THE FIRST EXIT TIME OF A TWO-DIMENSIONAL SYMMETRIC STABLE PROCESS FROM A WEDGE¹

By R. DANTE DEBLASSIE

Texas A & M University

Let T_{θ} be the first exit time of a symmetric stable process [with parameter $\alpha \in (0,2)$] from a wedge of angle 2θ , $0<\theta<\pi$. Then there are constants $p_{\theta,\,\alpha}>0$ such that for starting points x in the wedge, $E_xT^p_{\theta}<\infty$ if $0< p< p_{\theta,\,\alpha}$ and $E_xT^p_{\theta}=\infty$ if $p>p_{\theta,\,\alpha}$. We characterize $p_{\alpha,\,\theta}$ and obtain upper and lower bounds.

1. Introduction. Let $\{X_t: t \geq 0\}$ be the symmetric stable process in \mathbb{R}^2 of index $\alpha \in (0,2)$; namely that process with stationary independent increments, whose transition density f(t,x-y) (with respect to Lebesgue measure) is determined by its characteristic function

$$\exp\{-t|\xi|^{\alpha}/2\Gamma(\alpha/2)\} = \int_{\mathbb{R}^2} e^{ix\cdot\xi} f(t,x) dx.$$

For $x \in \mathbb{R}^2$ let $\varphi(x)$ be the magnitude of the angle between x and (0, 1). Given $\theta \in (0, \pi)$, define

$$W_{\theta} := \left\{ x \in \mathbb{R}^2 \colon x \neq 0, \, \pi - \theta < \varphi(x) \leq \pi \right\}$$

and call it a wedge of angle 2θ . Define

$$T_{\alpha} := \inf\{t > 0 \colon X_t \notin W_{\alpha}\},$$

the first exit time of X_t from W_{θ} . In this paper we study the distribution of T_{θ} . In the case of a two-dimensional Brownian motion B(t), it is known that for p>0 and $x\in W_{\theta}$,

$$(1.1) E_x T_{\theta}^{p} < \infty \Leftrightarrow p < \frac{\pi}{4\theta}$$

[Burkholder (1977), page 192, and Spitzer (1958)]. There are several ways to obtain this result. The heat equation can be solved explicitly for $P_x(T_\theta > t)$ by separation of variables. Spitzer (1958) solves the heat equation using an integral transform from which he deduces (1.1). Burkholder's approach involves use of his two-sided L^p inequalities for stopping times of Brownian motion—he is able to reduce consideration to solution of a simple Dirichlet problem for the Laplacian. It is not possible to mimic these techniques for the symmetric stable process X_t because its generator is an integral operator. The trouble is all the techniques described involve separation of variables.

1034

Received March 1988; revised November 1988.

¹Supported in part by a grant from the National Science Foundation.

AMS 1980 subject classifications. 60G99, 60J25.

Key words and phrases. Symmetric stable process, exit time, wedge.

However, it is known [Blumenthal and Getoor (1960), pages 264 and 265] X_t can be represented as a two-dimensional Brownian motion run with an independent clock (namely, a stable subordinator). The important observation, due to Molchanov and Ostrovskii (1969), is that this representation can be interpreted as the trace of a degenerate diffusion (described in detail below). This is our starting point. We will prove the following theorem, making essential use of the results of Bass and Cranston (1983). Here $\mathbb{R}^n_+ := \{x \in \mathbb{R}^n : x \in \mathbb$ $x_1 \geq 0$.

THEOREM 1.1. Let $\theta \in (0, \pi)$. Then there exists a constant $p_{\theta, \alpha} > 0$ such that for $x \in W_{\theta}$,

$$E_x T_{\theta}^p < \infty \quad if \, p < p_{\theta, \alpha},$$
 $E_x T_{\theta}^p = \infty \quad if \, p > p_{\theta, \alpha}.$

Moreover,

(i) $\theta \in (0, \pi) \to p_{\theta, \alpha}$ is continuous and decreasing;

(ii) for
$$\theta \in (0, \pi/2)$$
, $p_{\theta, \alpha} > \frac{1}{2} = p_{\pi/2, \alpha}$;

(iii) for $\theta \in (\pi/2, \pi)$,

$$p_{ heta,\,lpha} \geq \left\{ lpha - 2 + \left[\left(lpha - 2
ight)^2 + \left[\left(1 + \cos heta
ight) / \sin heta
ight]^2 lpha (4 - lpha)
ight]^{1/2} \right\} / 2lpha;$$

(iv) for $\theta \in (0, \pi)$, $p_{\theta, \alpha} < 1$; (v) for $\alpha = 1$, $E_x T_{\theta}^{p_{\theta, 1}} = \infty$.

(v) for
$$\alpha = 1$$
, $E_{x}T_{A}^{p_{\theta,1}} = \infty$

In fact, let $\delta = \delta(\theta) = \sin \theta/(1 + \cos \theta)$ and $H_{\delta} = \mathbb{R}^2_+ \setminus [\{0\} \times [\mathbb{R} \setminus (-\delta, \delta)]]$. Then $p_{\theta,\alpha} = \{-(2-\alpha) + [(2-\alpha)^2 + 4\lambda_{\delta}]^{1/2}\}/2\alpha$, where λ_{δ} is the principal eigenvalue of the differential operator

$$L = rac{1}{4}ig(v_1 + v_2^2 + 1ig)^2igg[4v_1rac{\partial^2}{\partial v_1^2} + rac{\partial^2}{\partial v_2^2} + 2igg(2 - lpha - rac{2(1-lpha)v_1}{v_1 + v_2^2 + 1}igg)rac{\partial}{\partial v_1} \ - rac{2(1-lpha)v_2}{v_1 + v_2^2 + 1}rac{\partial}{\partial v_2}igg]$$

on H_{δ} . More precisely,

$$\lambda_{\delta} = - \sup_{U \in \mathscr{K}(\delta)} \sup_{\mu(\overline{U})=1} [-I(\mu)],$$

where the μ 's are probability measures, $\mathscr{K}(\delta) = \{U \subseteq \mathbb{R}^2_+: U \text{ is bounded and open in } \mathbb{R}^2_+ \text{ with } C^{\infty} \text{ boundary in } \mathbb{R}^2 \text{ and } U \subseteq \overline{U} \subseteq H_{\delta} \text{ in } \mathbb{R}^2_+ \} \text{ and } I(\mu) \text{ is the } I(\mu) \text{ in } I(\mu) \text{$ Donsker-Varadhan I-function associated to L,

$$I(\mu) = -\inf \left\{ \int \frac{Lf}{f} d\mu \colon f \in C^2(\mathbb{R}^2_+) \right\}$$

and $f \equiv constant$ outside a compact subset of \mathbb{R}^2_+ .

Now we describe the method of solution. Let $Y_t = (Y_t^{(1)}, Y_t^{(2)}, Y_t^{(3)}) \in \mathbb{R}^3$, where $Y_t^{(1)}$ is a Bessel process with parameter $2-\alpha$, $Y_t^{(2)}$ and $Y_t^{(3)}$ are one-dimensional Brownian motions and $Y^{(1)}, Y^{(2)}, Y^{(3)}$ are independent. The generator of Y_t is

(1.2)
$$G = \frac{1}{2} \left\{ \frac{\partial^2}{\partial y_1^2} + \frac{1 - \alpha}{y_1} \frac{\partial}{\partial y_1} + \frac{\partial^2}{\partial y_2^2} + \frac{\partial^2}{\partial y_3^2} \right\}, \quad y \in \mathbb{R}^3_+,$$

and Y_t has state space \mathbb{R}^3_+ if $Y_0^{(1)} \geq 0$.

Theorem 1.2 [Molchanov and Ostrovskii (1969)]. Let β_t be the inverse local time of the Bessel process $Y_t^{(1)}$ and 0. If $Y_0^{(1)} = 0$ then

$$X_t = (0, Y^{(2)}(\beta_t), Y^{(3)}(\beta_t)).$$

is a symmetric stable process with index α .

Define

(1.3)
$$Z_t = \left(\left(Y_t^{(1)} \right)^2, Y_t^{(2)}, Y_t^{(3)} \right), \qquad t \ge 0,$$

$$\tau_\theta \coloneqq \inf\{t > 0 \colon Z_t \in \{0\} \times W_\theta^c\}.$$

We consider Z_t rather than Y_t because it is easier to get a martingale characterization of Z_t . Now T_{θ} is the first time X_t hits W_{θ}^c and τ_{θ} is the first time Z_t (or Y_t) hits $\{0\} \times W_{\theta}^c$. Since $Z_t \in \{0\} \times W_{\theta}^c$ only if $Z_t^{(1)} = 0$, we see that $(0, X(T_{\theta}))$ and $Z(\tau_{\theta})$ have the same distribution. If $\mathscr{F}_t = \sigma(Z_t)$ then $(Z_t^{(2)}, Z_t^{(3)})$ is a two-dimensional \mathscr{F}_t -Brownian motion and τ_{θ} is an \mathscr{F}_t -stopping time. Thus Burkholder's (1977) Theorem 3.1 and Remark 3.1 results hold, and in particular for q > 0,

(1.4)
$$E_z|Z(\tau_\theta)|^{2q} < \infty \quad \text{iff } E_z\tau_\theta^q < \infty, z = (0, x).$$

Hence we get

$$(1.5) E_x |X(T_\theta)|^{2q} < \infty iff E_{(0,x)} \tau_\theta^q < \infty.$$

Bass and Cranston (1983) have analogues to Burkholder's result (1.4) for X_t . Thus the problem is reduced to the study of τ_{θ} , a stopping time of a diffusion. We find and study $p_{\theta,\alpha} > 0$ such that for $z \in \{0\} \times W_{\theta}$, $E_z \tau_{\theta}^p$ is finite if $0 and infinite if <math>p > p_{\theta,\alpha}$. Our method is not refined enough to settle the case $p = p_{\theta, \alpha}$ except when $\alpha = 1$. Under the change of coordinates (on \mathbb{R}^3_+),

(1.6)
$$z = (y_1^2, y_2, y_3), \quad y \in \mathbb{R}^3_+,$$

the operator G in (1.2) becomes the generator \overline{G} of Z_t , where

$$(1.7) \qquad \overline{G} = \frac{1}{2} \left\{ 4z_1 \frac{\partial^2}{\partial z_1^2} + 2(2-\alpha) \frac{\partial}{\partial z_1} + \frac{\partial^2}{\partial z_2^2} + \frac{\partial^2}{\partial z_3^2} \right\}, \qquad z \in \mathbb{R}^3_+.$$

Introduce the new coordinates $(\rho, v) = \Phi(z), z \in \mathbb{R}^3_+ \setminus \{(0, 0, a): a \geq 0\}$, where

(1.8)
$$\rho = (z_1 + z_2^2 + z_3^2)^{1/2}, \\ v = (z_1/(\rho - z_3)^2, z_2/(\rho - z_3)).$$

Then in these coordinates, the operator \overline{G} in (1.7) becomes

(1.9)
$$\tilde{G} = \frac{1}{2} \left\{ \frac{\partial^{2}}{\partial \rho^{2}} + \frac{3 - \alpha}{\rho} \frac{\partial}{\partial \rho} + \frac{\left(v_{1} + v_{2}^{2} + 1\right)^{2}}{4\rho^{2}} \left[4v_{1} \frac{\partial^{2} f}{\partial v_{1}^{2}} + \frac{\partial^{2} f}{\partial v_{2}^{2}} + \frac{\partial^{2} f}{\partial v_{2}^{2}} + 2\left[2 - \alpha - \frac{2(1 - \alpha)v_{1}}{v_{1} + v_{2}^{2} + 1} \right] \frac{\partial}{\partial v_{1}} - \frac{2(1 - \alpha)v_{2}}{v_{1} + v_{2}^{2} + 1} \frac{\partial}{\partial v_{2}} \right] \right\},$$

 $\mathbb{R}^3_+ \backslash [\{0\} \times W^c_\theta]$ is taken to $(0,\infty) \times H_\delta$ and $[\{0\} \times W^c_\theta] \backslash \{(0,0,a): a \geq 0\}$ is taken to $(0,\infty) \times [\mathbb{R}^2_+ \backslash H_\delta]$ (details in Section 4), where H_δ is as in Theorem 1.1. Now $u(t,z) = P_z(\tau_\theta > t)$ solves $(\partial/\partial t - \overline{G})u(t,z) = 0$ for $(t,z) \in (0,\infty) \times [\mathbb{R}^3_+ \backslash (\{0\} \times W^c_\theta)]$ with initial data $u(0,z) = 1, z \notin \{0\} \times W^c_\theta$ and boundary data u(t,z) = 0 for all $(t,z) \in (0,\infty) \times (\{0\} \times W^c_\theta)$. Expressed in the coordinates (1.8), separation of variables is the obvious means of solution, but the v-eigenvalue problem involves a degenerate non-self-adjoint differential operator. Thus the classical means of resolving the eigenvalue problem are not available. However, Donsker and Varadhan have a way to characterize the principal eigenvalue for such operators and it is their machinery that we employ.

