at least 3 that the cube
S(n) :=[—n,n]? contains of the order n? vertices which are connected to
dS(n) by an occupied path and which have a neighbor which is connected to
dS(n) by a vacant path. By some modifications in the boundary layer
S(n + 3) \ S(n) we can then see that

P {3 finite cluster C in S(n + 2) such that |C| and |A,C| are of order n?}
= C'1 exp(_CZ|Sn+2 N\ Snl)
> C, exp(—C3n?™1).

Replacing n? by n immediately shows then that P{|A,C| = n} cannot de-
crease exponentially in n, whence Theorem 4.

Now for some details. We remind the reader that d > 3 in this entire
section. We begin by showing

P{0 <  and some neighbor of 0 is connected to by a vacant path}

> 0,
whenever p, <p < 1 — p,. In fact, since p > p, we have for all large [

(4.2) P{8S, & o} > §.

In the same way, p < 1 — p, or P,{0 is vacant} = 1 — p > p, implies

(4.3) P,{3 vacant path from S, to ©} > §

for large I. (4.2) and (4.3) together show that for some / and x,y €4S,
P,{x o ~outsideS,_, and 3 vacant path from y to » outside S;_,} > 3/9S;| 2.

(4.1)

Since there is a strictly positive probability of an occupied path in S;_; from 0
to a neighbor of x and a vacant path in S;_; from a neighbor of 0 to a
neighbor of y, one obtains (4.1).

(4.1) and the ergodic theorem show that there ex1sts some C; = C4(p,d) > 0

such that for large n,
P{3 at least Cyn® points x € S(n) such that x < dS(n) and

(44) there exists a vacant path from a neighbor of x to dS(n)} > 5

The endpoints of all the occupied connections in the event in (4.4) are in the
union of the 2d faces of S(n). By symmetry we may restrict ourselves to
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endpoints on the “right face”
F,={n}x[-n,n]*"

We may even assume that all the occupied paths have an endpoint with u,
even or with u, odd. More precisely, if

Fe={n}) x{2k:—n<2k<n} x[-n,n]*?
and

Fl={n}x{2k+1:—n<2k+1<n}x[-n,n]*?
then for * =e or 0

P {3 at least (4d)~'Cyn® pointsx € S(n)such thatx < F*inS(n)
(4.5) and there exists a vacant path from a neighbor of x to 4S(n)}
> (8d)7 L.

For the sake of argument, assume that (4.5) holds for * = e. One now would
like to connect all occupied points of F¢ in S(n + 2) \ S(n) and also would
like to connect all vacant points of 4S(n) by a vacant path to 3S(n + 3) and to
make all of 3S(n + 3) vacant. On the event in (4.5) we would then have a
cluster C ¢ S(n + 2) of at least (4d)~'C;n? points x in S(n), such that each
x has a neighbor which belongs to A,C [since some neighbor of such an x has
a vacant path to dS(n + 3); this path can be continued to « outside S(n + 3)
and hence outside C]. Thus we would have
IALC| > (8d2) ~'Cynd.

To carry out this construction we need a little care, because some points of
F; will be vacant. We can, however, do this as follows. Fix the configuration in
S(n). If (n,2k,z23,...,2,) is an occupied point of F¢, then make also
(n+1,2k,25,...,24) and (n + 2,2k, 2, ..., 2,;) occupied. In addition, make
occupied all points of F;! + 2e, (which lies in {x, = n + 2} and is congruent to
F7) and connect these points by an occupied path in {n + 2} X [—n + 2,
n + 2]°"! which does not go through any points of the form {n + 2} X
{21 + 1} X[-n,n)?"2 with —n < 2] + 1 < n. Figure 7 shows such a path in
the plane x, = n + 2 when d = 3. Next, if (n, 2,, ..., 2,) is a vacant point in
F,, with 2z, odd, then make vacant also the points (n + i,2q,...,24) for
i =1,2,3. If 2, is even, then make vacant the points (n + 1, 2, ..., 2,),(n +
Lzg+mzg. .29, (n+ 2,2 +m,23,...,29),(n + 3,2, +m, 25,...,24)
with 7 = +1 chosen such that |z, + 1| < n. Finally, make all of 3S(n + 3)
vacant and all points in[-n — 8,n — 1] X [-n — 3,n + 3]9"! \ S(n) [i.e, in
the part of S(n + 3) to the “left” of {x, = n} and outside S(n)]. It can be
checked that these assignments are consistent. The probability that all vertices
in S(n + 3) \ S(n) have these assigned values is at least

. [min(p, 1 = p)]'*** P> > [min(p, 1 - p)] %"
Thus, if the event in (4.5) with * = e occurs, then we have a conditional
probability of at least

[min(p, 1 - p)] %"
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X, =2k X, = 2k+2
2 2
\ /
] N e
X3 | 1 : : 1
] ) 1
] . 1 | '
| | ! i
' : | ! '
' |
[} [ ! | !
) ] | 1 ]
T
' ) | ' '
' ) 1 ' !
] ] t | !
-m-n)t--d tLo_a 1 (n,-n)
(n+2,-n-2)
Xy =

F1G. 7. A path connecting points with even x,.

to have a cluster C inside S(n + 2) with |C| = (4d)~'C4n® and |A,C| >
(8d?)~'C3n?. In particular, for some x € S(n + 2) (and hence for all x),

B{IAC(x)] = (8d%) "Cyn} = (8d) (21 + 5) “[min(p, 1~ p)] .

Note added in proof. Recently G. Grimmett and J. M. Marstrand have
proven that all the critical probabilities p.(Z?), p(H?) and p7, are equal.
Thus our result (1.3) holds for all p > p(Z9).

REFERENCES

[1] AizeNmaN, M., CHaves, J. T., CHavEes, L., FROHLICH, J. and Russo, L. (1983). On a sharp
transition from area law to perimeter law in a system of random surfaces. Comm.
Math. Phys. 92 19-69.

[2] AizenmaN, M., DELvoN, F. and SouiLLarp, B. (1980). Lower bounds on the cluster size
distribution. J. Statist. Phys. 23 267-280.

(3] Bagsky, D. J., GRIMMETT, G. and NEwMaN, C. M. (1988). Percolation in half-spaces: Equality of
critical densities and continuity of the percolation probability. Unpublished.

[4] CHavEs, J. T., CHAYES, L., GRMMETT, G. R., KesTen, H. and ScHONMANN, R. H. (1989). The
correlation length for the high-density phase of Bernoulli percolation. Ann. Probab. 17
1277-1302.

[5] CHavEs, J. T., CHaYES, L. and NEwMaN, C. M. (1987). Bernoulli percolation above threshold:
An invasion percolation analysis. Ann. Probab. 15 1272-1287.

(6] KesTEN, H. (1982). Percolation Theory for Mathematicians. Birkhéuser, Boston.

[7] KesTeN, H. (1986). Aspects of first passage percolation. Ecole d’Eté de Probabilités de Saint
Flour XIV-1984. Lecture Notes in Math. 1180 125-264. 'Springer, New York.

[8] Kunz, H. and SouiLLARD, B. (1978). Essential singularity in percolation problems and asymp-
totic behavior of cluster size distribution. J. Statist. Phys. 19 77-106.

DEPARTMENT OF MATHEMATICS
CORNELL UNIVERSITY
ITHACA, NEW YORK 14853