We see from (1.9) that Z_t has a skew product representation (R(t), V(A(t))), where R and V are independent and A(t) is continuous, strictly increasing, and depends on R not V. Below we show $V(\cdot)$ can explode in some cases, but ignoring this for the moment, for $\eta_{\delta} = \inf\{t > 0 \colon V(t) \in \mathbb{R}^2_+ \setminus H_{\delta}\}$ [where $\delta = \sin \theta/(1 + \cos \theta)$]

$$\begin{split} P_z(\tau_\theta > t) &= P_z\big(V(A(s)) \notin \mathbb{R}_+^2 \backslash H_\delta \text{ for } s \in [0, t]\big) \\ &= P_z\big(\eta_\delta > A(t)\big) \\ &= \int_0^\infty \!\! P_z(\eta_\delta > a) \, d_a P_z\big(A(t) \le a\big). \end{split}$$

A(t) is easy to analyze and the Donsker-Varadhan theory gives us information about $P_z(\eta_{\delta} > u)$ as $u \to \infty$. Thus we can decide when $E_z \tau_{\theta}^q < \infty$.

The paper is organized as follows. In Section 2 we impose a convenient framework: the martingale problem formulation. A skew product representation of Z_t comprises the content of Sections 3 and 4. In Section 5 we establish the groundwork for the application of the Donsker-Varadhan theory to characterize the principal eigenvalue of the v-part of \tilde{G} on H_{δ} . The Donsker-Varadhan results and Pinsky's theorem are used in Section 6 to obtain lower bounds on $P_z(\eta_{\delta} > u)$ as $u \to \infty$. In Section 7 we obtain upper bounds. Using techniques of Donsker and Varadhan, we prove equality of the upper and lower bounds in Section 8. In Section 9 we study the ρ -part of Z_t .

Section 10 is concerned with properties of the principal eigenvalue of the v-part of \tilde{G} on H_{δ} as a function of δ . Theorem 1.1 is proved in Section 11 and there we also discuss an application.

- **2. A convenient setup.** Let S be a complete separable metric space and define $C_b(S) = \{f \colon S \to \mathbb{R} | f \text{ is bounded and continuous} \}$. Give it the sup norm topology. Denote by Ω_S the set $C([0,\infty),S)$ of continuous functions from $[0,\infty)$ into S endowed with the topology of uniform convergence on compacta. Let $x_t(\omega) = \omega(t), \ \omega \in \Omega_S$, be the t-coordinate map and define $\mathscr{M}_t = \sigma(x_s \colon s \leq t), \ \mathscr{M} = \sigma(x_s \colon s \geq 0)$. Suppose $\tilde{D} \subseteq C_b(S)$ and $L \colon \tilde{D} \to C_b(S)$ is an operator. A probability measure P on (Ω_S, \mathscr{M}) solves the (L, \tilde{D}) -martingale problem, starting at x, iff
 - (i) P(x(0) = x) = 1;
 - (ii) $f(x(t)) \int_0^t Lf(x(s)) ds$ is an \mathcal{M}_t -martingale for any $f \in \tilde{D}$.

The (L, \tilde{D}) martingale problem is *well posed* iff there is a unique solution for each $x \in S$. In the case when $S = \mathbb{R}^n$ we will write Ω_n for Ω_S .

3. Representation of the v**-process.** Let L be the v-part of \tilde{G} [see (1.9)],

$$\begin{split} L &= \frac{1}{4} \big((v_1 \vee 0) + v_2^2 + 1 \big)^2 \bigg\{ 4 (v_1 \vee 0) \frac{\partial^2}{\partial v_1^2} + \frac{\partial^2}{\partial v_2^2} \\ &+ 2 \bigg[2 - \alpha - \frac{2(1-\alpha)(v_1 \vee 0)}{(v_1 \vee 0) + v_2^2 + 1} \bigg] \frac{\partial}{\partial v_1} - \frac{2(1-\alpha)v_2}{(v_1 \vee 0) + v_2^2 + 1} \frac{\partial}{\partial v_2} \bigg\}. \end{split}$$

Notice it only behaves "badly" near $v_1=0$, and there the $[4(1-\alpha)(v_1\vee 0)/(v_1\vee 0)+v_2^2+1]\partial/\partial v_1$ part is negligible. So we eliminate that part and also the $\partial/\partial v_2$ part via a transformation of drift. The $\frac{1}{4}((v_1\vee 0)+v_2^2+1)^2$ can be eliminated via time change and we are left with a nice operator. We start there and reverse this procedure to get a representation of the process governed by L. Set

$$(3.2) L_{\varepsilon} = \frac{2\varepsilon}{\left(\left(v_{1} \vee 0\right) + v_{2}^{2} + 1\right)^{2}} L,$$

$$(3.3) \qquad \qquad \overline{L}_{\varepsilon} = \frac{\varepsilon}{2} \left\{ 4(v_1 \vee 0) \frac{\partial^2}{\partial v_1^2} + \frac{\partial^2}{\partial v_2^2} + 2(2 - \alpha) \frac{\partial}{\partial v_1} \right\}.$$

Since $L=[((v_1\vee 0)+v_2^2+1)^2/2\varepsilon]L_\varepsilon$, we see the ε should be irrelevant in the representation of the L-process. Of course it is in the sense that the representation will be independent of ε . However, in Section 10, ε plays a crucial role in obtaining bounds on the principal eigenvalue of L on H_{δ} .

By the results of Ikeda and Watanabe (1981), Example 8.3, pages 223–225, for each $v \in \mathbb{R}^2_+$ there is a (pathwise) unique strong solution $\overline{V}_{\varepsilon}(t) = (\overline{V}_{\varepsilon}^{(1)}(t), \overline{V}_{\varepsilon}^{(2)}(t))$ to

(3.4)
$$dV(t) = \overline{\sigma}_{\varepsilon}(V(t)) dB(t) + \overline{b}_{\varepsilon}(V(t)) dt,$$
$$V(0) = v,$$

where $B(\cdot)$ is a Brownian motion on some filtered probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}, P)$,

(3.5)
$$\overline{\sigma}_{\varepsilon}(y) = \begin{pmatrix} \left[4\varepsilon(y_1 \vee 0)\right]^{1/2} & 0 \\ 0 & \varepsilon^{1/2} \end{pmatrix},$$

$$\overline{b}_{\varepsilon}(y) = \begin{pmatrix} \varepsilon(2-\alpha) \\ 0 \end{pmatrix},$$

for $y\in\mathbb{R}^2$. Moreover, $\overline{V}_{\varepsilon}^{(1)}(t)\geq 0$ a.s. and so the law induced by $\overline{V}_{\varepsilon}(\cdot)$ on (Ω_2,\mathscr{M}) furnishes the unique solution to the $(\overline{L}_{\varepsilon},C_0^2(\mathbb{R}^2))$ -martingale problem starting at $v\in\mathbb{R}^2_+$, and the law is supported on $C([0,\infty),\mathbb{R}^2_+)$. Here $C_0^2(\mathbb{R}^2)$ is the set of C^2 functions of compact support on \mathbb{R}^2 .

Define

$$(3.6) \qquad \begin{aligned} \overline{a}_{\varepsilon}(y) &= \overline{\sigma}_{\varepsilon}(y)\overline{\sigma}_{\varepsilon}^{*}(y), \\ \widetilde{b}_{\varepsilon}(y) &= \varepsilon \left(2 - \alpha - \frac{2(1 - \alpha)y_{1}}{y_{1} + y_{2}^{2} + 1}, - \frac{(1 - \alpha)y_{2}}{y_{1} + y_{2}^{2} + 1}\right)^{*}, \\ \overline{c}_{\varepsilon}(y) &= \begin{cases} \overline{a}_{\varepsilon}^{-1}(y)(\widetilde{b}_{\varepsilon}(y) - \overline{b}_{\varepsilon}(y)), & y_{1} > 0, \\ 0, & y_{1} \leq 0, \end{cases} \end{aligned}$$

for $y \in \mathbb{R}^2$. Then writing $\langle \ , \ \rangle$ for the usual Euclidean inner product, we have

(3.7)
$$\sup_{y_1>0} \left\langle \, \bar{a}_{\varepsilon} \bar{c}_{\varepsilon}(y), \bar{c}_{\varepsilon}(y) \right\rangle \leq (1-\alpha)^2 \varepsilon.$$

Let

$$(3.8) \begin{split} \overline{R}_{\varepsilon}^{p}(t) &= \exp \biggl\{ \int_{0}^{t} \langle \ p \overline{c}_{\varepsilon} (\overline{V}_{\varepsilon}(u)), d \overline{V}_{\varepsilon}(u) - \overline{b}_{\varepsilon} (\overline{V}_{\varepsilon}(u)) \, du \biggr\rangle \\ &- \frac{1}{2} \int_{0}^{t} \langle \ p \overline{c}_{\varepsilon}, \overline{a}_{\varepsilon} p \overline{c}_{\varepsilon} \rangle (\overline{V}_{\varepsilon}(u)) \, du \biggr\}. \end{split}$$

Then by the Cameron-Martin-Girsanov transformation, $\overline{R}_{\varepsilon}^{p}$ is an \mathscr{F}_{t} -martingale and for p=1 gives rise to a new process, call it $V_{\varepsilon}(t)$, such that

(3.9) the law of
$$V_{\varepsilon}(t)$$
 on (Ω_2, \mathscr{M}) is the unique solution

to the $(L_{\varepsilon}, C_0^2(\mathbb{R}^2))$ -martingale problem starting at $v \in \mathbb{R}^2_+$, and it is supported

on $(C[0, \infty), \mathbb{R}^2_+)$;

$$(3.10) \begin{array}{c} R_{\varepsilon}^{p} = \exp \biggl\{ \int_{0}^{t} \langle -p\overline{c}_{\varepsilon}(V_{\varepsilon}(u)), dV_{\varepsilon}(u) - \overline{b}_{\varepsilon}(V_{\varepsilon}(u)) \, du \rangle \\ \\ + \frac{1}{2} \int_{0}^{t} \langle p\overline{c}_{\varepsilon}, \overline{a}_{\varepsilon} p\overline{c}_{\varepsilon} \rangle (V_{\varepsilon}(u)) \, du \biggr\} \end{array}$$

is a martingale;

for any
$$A \in \mathcal{F}_t$$
,

$$(3.11) P_{\nu}(V_{\varepsilon} \in A) = E_{\nu} \overline{R}_{\varepsilon}^{1}(t) I(\overline{V}_{\varepsilon} \in A), \quad P_{\nu}(\overline{V}_{\varepsilon} \in A) = E_{\nu} R_{\varepsilon}^{1}(t) I(V_{\varepsilon} \in A);$$

(3.12) for any
$$p > 0$$
, $E_v[\overline{R}_{\varepsilon}^p(t)] = E_v[R_{\varepsilon}^p(t)] = 1$.

LEMMA 3.1. For $p \ge 1$,

$$1 \le E_v \left[\overline{R}_{\varepsilon}^1(t) \right]^p \le \exp \left\{ \frac{1}{2} p(p-1) (1-\alpha)^2 \varepsilon t \right\},$$

$$E_v \left[R_{\varepsilon}^1(t) \right]^p \le 1.$$

PROOF. We have

$$egin{aligned} E_vig[\,\overline{R}^{\,1}_arepsilon(t)ig]^p &= E_vigg[\,\overline{R}^{\,p}_arepsilon(t) \expigg\{rac{p(\,p-1)}{2}\int_0^t \langle\,ar{c}_arepsilon,\,ar{a}_arepsilonar{c}_arepsilon
angleigg(ar{V}_arepsilon(u)ig)\,duigg\}igg], \ E_vigg[\,R^{\,1}_arepsilon(t)igg]^p &= E_vigg[\,R^{\,p}_arepsilon(t) \expigg\{rac{p(1-p)}{2}\int_0^t \langle\,ar{c}_arepsilon,\,ar{a}_arepsilonar{c}_arepsilon
angle\langle V_arepsilon(u)ig)\,duigg\}igg]. \end{aligned}$$

The lemma follows from these using (3.7) and (3.12). \square

Now we make the time change. Define $\tau_s(t,\omega)$ by

$$(3.13) t = \int_0^{\tau_{\varepsilon}(t)} 2\varepsilon \left[V_{\varepsilon}^{(1)}(s) + V_{\varepsilon}^{(2)}(s)^2 + 1 \right]^{-2} ds.$$

Unfortunately, it is possible for $\int_0^\infty 2\varepsilon [V_\varepsilon^{(1)}(s)+V_\varepsilon^{(2)}(s)^2+1]^{-2}\,ds$ to be finite, in which case the process

$$(3.14) V(t) := V_c(\tau_c(t)), t \ge 0,$$

explodes to ∞ in finite time. However, it is easy to see we have the following theorem.

THEOREM 3.2. Up to a possibly finite explosion time \hat{e} , the law of $V(\cdot)$ on (Ω_2, \mathscr{M}) furnishes the unique solution to the $(L, C_0^2(\mathbb{R}^2_+))$ -martingale problem starting at $v \in \mathbb{R}^2_+$. Thus $V(\cdot)$ is independent of $\varepsilon > 0$.

4. Skew product representation of Z_t **.** By the results of Ikeda and Watanabe (1981), pages 223–225, Z_t has a representation as the (pathwise) unique strong solution to the stochastic differential equation (* = transpose)

$$dZ_t^* = egin{pmatrix} \left[4ig(Z_t^{(1)}ee 0ig)
ight]^{1/2} & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} dB_t^* + egin{pmatrix} 2-lpha \ 0 \ 0 \end{pmatrix} dt,$$

$$Z_0 = z \in \mathbb{R}^3_+,$$

with state space \mathbb{R}^3_+ . The important point is that as a consequence of this, the law of Z_t induced on (Ω_2, \mathscr{M}) is the *unique* solution to the $(\overline{G}, C_0^2(\mathbb{R}^3_+))$ -martingale problem starting at $z \in \mathbb{R}^3_+$. Let us emphasize that $C_0^2(\mathbb{R}^3_+)$ is the set of all C^2 functions on a neighborhood of R^3_+ whose support is a compact subset of \mathbb{R}^3_+ .

In the Appendix we show that Z_t never hits 0, but it can hit the half-line $\{(0,0,a): a>0\}$ with positive probability when $1<\alpha<2$. This causes some minor technical difficulties. As we shall see, Z_t hitting $\{(0,0,a): a>0\}$ corresponds to $\Phi(Z_t)$ exploding to ∞ in the v-coordinate.

Theorem 4.1. Up to the first time Z_t hits the half-line $\{(0,0,a): a \geq 0\}$, the law of $\Phi(Z_t)$ on (Ω_3,\mathscr{M}) furnishes the unique solution to the $(\tilde{G},C_0^2((0,\infty)\times\mathbb{R}^2_+))$ -martingale problem up to its explosion time, starting at $\Phi(z)$ [where $Z_0=z\in\mathbb{R}^3_+\setminus\{(0,0,a): a\geq 0\}$].

PROOF. We need only verify that the mapping

$$(4.1) z \in \mathbb{R}^3_+ \setminus \{(0,0,a) : a \ge 0\} \to \Phi(z) = (\rho,v) \in (0,\infty) \times \mathbb{R}^2_+,$$

from (1.8) is a diffeomorphism onto, that the image under v of a neighborhood of $\{(0,0,a): a > 0\}$ corresponds to a neighborhood of the point at ∞ for \mathbb{R}^2_+ , and that \tilde{G} is just \overline{G} expressed in the coordinates (ρ,v) .

For this, let Ψ : $S^2 \setminus (0,0,1)$ be the stereographic projection of the unit sphere S^2 in \mathbb{R}^3 centered at the origin,

$$\Psi(y) = (y_1, y_2)/(1 - y_3), \quad y \in S^2 \setminus (0, 0, 1),$$

and define the stereographic coordinates

$$(4.2) (r,u) = (|y|, \Psi(y/|y|)), y \in \mathbb{R}^3 \setminus \{(0,0,a): a \ge 0\}.$$

Then $y \in \mathbb{R}^3_+ \setminus \{(0,0,a): a \ge 0\} \to (r,u) \in (0,\infty) \times \mathbb{R}^2_+$ is one to one and onto with inverse

$$y = \frac{\left(2ru_1, 2ru_2, r(|u|^2 - 1)\right)}{|u|^2 + 1}, \qquad (r, u) \in (0, \infty) \times \mathbb{R}^2_+.$$

In these coordinates the operator G [from (1.2)] becomes

$$\frac{1}{2} \left\{ \frac{\partial^{2}}{\partial r^{2}} + \frac{3 - \alpha}{r} \frac{\partial}{\partial r} + \frac{\left(|u|^{2} + 1\right)^{2}}{4r^{2}} \left[\frac{\partial^{2}}{\partial u_{1}^{2}} + \frac{\partial^{2}}{\partial u_{2}^{2}} + (1 - \alpha) \frac{u_{2}^{2} - u_{1}^{2} + 1}{u_{1}(|u|^{2} + 1)} \frac{\partial}{\partial u_{1}} \right] - (1 - \alpha) \frac{2u_{2}}{|u|^{2} + 1} \frac{\partial}{\partial u_{2}} \right\}$$

[cf. DeBlassie (1987a), Section 3]. Hence by (1.8), (1.6) and (4.2) we see that

(4.4)
$$(\rho, v) = \Phi(z) = \left(|y|, \frac{y_1^2}{(|y| - y_3)^2}, \frac{y_2}{|y| - y_3} \right)$$
$$= (r, u_1^2, u_2).$$

From this, (1.7) and (4.3) we see that \tilde{G} is just \overline{G} expressed in the coordinates (ρ, v) . Also, it is clear that the map in (4.1) is one to one and onto with inverse

$$\begin{split} \Phi^{-1}(\rho, v) &= z = \left(y_1^2, y_2, y_3\right) \\ &= \left(\frac{4r^2u_1^2}{\left(|u|^2 + 1\right)^2}, \frac{2ru_2}{|u|^2 + 1}, \frac{r(|u|^2 - 1)}{|u|^2 + 1}\right) \\ &= \left(\frac{4\rho^2v_1}{\left(v_1 + v_2^2 + 1\right)^2}, \frac{2\rho v_2}{v_1 + v_2^2 + 1}, \frac{\rho\left(v_1 + v_2^2 - 1\right)}{v_1 + v_2^2 + 1}\right). \end{split}$$

That the map in (4.1) is a diffeomorphism is immediate. \Box

REMARK 4.2. Let N be a neighborhood of $\{(0,0,a): a>0\}$ in \mathbb{R}^3_+ . Then by (4.4) the projection onto the v-plane of $\Phi(N)=\rho(N)\times v(N)$ corresponds to a neighborhood of ∞ in \mathbb{R}^2_+ . Thus Z_t hitting $\{(0,0,a): a>0\}$ corresponds to $v(Z_t)$ exploding to ∞ .

In Section 8 we will need the following result which follows from the preceding proof.

COROLLARY 4.3. Under the change of coordinates $u \in \mathbb{R}^2_+ \to v \in \mathbb{R}^2_+$, where $v = (u_1^2, u_2)$, the v-part L of \tilde{G} [from (3.1)] expressed in the u-coordinates becomes

$$\tilde{L} = \frac{(|u|^2 + 1)^2}{4} \left[\frac{\partial^2}{\partial u_1^2} + \frac{\partial^2}{\partial u_2^2} + (1 - \alpha) \frac{u_2^2 - u_1^2 + 1}{u_1(|u|^2 + 1)} \frac{\partial}{\partial u_1} - (1 - \alpha) \frac{2u_2}{|u|^2 + 1} \frac{\partial}{\partial u_2} \right].$$

Now we can give the skew product representation of Z_t . Let R(t) be a Bessel process with parameter $4 - \alpha$. We take $R(\cdot)$ to be independent of the

process $V(\cdot)$. Thus R(t) is that unique diffusion governed by

$$(4.5) \hspace{1cm} G_R = \frac{1}{2} \left\{ \frac{d^2}{d\rho^2} + \frac{3-\alpha}{\rho} \frac{d}{d\rho} \right\}, \hspace{0.5cm} \rho > 0.$$

Since $4-\alpha>2$, R(t)>0 a.s. if R(0). Thus for each r>0, the law of $R(\cdot)$ on (Ω_1,\mathscr{M}) uniquely solves the $(G_R,C_0^2(0,\infty))$ -martingale problem starting at r. Define

$$A(t) = \frac{1}{2} \int_0^t R(s)^{-2} ds, \quad t \ge 0.$$

Then $t \to A(t)$ is continuous, strictly increasing and independent of $V(\cdot)$. Recall \hat{e} is the explosion time of $V(\cdot)$.

Theorem 4.4. For any $z \in \mathbb{R}^3_+ \setminus \{(0,0,a): a \geq 0\}$, if $(R(0),V(0)) = \Phi(z)$ and $Z_0 = z$, the law of (R(t),V(A(t))) up to time $A^{-1}(\hat{e})$ on (Ω_3,\mathscr{M}) is the same as that of $\Phi(Z_t)$ up to the first time Z_t hits $\{(0,0,a): a > 0\}$.

PROOF. By Theorem 4.1 and Remark 4.2 it suffices to show (R(t), V(A(t))) solves the $(\tilde{G}, C_0^2((0, \infty) \times \mathbb{R}^2_+))$ -martingale problem up to time $A^{-1}(\hat{e})$. It is no loss to restrict attention to $f \in C_0^2((0, \infty) \times \mathbb{R}^2_+)$ of the form $f(\rho, v) = f_1(\rho)\tilde{f}(v)$, where $f_1 \in C_0^2(0, \infty)$ and $\tilde{f} \in C_0^2(\mathbb{R}^2_+)$. By Theorem 3.2 and the independence of $R(\cdot)$ and $V(\cdot)$, the rest of the proof is straightforward. \square

In the sequel, we will abuse the P_z , P_x , etc., notation, letting the subscript denote the starting points of the processes inside the P.

Next we determine the image of $J := (\{0\} \times W_{\theta}^c) \setminus \{(0,0,0): a \geq 0\}$ under the mapping $z \to (\rho,v)$ in (1.8). Observe the image of $\{y \in J\}$ in the stereographic coordinates (r,u) in (4.2) is $(0,\infty) \times \{0\} \times (\mathbb{R} \setminus (-\delta,\delta))$, where

(4.6)
$$\delta = \delta(\theta) = \frac{\sin \theta}{1 + \cos \theta}.$$

Thus by (1.6), (4.2) and (4.4) we have $z \in J \Leftrightarrow y \in J \Leftrightarrow (r, u) \in (0, \infty) \times \{0\} \times (\mathbb{R} \setminus (-\delta, \delta)) \Leftrightarrow (\rho, v) \in (0, \infty) \times \{0\} \times (\mathbb{R} \setminus (-\delta, \delta))$. Consequently, the first time τ_{θ} that Z_t hits $\{0\} \times W_{\theta}^c$ is the same as the first time $v(Z_t)$ explodes or exits the set

$$H(\delta) = H_\delta = \mathbb{R}^2_+ \backslash \big[\{0\} \times \big(\mathbb{R} \setminus (-\delta, \delta) \big) \big].$$

Thus if we define

$$\eta_{\delta} = \inf\{t > 0 \colon V(t) \notin H_{\delta}\}$$

then for $z \in W_{\theta}$ and $(r,v) = \Phi(z)$ we have by Theorem 4.4 and independence

$$\begin{split} P_z(\tau_\theta > t) &= P_z(v(Z_s) \in H_\delta \text{ for all } s \le t) \\ &= P_{(r,v)}(V(A(s)) \in H_\delta \text{ for all } s \le t) \\ &= P_{(r,v)}(\eta_\delta \wedge \hat{e} > A(t)) \\ &= \int_0^\infty P_v(\eta_\delta \wedge \hat{e} > s) \ d_s P_r(A(t) \le s). \end{split}$$

REMARK 4.5. When $\alpha=1$, Y_t is a three-dimensional Brownian motion [see (1.2)] and hence Y_t has a skew product representation $(R(t),\Theta(A(t)))$, where R(t) is a Bessel process with parameter $4-\alpha=3$, $\Theta(t)$ is an independent Brownian motion on S^2 governed by the Laplace-Beltrami operator L_{S^2} on S^2 and $A(t)=\frac{1}{2}\int_0^t R(s)^{-2}\,ds$. Thus Θ and V represent the same process in different coordinates and $\hat{e}=\infty$ a.s. Hence for $y=(\sqrt{z_1},z_2,z_3)$ and $(r,u)=(|y|,\Psi(y/|y|))$, where Ψ is the stereographic projection, we have

$$egin{aligned} P_uig(\Theta(s) &\in \Psiig(\{0\} imes W_{ heta}^cig) \setminus \{(0,0,a)\colon a \geq 0\}ig) ext{ for all } s \in [0,t]ig) \ &= P_vig(\eta_\delta > tig). \end{aligned}$$

Since L_{S^2} is self-adjoint with respect to Haar measure on S^2 , once we know $\lim_{t\to\infty}t^{-1}\log P_v(\eta_\delta>t)=-\lambda_\delta<0$ then (obviously)

$$\lim_{t\to\infty} t^{-1} \log P_u\big(\Theta(s) \in \Psi\big(\big(\{0\} \times W^c_\theta\big) \setminus \big\{(0,0,a) \colon a \ge 0\big\}\big) \text{ for all } s \in [0,t]\big)$$

$$= -\lambda_{\delta} < 0$$

and it will follow that

$$P_{u}(\Theta(s) \in \Psi((\{0\} \times W_{\theta}^{c}) \setminus \{(0,0,a) : a \ge 0\}) \text{ for all } s \in [0,t])$$

$$\sim C(u) \exp(-\lambda_{\delta} t) \text{ as } t \to \infty$$

[cf. Port and Stone (1978), pages 121–127]. In particular, we have

(4.8)
$$P_{\nu}(\eta_{\delta} > t) \sim C(\nu) \exp(-\lambda_{\delta} t) \text{ as } t \to \infty, \alpha = 1.$$

5. Preliminaries to the study of $\eta_{\delta} \wedge \hat{e}$. For any locally compact Hausdorff space D with countable base define

$$C(D) = \{ f : D \to \mathbb{R} | f \text{ is continuous} \},$$

 $B(D) = \{ f \colon D \to \mathbb{R} | f \text{ is bounded and measurable with respect}$ to the topological Borel σ -algebra $\}$,

$$C_b(D) = C(D) \cap B(D)$$
,

$$C_0(D) = C(D) \cap \{f : \text{supp } f \text{ is a compact subset of } D\}.$$

For any $D \subseteq \mathbb{R}^2_+$ let $\eta_D = \inf\{t > 0 \colon V(t) \notin D\}$. The process $V(\cdot)$ induces the following semigroups:

$$(5.1) T_t f(v) = E_v[f(V(t))I(\hat{e} > t)], f \in B(\mathbb{R}^2_+),$$

$$(5.2) T_t^D f(v) = E_v [f(V(t)) I(\eta_D \wedge \hat{e} > t)], f \in B(\mathbb{R}^2_+).$$

We describe various properties of these semigroups via the following sequence of lemmas. In the sequel we will say "D is an open subset of \mathbb{R}^2_+ " and we will mean that \mathbb{R}^2_+ is endowed with the relative topology of \mathbb{R}^2 and D is an open set in the relative topology. We will write $\partial_+ D$ for the boundary of D in \mathbb{R}^2_+ and ∂D for the boundary of D in \mathbb{R}^2_+ .

It is desirable to have the semigroup T_t^D strong Feller for open subsets D of \mathbb{R}^2_+ , but the proof seems difficult. However, we have a property very close to

this and just as useful, at least for our purposes.

Lemma 5.1. For any open subset D of \mathbb{R}^2_+ , $\sigma > 0$ and $f \in B(\mathbb{R}^2_+)$ the function

$$v \in D \to \int_0^\infty e^{-\sigma t} T_t^D f(v) dt$$

is continuous.

PROOF. We have for $\eta_D^{\varepsilon} = \inf\{t > 0 : V_{\varepsilon}(t) \notin D\}$,

$$\int_{0}^{\infty} e^{-\sigma t} T_{t}^{D} f(v) dt = \int_{0}^{\infty} e^{-\sigma t} E_{v} f(V(t)) I(\eta_{D} \wedge \hat{e} > t) dt
= \int_{0}^{\infty} e^{-\sigma t} E_{v} \Big[f(V_{1}(\tau_{1}(t))) I(\eta_{D}^{1} > \tau_{1}(t)) \Big] dt \quad [\text{by (3.13)}]
= \int_{0}^{\infty} E_{v} \exp(-\sigma \tau_{1}^{-1}(s)) f(V_{1}(s)) I(\eta_{D}^{1} > s)
\times \frac{2 ds}{\Big[V_{1}^{(1)}(s) + \Big[V_{1}^{(2)}(s) \Big]^{2} + 1 \Big]^{2}}.$$

Now the components of the \overline{V}_1 process are the square of a Bessel process with parameter $2-\alpha$ and an independent one-dimensional Brownian motion. Hence it has an explicit density and enjoys various nice properties. Since V_1 is obtained from \overline{V}_1 from a transformation of drift, it enjoys many of the same properties. Thus it is not too hard to prove the ds-integrand in (5.3) is continuous as a function of $v \in D$. A little more argument shows that the integral itself is continuous as a function of $v \in D$. For the sake of brevity we leave the details to the reader. \square

LEMMA 5.2. For any $\delta > 0$.

$$P_v\Big(\sup_{s < t} |V(s) - v| \ge \delta\Big) \to 0 \quad as \ t \to 0$$

uniformly on compact subsets of \mathbb{R}^2_+ .

PROOF. We have for $\gamma > 0$,

$$\begin{split} P_v\bigg(\sup_{s \le t} |V(s) - v| \ge \delta\bigg) &= P_v\bigg(\sup_{s \le t} |V_1(\tau_1(s)) - v| \ge \delta\bigg) \\ &\le P_v\bigg(\sup_{s \le \gamma} |V_1(s) - v| \ge \delta\bigg) + P_v\big(\tau_1(t) \ge \gamma\big)\bigg). \end{split}$$

The first term on the left goes to 0 uniformly on compacta as $\gamma \to 0$ by the Cameron–Martin–Girsanov formula (3.11) and that the corresponding result holds for the nice process $\overline{V}_1(\cdot)$. Once we know the second term is upper semicontinuous in v for given t and γ , then for fixed γ small and sufficiently

small t, by compactness $P_v(\tau_1(t) \geq \gamma)$ is uniformly small for v in a given compact set. But upper semicontinuity is easy: For t and $\gamma > 0$, let $f_n \in C_b(\mathbb{R})$ satisfy $f_n(x) \downarrow I_{[0,t]}(x)$ as $n \to \infty$ with $f_n \leq 1$. The function

$$\omega \in \Omega_2 o \int_0^{\gamma} rac{2 ds}{\left[x_1(s) + x_2(s)^2 + 1\right]^2}$$

is continuous and bounded, hence

$$\omega \in \Omega_2 \to f_n \left(\int_0^{\gamma} \frac{2 \, ds}{\left[x_1(s) + x_2(s)^2 + 1 \right]^2} \right)$$

is also continuous and bounded. Since the law c_{-} $V_{1}(\cdot)$ on (Ω_{2},\mathscr{M}) is the unique solution to the $(L_{1},C_{0}^{2}(\mathbb{R}^{2}))$ -martingale problem starting at $v\in\mathbb{R}_{+}^{2}$ [see (3.9)], $v\in\mathbb{R}_{+}^{2}\to E_{v}f_{n}(\tau_{1}^{-1}(\gamma))$ is continuous and consequently $P_{v}(\tau_{1}(t)\geq\gamma)=P_{v}(t\geq\tau_{1}^{-1}(t))$ is a decreasing limit of continuous functions. \square

Lemma 5.3. Let D be an open subset of \mathbb{R}^2_+ . Then

$$egin{aligned} C_0^2(\mathbb{R}^2) &\cap \{ & \sup f \cap \mathbb{R}^2_+ \subseteq D \} \ &\subseteq \mathscr{D}(D) \coloneqq \{ f \colon & \lim_{t \to 0} t^{-1} \big[T_t^D f - f \big] = Lf \, uniformly \, on \, D \}. \end{aligned}$$

PROOF. Let $f \in C_0^2(\mathbb{R}^2) \cap \{\text{supp } f \cap \mathbb{R}_+^2 \subseteq D\}$ and set $K = \mathbb{R}_+^2 \cap \text{supp } f$. Choose a compact subset $\tilde{K} \subseteq D$ such that $K \subseteq \tilde{K}$, $\tilde{K} \cap \partial_+ D = \emptyset$ and $d(\mathbb{R}_+^2 \setminus \tilde{K}, K) > 0$. Set

(5.4)
$$\xi = d(\tilde{K}, \partial_{+}D) \wedge d(\mathbb{R}^{2}_{+} \backslash \tilde{K}, K) \qquad (>0).$$

For $\tilde{K}^c = \mathbb{R}_+^2 \setminus K$ and $K^c = \mathbb{R}_+^2 \setminus K$, by the strong Markov property applied at time $\eta_{\tilde{K}^c}$,

$$\sup_{v \in \tilde{K}^c} P_v(V(s) \in K) \leq \sup_{v \in \tilde{K}^c} P_v(\eta_{K^c} \leq s)$$

$$\leq \sup_{y \in \partial_+ \tilde{K}} P_y(\eta_{K^c} \leq s)$$

$$\leq \sup_{y \in \partial_+ \tilde{K}} P_y\left(\sup_{u \leq s} |V(u) - y| \geq \xi\right).$$

Since f = 0 on $\partial_+ D \cup \{\infty\}$ we get

$$\begin{split} T_t^D f(v) &= E_v f(V(t)) I(\eta_D \wedge \hat{e} \ge t) \quad \big[\text{by (5.2)} \big] \\ &= E_v f(V(t \wedge \eta_D \wedge \hat{e})) \end{split}$$

and because the law of $V(\cdot)$ on (Ω_2,\mathscr{M}) solves the $(L,C_0^2(\mathbb{R}^2_+))$ -martingale

problem up to time \hat{e} (see Theorem 3.2) we have

$$\sup_{v \in D} \left| t^{-1} \left[T_t^D f(v) - f(v) \right] - L f(v) \right|$$

$$= \sup_{v \in D} \left| t^{-1} E_v \int_0^{t \wedge \eta_D \wedge \hat{e}} L f(V(s)) \, ds - L f(v) \right|$$

$$\leq \sup_{v \in \bar{K}} (") \vee \sup_{v \in D \setminus \bar{K}} (")$$

$$= (1) \vee (2), \quad \text{say}.$$

Now for $\gamma > 0$,

$$\begin{split} (1) & \leq t^{-1} \int_{0}^{t} \sup_{v \in \vec{K}} E_{v} I(\eta_{D} \wedge \hat{e} > s) | Lf(V(s)) - Lf(v) | \, ds \\ & + t^{-1} \int_{0}^{t} \sup_{v \in \vec{K}} P_{v}(s \geq \eta_{D} \wedge \hat{e}) | Lf(v) | \, ds \\ & \leq t^{-1} \int_{0}^{t} \sup_{v \in \vec{K}} E_{v} I(\eta_{D} \wedge \hat{e} > s) | Lf(V(s)) - Lf(v) | I(|V(s) - v| < \gamma) \, \, ds \\ & + t^{-1} \int_{0}^{t} 2 [\sup |Lf|] \sup_{v \in \vec{K}} P_{v}(|V(s) - v| \geq \gamma) \, \, ds \\ & + t^{-1} \int_{0}^{t} \sup_{v \in \vec{K}} P_{v}(s \geq \eta_{D} \wedge \hat{e}) \sup |Lf| \, ds. \end{split}$$

The first term on the right can be made arbitrarily small for γ sufficiently small independent of t (by uniform continuity of Lf). In the third term, by (5.4)

$$P_v(s \ge \eta_D \wedge \hat{e}) \le P_v \Big(\sup_{u \le s} |V(u) - v| \ge \xi \Big).$$

Hence by Lemma 5.2, for $\gamma > 0$ given (small), we can make the second and third terms arbitrarily small too. Thus we can choose $\gamma > 0$ small and then t > 0 small so that (1) is arbitrarily small.

As for (2), since Lf = 0 off supp $f = K \subseteq \tilde{K}$,

$$\begin{split} (2) & \leq t^{-1} \int_0^t \sup_{v \in D \setminus \tilde{K}} E_v \big[\, I(\, \eta_D \wedge \hat{e} > s) | Lf(\, V(s)) | \big] \, ds \\ & \leq \big[\sup |Lf| \big] t^{-1} \int_0^t \sup_{v \in D \setminus \tilde{K}} P_v \big(\, \eta_D \wedge \hat{e} > s, \, V(s) \in K \big) \, ds. \end{split}$$

By (5.5) and Lemma 5.2 the ds-integrand can be made arbitrarily small for t sufficiently small. Thus $f \in \mathcal{D}(D)$ as desired. \square

LEMMA 5.4.

$$egin{aligned} C_b^2ig(\mathbb{R}_+^2ig) &\cap ig\{f \equiv constant\ outside\ some\ compact\ subset\ of\ \mathbb{R}_+^2ig\} \ &\subseteq \Big\{f \in C_big(\mathbb{R}_+^2ig)\colon \lim_{t o 0} \sup_v ig[T_t|f - f(v)|ig](v) = 0\Big\}. \end{aligned}$$

Proof. Let

$$f \in C_b^2(\mathbb{R}^2_+) \cap \{ f \equiv \text{constant outside compact subset of } \mathbb{R}^2_+ \}.$$

By replacing f by $f - f(\infty)$ it is no loss to assume $f \in C_0^2(\mathbb{R}^2_+)$. Let K = supp f, a compact subset of \mathbb{R}^2_+ . Then

(5.6)
$$\sup_{v} \left[T_{t} |f - f(v)| \right] (v) \leq \sup_{v \in K^{c}} {v \choose v \in K} (v)$$
$$= (1) \lor (2), \quad \text{say},$$

and since f = 0 on K^c ,

$$(1) = \sup_{v \in K^c} |T_t| f|(v) - |f|(v)|.$$

By Lemma 5.3 (with $D = \mathbb{R}^2_+$) the latter goes to 0 as $t \to 0$. Moreover, for $B_{\gamma}(v) = \{w: |w-v| < \gamma\}$,

$$\begin{split} &(2) = \sup_{K} \left\{ T_t \Big[|f(\,\cdot\,) - f(\,v\,)| I_{B_{\gamma}(v)}(0) \Big](\,v\,) \, + \, T_t \Big[|f(\,\cdot\,) - f(\,v\,)| I_{B_{\gamma}(v)^c}(\,\cdot\,) \Big](\,v\,) \right\} \\ &\leq ('') \, + \, \left(2\sup|f| \right) \sup_{K} P_v \Big(V(t) \, \in B_{\gamma}(\,v\,)^c \Big) \\ &\leq ('') \, + \, \left(2\sup|f| \right) \sup_{K} P_v \Big(\sup_{s \, < \, t} |V(\,s\,) \, - \, v| \, \geq \, \gamma \Big). \end{split}$$

The first term on the right can be made arbitrarily small if $\gamma > 0$ (independent of t) is small enough and then given γ , the second term goes to 0 as $t \to 0$ by Lemma 5.2. \square

6. Lower bounds. To get lower bounds on $P_v(\eta_\delta \wedge \hat{e} > t)$ as $t \to \infty$, we use the results of Donsker and Varadhan (1976). Let \mathscr{M} be the set of probability measures on \mathbb{R}^2_+ and endow it with the topology of weak convergence.

For any $\mu \in \mathscr{M}$ with supp μ being a compact subset of \mathbb{R}^2_+ , define the Donsker-Varadhan *I*-function

(6.1)
$$I(\mu) = -\inf_{f \in \mathscr{E}^+} \int \frac{Lf}{f} d\mu,$$

where

$$\mathscr{C} = \{ f \in C^2(\mathbb{R}^2_+) : f \equiv \text{constant outside a compact subset of } \mathbb{R}^2_+ \}$$

and

$$\mathscr{C}^+ = \{ f \in \mathscr{C} : \inf f > 0 \}.$$

Our lower bound is given in the following theorem.

THEOREM 6.1. Let W be a compact subset of \mathbb{R}^2_+ . Then

$$\liminf_{t\to\infty}t^{-1}\log\inf_{v\in W}P_v(\eta_\delta\wedge\hat{e}>t)\geq \sup_{U\in\mathscr{X}(\delta)}\sup_{\mu(\overline{U})=1}\left[-I(\mu)\right],$$

where

 $\mathscr{K}(\delta) = \{U \subseteq \mathbb{R}^2_+ \colon U \text{ is bounded and open in } \mathbb{R}^2_+ \text{ with } C^{\infty} \text{ boundary in } \mathbb{R}^2$ and $U \subseteq \overline{U} \subseteq H_{\delta}\}$

PROOF. First observe that in the right-hand side $\sup_{\mu(\overline{U})=1}$ may be replaced by $\sup_{\sup \mu \subseteq U}$. Let $U \in \mathcal{K}(\delta)$, $v \in W$. It is loss to assume $W \subseteq U$. We have

$$(6.2) P_{\nu}(\eta_{\delta} \wedge \hat{e} > t) \geq P_{\nu}(\eta_{U} > t),$$

where $\eta_U=\inf\{t>0\colon V(t)\not\in U\}$. Thus we are only concerned with the behavior of $V(\cdot)$ on a neighborhood of \overline{U} . Hence the complicating factor of the possibility of $V(\cdot)$ exploding does not really enter into the scheme of things. So outside of \overline{U} we modify the coefficients of the differential operator L associated to $V(\cdot)$ in a convenient manner, and then apply the Donsker-Varadhan theory. Now the details.

Modify the coefficients of L outside a neighborhood of \overline{U} in such a way that a new operator \tilde{L} is obtained with the following properties. First, \tilde{L} is associated to a process $\tilde{V}(t)$ with state space \mathbb{R}^2_+ if $\tilde{V}(0) \in \mathbb{R}^2_+$. Second, the law of $\tilde{V}(\cdot)$ on $C([0,\infty),\mathbb{R}^2_+)$ is the unique nonexploding solution to the $(\tilde{L},C_0^2(\mathbb{R}^2_+))$ -martingale problem and $V(\cdot)=\tilde{V}(\cdot)$ in law up to the first exit time from U. We will write $\tilde{\eta}_U=\inf\{t>0\colon \tilde{V}(t)\not\in U\}$. Of course, $\eta_U=\tilde{\eta}_U$ in law, so our problem is reduced to obtaining lower bounds on $\inf_{v\in W}P_v(\tilde{\eta}_U>t)$ [see (6.2)].

Define a random measure $\tilde{L}_t \in \mathscr{M}$ by

$$\tilde{L}_t(A) = t^{-1} \int_0^t I_A(\tilde{V}(s)) ds,$$

where A is a Borel set in \mathbb{R}^2_+ . Thus $\tilde{L}_t(A)$ is just the proportion of time up to t spent by \tilde{V} in A. Observe \tilde{L}_t induces a probability measure $\tilde{Q}_{v,t}$ on \mathscr{M} defined by

$$\tilde{Q}_{v,t}(\mathscr{O}) = P_v(\tilde{L}_t(\cdot) \in \mathscr{O}),$$

where \mathcal{O} is a Borel set in \mathcal{M} . The semigroup

$$\tilde{T}_t \colon B(\mathbb{R}^2_+) \to B(\mathbb{R}^2_+)$$

defined by \tilde{V} [i.e., $\tilde{T}_t f(v) = E_v f(\tilde{V}(t)), f \in B(\mathbb{R}^2_+)$] is actually Feller:

(6.3)
$$\tilde{T}_t: C_b(\mathbb{R}^2_+) \to C_b(\mathbb{R}^2_+).$$

This is because the law of $\tilde{V}(\cdot)$ on $C([0,\infty),\mathbb{R}^2_+)$ is the unique nonexploding solution to the $(\tilde{L},C_0^2(\mathbb{R}^2_+))$ -martingale problem [cf. Stroock and Varadhan (1979), proof of Corollary 6.3.3, pages 151 and 152].

Let \tilde{L} be the strong infinitesimal generator, with domain $\tilde{\mathscr{D}} \subseteq C_b(\mathbb{R}^2_+)$, of the semigroup $\{\tilde{T}_t\}$. We write $\tilde{\mathscr{D}}^+ = \{f \in \tilde{\mathscr{D}} : \text{inf } f > 0\}$. For each $\mu \in \mathscr{M}$ with

 $\operatorname{supp} \mu \subseteq U$, define

$$I(\mu) = -\inf_{f \in \tilde{\mathscr{D}}^+} \int \frac{\tilde{L}f}{f} d\mu.$$

Apparently there is a conflict of notation with (6.1). However, since $\tilde{V}(\cdot)$ gives rise to the unique solution of the $(\tilde{L}, C_0^2(\mathbb{R}^2_+))$ -martingale problem, by Pinsky's theorem [Pinsky (1985), Theorem 1.4 and Section 4, pages 344, 361 and 362] for $\mu \in \mathscr{M}$ with supp $\mu \subseteq U$ we have

$$\inf_{f \in \tilde{\mathscr{D}}^+} \int \frac{\tilde{L}f}{f} \, d\mu = \inf_{f \in \mathscr{C}^+} \int \frac{\tilde{L}f}{f} \, d\mu.$$

Since supp $\mu \subseteq U$, the latter is $\inf_{f \in \mathscr{C}^+} \int (Lf/f) d\mu$ and there is no ambiguity. The following hypotheses are required in the Donsker-Varadhan theory. Define

(6.4)
$$\tilde{T}_t^U f(v) = E_v \Big[f(\tilde{V}(t)) I(\tilde{\eta}_U > t) \Big], \qquad f \in B(\mathbb{R}^2_+),$$

(6.5)
$$\tilde{R}_U^{\lambda}(v,A) = \int_0^{\infty} e^{-\lambda t} (\tilde{T}_t^U I_A)(v) dt, \quad \lambda > 0, A \subseteq \mathbb{R}_+^2.$$

Let m be Lebesgue measure on \mathbb{R}^2 . Let

$$\begin{split} B_0 &= \bigg\{ f \in C_b\big(\mathbb{R}^2_+\big) \colon \lim_{t \to 0} \sup_v |\tilde{T}_t f - f| = 0 \bigg\}, \\ (6.6) &\qquad B_{00} &= \bigg\{ f \in C_b\big(\mathbb{R}^2_+\big) \colon \lim_{t \to 0} \sup_v \big[\tilde{T}_t |f - f(v)|\big](v) = 0 \bigg\}. \end{split}$$

An argument similar to that in the proof of Lemma 5.4 shows

 $\left\{f\in C_b^2(\mathbb{R}^2_+)\colon f\equiv \text{constant outside some compact subset of }\mathbb{R}^2_+\right\}\subseteq B_{00}.$

Hypothesis H_1 . For each $v \in U$, $\tilde{R}_U^{\lambda}(v, dy) \ll m(dy)$.

Hypothesis H_2 . Let $\alpha \in \mathscr{M}$ with $I(\alpha) < \infty$. Then every neighborhood of α in \mathscr{M} contains a neighborhood of the form

(6.7)
$$\left\{\mu \in \mathscr{M}: \left| \int f_j[d\mu - d\alpha] \right| < \varepsilon, 1 \le j \le k \right\},$$

where $f_1, \ldots, f_k \in B_{00}$.

HYPOTHESIS H_3 . Let $\mu \in \mathscr{M}$ with $I(\mu) < \infty$ and $\operatorname{supp} \mu \subseteq U$. Then for any $f \in B(\mathbb{R}^2_+)$ there is a sequence $\{f_n\} \subseteq B_0$ such that $\sup |f_n| \leq \sup |f|$ and $f_n \to f$ a.e. (μ) .

* Hypothesis H_4 . If $v \in U$ and $E \subseteq U$ with m(E) > 0, then $\tilde{R}_U^{\lambda}(v, E) > 0$.

Hypothesis ${\rm H}_5.$ For each $E\subseteq U$ and $\lambda>0,\ v\in U\to \tilde{R}_U^\lambda(v,E)$ is continuous.

Now we can state the lower bound of Donsker and Varadhan (1976), Theorem 8.1, page 446.

Theorem 6.2. Let $\mu \in \mathscr{M}$ satisfy $I(\mu) < \infty$ and supp $\mu \subseteq U$. Suppose N is a neighborhood of μ in \mathscr{M} and $\mathscr{M}(U)$ is the set of probability measures in \mathscr{M} with support contained in U. Under Hypotheses H_1-H_5 ,

$$\liminf_{t \to \infty} t^{-1} \log \tilde{Q}_{v,t}(N \cap \mathscr{M}(U)) \geq -I(\mu),$$

uniformly for v in compact subsets of U.

REMARK. For H_1 Donsker and Varadhan (1976) actually require the existence of a reference measure β on \mathbb{R}^2_+ such that $P_v(V(t) \in dy) = p(t,v,y)\beta(dy)$. However, examination of the proof shows that this is needed only to assert $\tilde{R}_U^{\lambda}(v,dy) \ll \beta(dy)$ —our Hypothesis H_1 . Also, their Hypotheses H_3 and H_4 are only required for the measure μ in the statement of their Theorem 8.1.

THEOREM 6.3. In the present context, Hypotheses H₁-H₅ hold.

PROOF. H_1 : Let E be a Borel set in U with m(E) = 0. Then for each t > 0,

$$\begin{split} &\int_0^t e^{-\lambda s} \, P_v \big(\tilde{\eta}_U > s, \tilde{V}(s) \in E \big) \, ds \\ &= \int_0^t e^{-\lambda s} \, P_v \big(\eta_U > s, V(s) \in E \big) \, ds \\ &= \int_0^t e^{-\lambda s} \, P_v \big(\eta_U^1 > \tau_1(s), V_1(\tau_1(s)) \in E \big) \, ds \quad [\text{by (3.14)}] \\ &= E_v \int_0^{\tau_1(t)} e^{-\lambda \tau_1^{-1}(s)} \, I \big(\eta_U^1 > s, V_1(s) \in E \big) \frac{2 \, ds}{\big[V_1^{(1)}(s) + V_1^{(2)}(s)^2 + 1 \big]^2} \, . \end{split}$$

But

$$egin{aligned} P_v(V_1(s) \in E) &= E_v \overline{R}_1^1(s) Iig(\overline{V}_1(s) \in Eig) & ext{[by (3.11)]} \ &\leq e^{cs} ig[P_vig(\overline{V}_1(s) \in Eig)ig]^{1/2} & ext{(by Lemma 3.1)} \ &= 0, \end{aligned}$$

since $\overline{V}_1(\cdot)$ has a density with respect to m (cf. the proof of Lemma 5.1). Thus

$$ilde{R}_U^{\lambda}(v,E) = \lim_{t o\infty} \int_0^t \!\! e^{-\lambda s} \, P_vig(ilde{\eta}_U > s, ilde{V}(s) \in Eig) \, ds = 0$$

as desired.

 H_2 : Let $\alpha \in \mathscr{M}$ and consider any neighborhood N of α . It is no loss to assume that for some $\varepsilon > 0$ and $h_1, \ldots, h_p \in C^2_b(\mathbb{R}^2)$,

$$N = \left\{ \mu \in \mathscr{M} : \left| \int h_j d(\alpha - u) \right| < \varepsilon, 1 \le j \le p \right\}.$$

Choose M > 0 such that

$$\alpha \left(\mathbb{R}^2_+ \backslash B_{M-1}(0) \right) < \varepsilon \bigg[16 \max_{1 \le j \le p} \sup |h_j| \bigg]^{-1}.$$

Let $f\in C_b^2(\mathbb{R})$ satisfy $0\leq f\leq 1,\ f\equiv 1$ on $[M,\infty)$ and $f\equiv 0$ on $(-\infty,M-1]$. Set $\tilde{h}_{p+1}(x):=f(|x|)$, and observe it is in B_{00} . For $K:=\mathbb{R}_+^2\cap B_M(0)$ extend $h_j|_K,\ 1\leq j\leq p,$ by $\tilde{h}_j\in C_0^2(\mathbb{R}_+^2)$ with $|\tilde{h}_j|\leq h_j|$ pointwise. Thus $\tilde{h}_j\in B_{00},\ 1\leq j\leq p.$ All that remains is to show for $\gamma=(\frac{1}{2}\wedge[16\max_{1\leq j\leq p}\sup|h_j|]^{-1})\varepsilon,$

$$\left\{\mu \in \mathscr{M}: \left| \int \tilde{h}_j d(\alpha - \mu) \right| < \gamma, 1 \le j \le p + 1 \right\} \subseteq N.$$

Indeed, if μ satisfies $|\int \tilde{h}_j d(\alpha - \mu)| < \gamma$, $1 \le j \le p + 1$, then for $K^c = \mathbb{R}^2_+ \setminus K$,

$$\begin{split} \mu(K^c) &\leq \int \tilde{h}_{p+1} \, d\mu \leq \gamma + \int \tilde{h}_{p+1} \, d\alpha \\ &\leq \gamma + \alpha \Big(\mathbb{R}^2_+ \backslash B_{M-1}(0) \Big) \\ &\leq \varepsilon \Big[8 \max_{1 \leq j \leq p} \sup |h_j| \Big]^{-1}. \end{split}$$

Thus for $1 \le j \le p$ we have

$$\begin{split} \left| \int h_{j} d(\alpha - \mu) \right| &\leq \left| \int \tilde{h}_{j} d(\alpha - \mu) \right| + \left| \int \left(h_{j} - \tilde{h}_{j} \right) d(\alpha - \mu) \right| \\ &\leq \gamma + \left| \int_{K^{c}} \left(h_{j} - \tilde{h}_{j} \right) d(\alpha - \mu) \right| \\ &\leq \frac{\varepsilon}{2} + \left[2 \max_{1 \leq j \leq p} \sup |h_{j}| \right] \left[a(K^{c}) + \mu(K^{c}) \right] \\ &\leq \frac{\varepsilon}{2} + \left[2 \max_{1 \leq j \leq p} \sup |h_{j}| \right] \left[\varepsilon \left[16 \max_{1 \leq j \leq p} \sup |h_{j}| \right]^{-1} \\ &+ \varepsilon \left[8 \max_{1 \leq j \leq p} \sup |h_{j}| \right]^{-1} \right] \end{split}$$

 $\mathrm{H_{3}:\ Since}\ C_{0}^{2}(U)$ is dense in $L^{1}(U,d\mu)$, we can choose $f_{n}\in C_{0}^{2}(U)$ with $f_{n}\to f|_{U}$ in $L^{1}(U,d\mu)$ and $\sup_{U}|f_{n}|\leq \sup_{U}|f|$. Extract a subsequence $f_{n_{k}}\to f|_{U}$ a.e. (μ) . Since $f_{n_{k}}\in C_{0}^{2}(U)\subseteq C_{0}^{2}(\mathbb{R}^{2}_{+})\subseteq B_{00}\subseteq B_{0}$, $\mathrm{H_{3}}$ follows. $\mathrm{H_{4}:\ Let\ }E\subseteq U$ with m(E)>0 and $v\in U$. First assume $v=(v_{1},v_{2})$ satisfies

 H_4 : Let $E\subseteq U$ with m(E)>0 and $v\in U$. First assume $v=(v_1,v_2)$ satisfies $v_1>0$. Then we can choose a bounded open (in \mathbb{R}^2) set $D\subseteq \overline{D}\subseteq (0,\infty)\times \mathbb{R}$ with $v\in D$ and $m(D\cap E)>0$. Since the diffusion \tilde{V} is very well behaved on \overline{D} ,

$$\begin{split} 0 &< \int_0^\infty \!\! e^{-\lambda t} \, P_v \big(\tilde{V}(s) \in \overline{D} \text{ for all } 0 \leq s \leq t \text{ and } \tilde{V}(t) \in E \cap D \big) \, dt \\ &\leq \int_0^\infty \!\! e^{-\lambda t} \, P_v \big(\tilde{\eta}_U > t, \tilde{V}(t) \in E \big) \, dt \\ &= \tilde{R}_U^\lambda(v,E) \quad \text{as desired.} \end{split}$$

An easy stopping time argument handles the case when $v_1 = 0$.

 H_5 : This follows immediately from Lemma 5.1 and the fact that $T_t^U = \tilde{T}_t^U$. This completes the proof of Theorem 6.3. \square

Now we complete the proof of Theorem 6.1. We have

$$\begin{split} \liminf_{t \to \infty} t^{-1} \log \inf_{v \in W} P_v(\eta_U > t) &= \liminf_{t \to \infty} t^{-1} \log \inf_{v \in W} P_v(\tilde{\eta}_U > t) \\ &= \liminf_{t \to \infty} t^{-1} \log \inf_{v \in W} \tilde{Q}_{v,t}(\mathscr{M}(U)) \\ &\geq \sup_{\text{supp } \mu \subseteq U} \left[-I(\mu) \right] \end{split}$$

by Theorems 6.2 and 6.3. Since $U \in \mathcal{K}(\delta)$ was arbitrary, by (6.2) the desired conclusion holds. \square

7. Upper bounds. For $\partial_+ H_\delta = \{0\} \times \{\mathbb{R} \setminus (-\delta, \delta)\}$ (as before) define

$$\begin{split} \mathscr{I}(\delta) &= \bigg\{ f \in C^2(H_\delta) | \text{ for some constants } c_1 \text{ and } c_2, \lim_{v \to \partial_+ H(\delta)} f(v) = c_1, \\ &\lim_{v \to \infty} f(v) = c_2, \, -\infty < \inf L \, \log |f|, \sup \frac{Lf}{f} < \infty \bigg\}. \end{split}$$

Write $\mathscr{G}(\delta)^+$ for those elements f of $\mathscr{G}(\delta)$ with inf f > 0. Our upper bound is given in the following theorem.

THEOREM 7.1.

$$\begin{split} & \limsup_{t \to \infty} t^{-1} \log \sup_{H(\delta)} P_v \big(\, \eta_\delta \wedge \hat{e} > t \big) \\ & \leq \inf \bigg\langle \sup_{H(\delta)} \frac{Lf}{f} \colon f \in \mathscr{G} \big(\delta \big)^+, \, \sup_{H(\delta)} \frac{Lf}{f} < 1 \bigg\rangle. \end{split}$$

For the proof we need the following results.

Let $H(\delta)^{**}=H_\delta\cup\{\pm\infty\}$ be a two-point metrizable compactification of H_δ obtained by identifying ∂_+H_δ to $-\infty$ and then performing the usual one-point compactification procedure on the result by adjoining $+\infty$. Thus a neighborhood of $+\infty$ is of the form $(H_\delta\cup\{-\infty\})\setminus K$ for some compact subset K of $H_\delta\cup\{-\infty\}$ and a neighborhood of $-\infty$ is of the form $\mathbb{R}^2_+\cap U$ for some open set $U\subseteq\mathbb{R}^2$ with $\{0\}\times\{\mathbb{R}\setminus(-\delta,\delta)\}\subseteq U$.

Define the semigroup T_t^{**} : $B(H_\delta^{**}) \to B(H_\delta^{**})$ by

$$\begin{split} T_t^{**}f(v) &= E_v f\big(V(t \wedge \eta_\delta \wedge \hat{e})\big) \\ (7.1) &= \begin{cases} T_t^{H(\delta)}f(v) + f(-\infty)P_v(\eta_\delta \wedge \hat{e} \leq t, \eta_\delta < \hat{e}) \\ + f(\infty)P_v(\eta_\delta \wedge \hat{e} \leq t, \eta_\delta \geq \hat{e}), & v \in H_\delta, \\ f(-\infty), & v = -\infty, \\ f(\infty), & v = \infty. \end{cases}$$

Let $\mathcal{D}(\delta) = \mathcal{D}_{\delta}$ be the domain of the strong generator \mathcal{L}_{δ} of T_t^{**} . Then for any $f \in \mathcal{D}_{\delta}$,

(7.2)
$$T_t^{**}f - f = \int_0^t T_s^{**} \mathscr{L}_{\delta} f ds = \int_0^t \mathscr{L}_{\delta} T_s^{**} f ds$$

[Dynkin (1965), volume 1, page 23, 1.3.C].

Theorem 7.2 (Maximum principle). Assume $f \in B(H_{\delta}^{**})$

(i)
$$f(t,\cdot) \in \mathscr{D}_{\delta}$$
 for $t \geq 0$,

(ii)
$$\frac{\partial f}{\partial t}(t,\cdot) \in \mathscr{D}_{\delta} \quad \textit{for } t \geq 0,$$

(iii)
$$\frac{\partial}{\partial t} \left[\mathscr{L}_{\delta}(t, \cdot) \right] = \mathscr{L}_{\delta} \left[\frac{\partial f}{\partial t}(t, \cdot) \right].$$

Then

$$E_v f(t, V(t \wedge \eta_{\delta} \wedge \hat{e})) - f(0, v) = E_v \int_0^t \left(\frac{\partial f}{\partial u} + \mathscr{L}_{\delta} f \right) (u, V(u \wedge \eta_{\delta} \wedge \hat{e})) du.$$

PROOF. Write $\xi(t) = V(t \wedge \eta_{\delta} \wedge \hat{e})$. Then

The proof will be complete once we show that the last two terms cancel.

Indeed, in the last term, by (iii) and an interchange of integrals,

$$E_v \int_0^t \int_0^u \frac{\partial}{\partial s} \left[\mathscr{L}_{\delta} f(s,\cdot) \right] (\xi(u)) \ ds \ du = E_v \int_0^t \int_s^t \mathscr{L}_{\delta} \left[\frac{\partial f}{\partial s} (s,\cdot) \right] (\xi(u)) \ du \ ds,$$

precisely the second-to-last term, as desired.

Proof of Theorem 7.1. Write

$$l_{\delta} = \inf \left\{ \sup_{H(\delta)} \frac{Lf}{f} \colon f \in \mathscr{G}(\delta)^+, \sup_{H(\delta)} \frac{Lf}{f} < 1 \right\}.$$

Let $\varepsilon > 0$ and choose $f \in \mathscr{S}(\delta)^+$ with $\sup Lf/f \leq l_{\delta} + \varepsilon$. Consider any $g \in C_0^{\infty}(\mathbb{R}^2) \cap \{\sup g \cap \mathbb{R}^2_+ \subseteq H_{\delta}\}$ with $0 \leq g \leq 1$. Define $w(t,v) := cf(v)e^{(l_{\delta}+\varepsilon)t}$, where $c = [\inf f]^{-1}$. Notice

(7.3)
$$w \in C^{1,2}([0,\infty) \times H_{\delta}) \cap C_b([0,\infty) \times H_{\delta}),$$
$$w(0,v) = cf(v) \ge 1 \ge g(v),$$
$$\left(\frac{\partial}{\partial t} - L\right)w = \left(l_{\delta} + \varepsilon - \frac{Lf}{f}\right)w \ge 0.$$

We are going to use the maximum principle (Theorem 7.2) to show $w \geq T_t^{H(\delta)}g$. Indeed, let T>0 and for $t\in [0,T]$ define $h(t,v)=T_{T-t}^{H(\delta)}g(v)$ if $v\in H_\delta$ and 0 if $v\in \{\pm\infty\}$.

For the rest of the proof we take $v \in H_{\delta}$. Notice $T_t^{H(\delta)}g = T_t^{**}g$ and $T_t^{H(\delta)}Lg = T_t^{**}Lg$ on H_{δ} . Then by Lemma 5.3, Lg and $g \in \mathcal{D}_{\delta}$ and $\mathcal{L}_{\delta}g = Lg$. Moreover, $h(t,\cdot) = T_{T-t}^{**}g(\cdot)$ and $h(t,\cdot) \in \mathcal{D}_{\delta}$ for $t \in [0,T]$. Also,

(7.4)
$$\frac{\partial h}{\partial t}(t,\cdot) = -\frac{\partial}{\partial s} [T_s^{**}g]\Big|_{s=T-t} = -\mathcal{L}_{\delta} T_{T-t}^{**}g$$
$$= -T_{T-t}^{**}Lg \in \mathcal{D}_{\delta},$$

and consequently

$$\begin{split} \mathscr{L}_{\delta} \frac{\partial h}{\partial t}(t, \cdot) &= -\mathscr{L}_{\delta} T_{T-t}^{**} L g \\ &= \frac{\partial}{\partial t} [T_{T-t}^{**} L g] = \frac{\partial}{\partial t} \mathscr{L}_{\delta} T_{T-t}^{**} g \\ &= \frac{\partial}{\partial t} \mathscr{L}_{\delta} h(t, \cdot). \end{split}$$

Thus (i)–(iii) in Theorem 7.2 hold for $h(t, \cdot)$, $t \in [0, T]$, and hence for $t \in [0, T]$ we have

$$E_v h ig(t, V ig(t \wedge \eta_\delta \wedge \hat{e} ig) ig) - h(0,v) = E_v \! \int_0^t \! \left[rac{\partial h}{\partial v} + \mathscr{L}_\delta h \, \right] \! ig(u \, , V ig(u \wedge \eta_\delta \wedge \hat{e} ig) ig) \, du \, .$$

By (7.4) $\partial h/\partial t = -\mathscr{L}_{\delta} h$ so this becomes

$$E_v h(t, V(t \wedge \eta_\delta \wedge \hat{e})) - h(0, v) = 0, \qquad t \in [0, T].$$

But $h(t, \pm \infty) = 0$ by definition, hence we get

(7.5)
$$E_v[h(t,V(t))I(\eta_\delta \wedge \hat{e} > t)] - h(0,v) = 0, \quad t \in [0,T].$$

Since the law of $V(\cdot)$ on (Ω_2, \mathscr{M}) solves the $(L, C_0^2(\mathbb{R}^2_+))$ -martingale problem up to time \hat{e} (Theorem 3.2), by optional stopping we have for any bounded open subset K of H_{δ} ,

$$E_{v}w(T - t \wedge \eta_{K}, V(t \wedge \eta_{K})) - w(T, v)$$

$$= E_{v} \int_{0}^{t \wedge \eta_{K}} \left(Lw - \frac{\partial w}{\partial s} \right) (T - s, V(s)) ds$$

$$\leq 0 \quad \text{by (7.3)}$$

[cf. Stroock and Varadhan (1979), Theorem 4.2.1, page 86]. Letting $K \uparrow H_{\delta}$ gives

$$E_v w(T - t \wedge \eta_\delta \wedge \hat{e}, V(t \wedge \eta_\delta \wedge \hat{e})) - w(T, v) \leq 0, \qquad t \in [0, T].$$

Subtraction of (7.5) yields

$$\begin{split} E_v w \big(T - t \wedge \eta_\delta \wedge \hat{e}, V(t \wedge \eta_\delta \wedge \hat{e}) \big) - E_v \big[\big\{ T_{T-t}^{H(\delta)} g(V(t)) \big\} I(\eta_\delta \wedge \hat{e} > t) \big] \\ \leq w(T, v) - T_T^{H(\delta)} g(v), \end{split}$$

where $t \in [0, T]$. Since $w \ge 0$,

$$E_v\big[\,w(\,T-t,V(t))\,-\,T_{T-t}^{H(\delta)}g(\,V(t))\big]\,I({}_{\bullet}\eta_\delta\wedge\hat e>t)\leq w(\,T,v)\,-\,T_T^{H(\delta)}g(\,v)\,,$$
 and upon letting $t\uparrow T$,

$$E_{v}[w(0,V(T))-g(V(T))]I(\eta_{\delta}\wedge\hat{e}\geq T)\leq w(T,v)-T_{T}^{H(\delta)}g(v),$$

where we have used Lemma 5.3 to get $T_t^{H(\delta)}g \to g$ as $t \to 0$, uniformly on H_δ . Now the left-hand side is nonnegative by (7.3), hence we end up with $T_T^{H(\delta)}g(v) \leq w(T,v)$. Let $g \uparrow 1$ pointwise on H_δ and obtain $P_v(\eta_\delta \land \hat{e} > T) \leq w(T,v)$. Finally, we get

$$\limsup_{t\to\infty} t^{-1} \log \sup_{H(\delta)} P_v(\, \eta_\delta \, \wedge \, \hat{e} > t \,) \, \leq \, \limsup_{t\to\infty} t^{-1} \log \! \left[\frac{\sup f}{\inf f} e^{(l_\delta + \varepsilon)t} \right] = l_\delta + \varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, the proof of the theorem is complete. \square

8. Equality of the bounds. First we work on the upper bound. Let $H(\delta)^{**}$ be as in Section 7. For any

$$f \in G(\delta)^+ \cap \left\{ \sup_{H(\delta)} rac{Lf}{f} < 1
ight\}$$

define

$$\frac{Lf}{f}(\pm \infty) := \limsup_{v \to +\infty} \frac{Lf}{f}(v).$$

For any metric space S define $\mathcal{M}(S)$ to be the space of probability measures on S; endow $\mathcal{M}(S)$ with the topology of weak convergence.

LEMMA 8.1. For any compact set $C \subseteq H(\delta)^{**}$,

$$\inf \left\{ \sup_{C} \frac{Lf}{f} \colon f \in \mathscr{G}(\delta)^{+}, \sup_{H(\delta)} \frac{Lf}{f} < 1 \right\}$$

$$= \sup_{\mu \in \mathscr{M}(C)} \inf \left\{ \int \frac{Lf}{f} \, d\mu \colon f \in \mathscr{G}(\delta)^{+}, \sup_{H(\delta)} \frac{Lf}{f} < 1 \right\};$$
(b)
$$\inf_{f \in \mathscr{G}(\delta)^{+}} \sup_{C} \frac{Lf}{f} = \sup_{\mu \in \mathscr{M}(C)} \inf_{f \in \mathscr{G}(\delta)^{+}} \int \frac{Lf}{f} \, d\mu.$$

PROOF. The proofs of (a) and (b) are quite similar, so we only furnish that for (a). Let

$$\mathscr{S} = \left\{ \log f \colon f \in \mathscr{G}(\delta)^+ \text{ and } \sup_{H(\delta)} \frac{Lf}{f} < 1 \right\}$$

and observe that for $h \in \mathscr{S}$ with

$$u = e^h \in \mathscr{G}(\delta)^+ \cap \left\{ \sup_{H(\delta)} \frac{Lf}{f} < 1 \right\}$$

we have

(8.1)
$$\frac{Lu}{u} = Lh + \frac{1}{2} \langle a \nabla h, \nabla h \rangle = \frac{Le^h}{e^h},$$

where

$$a(v) = \frac{1}{2}(v_1 + v_2^2 + 1)^2 \begin{pmatrix} 4v_1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Thus

$$\mathscr{S}=\left\{h\in C^2(H_\delta)\,\cap\, C_b(H_\delta^{*\,*})|\,-\infty<\inf_{H(\delta)}Lh\,,\,\sup_{H(\delta)}rac{Le^h}{e^h}<1
ight\}.$$

For $h \in \mathscr{S}$ define \mathscr{B}_h to be the collection of sets of the form

$$N_h(\{arepsilon_x\}) := \left\langle g \in \mathscr{S} : \left| rac{Le^g}{e^g}(x) - rac{Le^h}{e^h}(x)
ight| < arepsilon_x \, orall \, x \in H_\delta^{**} \, ext{and}$$
 $\sup \left| rac{Le^g}{e^g}
ight| \le \sup \left| rac{Le^h}{e^h}
ight|
ight
angle,$

where $\{\varepsilon_x\} \in (0, \infty)^{H(\delta)^{**}}$. Then $\{\mathscr{B}_h : h \in \mathscr{S}\}$ induces a topology on \mathscr{S} in which \mathscr{B}_h is a neighborhood base at h for each $h \in \mathscr{S}$. Moreover, if $h_n \to h$ in this topology then

$$\frac{Le^{h_n}}{e^{h_n}}(x) \to \frac{Le^h}{e^h}(x)$$

for each $x \in H_{\delta}^{**}$ and $\sup_{n,x} |Le^{h_n}/e^{h_n}(x)| < \infty$. Thus, for fixed $\mu \in \mathscr{M}(C)$, the function

$$h \in \mathscr{S} \to \int \frac{Le^h}{e^h} \, d\mu$$

is lower semicontinuous (by Fatou's lemma) and convex [by (8.1)]. Since Le^h/e^h is upper semicontinuous on H_{δ}^{***} for each $h \in \mathscr{S}$, $\mu \in \mathscr{M}(C) \to \int (Le^h/e^h) d\mu$ is upper semicontinuous and linear. Now $\mathscr{M}(C)$ is convex and compact and \mathscr{S} is convex, so by Sion's minimax theorem [Sion (1958), Corollary 3.3, page 174] we have

$$RHS(a) = \sup_{\mu \in \mathscr{M}(C)} \inf_{h \in \mathscr{S}} \int \frac{Le^{h}}{e^{h}} d\mu$$

$$= \inf_{h \in \mathscr{S}_{\mu} \in \mathscr{M}(C)} \int \frac{Le^{h}}{e^{h}} d\mu$$

$$= \inf_{h \in \mathscr{S}_{C}} \sup_{C} \frac{Le^{h}}{e^{h}}$$

$$= \inf \left\{ \sup_{C} \frac{Lf}{f} : f \in \mathscr{I}(\delta)^{+}, \sup_{H(\delta)} \frac{Lf}{f} < 1 \right\}$$

(by definition of \mathscr{S}). \square

LEMMA 8.2. For $\mathcal{M}_{**} = \mathcal{M}(H(\delta)^{**})$, we have

$$\begin{split} -\lambda_{\delta} &:= \sup_{\mu \in \mathscr{M}_{**}} \inf_{f \in \mathscr{I}(\delta)^{+}} \int \frac{Lf}{f} \, d\mu \\ &= \sup_{\mu \in \mathscr{M}_{**}} \inf \biggl\{ \int \frac{Lf}{f} \, d\mu \colon f \in \mathscr{I}(\delta)^{+}, \, \sup_{H(\delta)} \frac{Lf}{f} < 1 \biggr\}. \end{split}$$

PROOF. Clearly \leq holds. For the opposite inequality, let $-\lambda_{\delta}$ be the left-hand side. By Lemma 8.1(b), $-\lambda_{\delta} \leq 0$ and moreover, given $0 < \varepsilon < 1$ we can choose $f \in \mathscr{G}(\delta)^+$ such that

$$\sup_{H(\delta)^{**}} \frac{Lf}{f} \le -\lambda_{\delta} + \varepsilon < 1.$$

Thus

$$f \in \mathscr{G}(\delta)^+ \cap \left\{ \sup_{H(\delta)} \frac{Lf}{f} < 1 \right\}$$

and

$$\sup_{\mu \in \mathscr{N}_{**}} \inf \left\{ \int \frac{Lf}{f} \, d\mu \colon f \in \mathscr{S}(\delta)^+, \, \sup_{H(\delta)} \frac{Lf}{f} < 1 \right\} \leq -\lambda_{\delta} + \varepsilon.$$

Letting $\varepsilon \to 0$ gives the desired inequality. \square

Lemma 8.3. For λ_{δ} as in Lemma 8.2, there is $\mu_0 \in \mathscr{M}_{**}$ such that $\mu_0\{\pm\infty\}=0$ and

$$-\lambda_{\delta}=\inf\biggl\{\int\frac{Lf}{f}\,d\mu_{0}\colon f\in\mathscr{S}(\delta)^{+},\,\sup_{H(\delta)}\frac{Lf}{f}<1\biggr\}.$$

PROOF. By upper semicontinuity, the first supremum in Lemma 8.2 is taken on, say at μ_0 , and hence

$$\begin{split} -\lambda_{\delta} &= \inf_{f \in \mathscr{I}(\delta)^{+}} \int \frac{Lf}{f} \, d\mu_{0} = \sup_{\mu \in \mathscr{M}_{**}} \inf \biggl\{ \int \frac{Lf}{f} \, d\mu \colon f \in \mathscr{I}(\delta)^{+}, \, \sup_{H(\delta)} \frac{Lf}{f} < 1 \biggr\} \\ &\geq \inf \biggl\{ \int \frac{Lf}{f} \, d\mu_{0} \colon f \in \mathscr{I}(\delta)^{+}, \, \sup_{H(\delta)} \frac{Lf}{f} < 1 \biggr\} \\ &\geq \inf_{f \in \mathscr{I}(\delta)^{+}} \int \frac{Lf}{f} \, d\mu_{0} = -\lambda_{\delta}. \end{split}$$

Thus

$$(8.2) -\lambda_{\delta} = \inf \left\{ \int \frac{Lf}{f} d\mu_{0} \colon f \in \mathscr{S}(\delta)^{+}, \sup_{H(\delta)} \frac{Lf}{f} < 1 \right\}.$$

It remains to show $\mu_0\{\pm\infty\}=0$.

First assume $\mu_0\{-\infty\} > 0$. Consider the ordinary differential equation

$$g''(x) + \frac{2-\alpha}{2x}g'(x) + \frac{M^2}{2x}g(x) = 0,$$

where M > 1. A solution is given by [see Gradshteyn and Ryzhik (1980), page 971, 8.491.3]

$$g(x) = Cx^{\alpha/4}J_{-\alpha/2}(\sqrt{2}Mx^{1/2}),$$

where J_{ν} is Bessel's function and C is chosen so that

$$g(x) = \sum_{k=0}^{\infty} \frac{(-1)^k M^{2k} x^k}{2^k k! \Gamma(k+1-\alpha/2)}.$$

Let $g_M(v) = g(v_1)$ for $v \in \mathbb{R}^2_+$. Then for v_1 small, $g_M(v) > 0$, and hence there

is a neighborhood N of $\partial_+ H_\delta = \{0\} \times \{\mathbb{R} \setminus (-\delta, \delta)\}$ in \mathbb{R}^2_+ such that $\inf_N g_M > 0$ and for $v \in N$,

$$\begin{split} Lg_{M}(v) &= L\left[g(v_{1})\right] \\ &= \frac{\left(v_{1} + v_{2}^{2} + 1\right)^{2}}{4} \left[4v_{1}g''(v_{1}) + 2\left(2 - \alpha - \frac{2(1 - \alpha)v_{1}}{v_{1} + v_{2}^{2} + 1}\right)g'(v_{1})\right] \\ &= \frac{\left(v_{1} + v_{2}^{2} + 1\right)^{2}}{4} \left[4v_{1}\left(-\frac{2 - \alpha}{2v_{1}}g'(v_{1}) - \frac{M^{2}}{2v_{1}}g(v_{1})\right) \right. \\ &\left. + 2\left(2 - \alpha - \frac{2(1 - \alpha)v_{1}}{v_{1} + v_{2}^{2} + 1}\right)g'(v_{1})\right] \\ &= \frac{\left(v_{1} + v_{2}^{2} + 1\right)^{2}}{4} \left\{-2M^{2}g(v_{1}) - \frac{4(1 - \alpha)v_{1}}{\left(v_{1} + v_{2}^{2} + 1\right)}g'(v_{1})\right\} \\ &\leq \frac{\left(v_{1} + v_{2}^{2} + 1\right)^{2}}{4} \left\{-2M^{2}g(v_{1}) + g(v_{1})\right\} \\ &\leq \frac{1}{4}\left[1 - 2M^{2}\right]g_{M}(v). \end{split}$$

By changing g outside a small neighborhood of 0, we can assume $g_M \in \mathscr{S}(\delta)^+$. Set $\mu_1(B) = \mu_0(B \cap \{-\infty\})/\mu_0\{-\infty\}$, an element of $\mathscr{M}(\{-\infty\})$. Then by (8.2)

$$-\lambda_\delta \leq \mu_0 \{-\infty\} \inf \left\{ \int \frac{Lf}{f} \, d\, \mu_1 \colon f \in \mathscr{G}(\delta)^+, \, \sup_{H(\delta)} \frac{Lf}{f} < 1 \right\} \, + \, 1.$$

Since $\mu_1 \in \mathscr{M}(\{-\infty\})$ we see the infimum on the right only depends on the behavior of Lf/f, $f \in \mathscr{G}(\delta)^+$, in a neighborhood of $\{-\infty\}$. Thus by (8.3)

$$\begin{split} -\lambda_{\delta} & \leq \mu_0 \{-\infty\} \int \frac{Lg_M}{g_M} \, d\mu_1 \, + \, 1 \\ \\ & \leq \mu_0 \{-\infty\} \, \frac{1}{4} \big[1 - 2M^2 \big] \, + \, 1, \end{split}$$

and upon letting $M\to\infty$ we get $-\lambda_\delta=-\infty$, a contradiction. Hence $\mu_0\{-\infty\}=0$.

Next assume $\mu_0\{+\infty\}>0$. If for each M>1 we can find $f_M\in\mathscr{S}(\delta)^+$ and K(M)>0 such that $Lf_M\leq -K(M)f_M$ on a neighborhood of $+\infty$ and $K(M)\to\infty$, then a simple modification of the argument above yields $-\lambda_\delta=-\infty$, a contradiction. Thus $\mu_0\{+\infty\}=0$. So let us find f_M .

By Corollary 4.3, L is \tilde{L} expressed in the coordinates $(v_1,v_2)=(u_1^2,u_2),$ $u\in\mathbb{R}^2_+$. Thus it suffices to find $f_M\in C^2(H_\delta)$ such that f_M has limits at $\pm\infty$, $\tilde{L}f_M\leq -K(M)f_M$ on a neighborhood of $+\infty$, inf $f_M>0$, and $-\infty<\inf \tilde{L}(\log f_M)$, sup $\tilde{L}f_M/f_M<\infty$.

Expressing \tilde{L} in polar coordinates (ρ, θ) , where $|u|^2 = \rho^2$ and $\tan \theta = u_2/u_1$, we see its radial part is

$$D_
ho = rac{\left(
ho^2+1
ight)^2}{4} \Bigg[rac{\partial^2}{\partial
ho^2} + rac{1}{
ho}igg(1+rac{(1-lpha)(1-
ho^2)}{
ho^2+1}igg)rac{\partial}{\partial
ho}\,\Bigg].$$

Then it suffices to find $\varepsilon>0$ and $g_M\in C_b^2((\varepsilon^{-1},\infty))$ such that $\inf_{(\varepsilon^{-1},\infty)}g_M>0$, $\lim_{\rho\to\infty}g_M(\rho)=C>0$ exists and $D_\rho g_M\leq -K(M)g_M$ on $(\varepsilon^{-1},\infty)$, where $K(M)\to\infty$ as $M\to\infty$.

Changing variables $s = \rho^{-1}$, we need to find $\varepsilon > 0$ and $g_M \in C_b^2(0, \varepsilon)$ with $\inf_{(0,\varepsilon)} g_M > 0$, $\lim_{s \to 0} g_M(s) = c$ and $\overline{D}_s g_M \le -K(M)g_M$ on $(0,\varepsilon)$, where

$$\overline{D}_s = rac{{{{\left({1 + {s^2}}
ight)}^2}}}{4}{\left[{rac{{{d^2}}}{{d{s^2}}} + rac{1}{s}{{\left({2 - lpha - rac{{2{s^2}(1 - lpha)}}{{1 + {s^2}}}}
ight)} rac{d}{ds}}
ight]}.$$

The differential equation

$$f'' + \frac{2-\alpha}{s}f' + M^2f = 0$$

has

$$f(s) = Cs^{(\alpha-1)/2}J_{(1-\alpha)/2}(Ms)$$

as a solution, where J_{ν} is Bessel's function [Gradshteyn and Ryzhik (1980), page 971, 8.491.6] and C is chosen so that

$$f(s) = \sum_{k=0}^{\infty} \frac{(-1)^k (Ms)^{2k}}{4^k k! \Gamma((3-\alpha)/2+k)}.$$

Set $g_M=f$ and see that for $\varepsilon>0$ sufficiently small, $g_M>0$ on $[0,\varepsilon),\ g_M\in C^2_b(0,\varepsilon)$ and on $(0,\varepsilon)$

$$\begin{split} &\frac{1}{4}(s^2+1)^2 \left[g_M'' + \frac{1}{s} \left(2 - \alpha - \frac{2s^2(1-\alpha)}{1+s^2} \right) g_M' \right] \\ &= \frac{1}{4}(s^2+1)^2 \left[-\left(\frac{2-\alpha}{s} g_M' + M^2 g_M \right) + \frac{1}{s} \left(2 - \alpha - \frac{2s^2(1-\alpha)}{1+s^2} \right) g_M' \right] \\ &= \frac{1}{4}(s^2+1)^2 \left[-\frac{2s^2(1-\alpha)}{1+s^2} g_M' - M^2 g_M \right] \\ &\leq \frac{1}{4}(s^2+1)^2 \left[g_M - M^2 g_M \right] \\ &\leq -\frac{1}{4}(M^2-1) g_M \\ &= -\frac{1}{4}K(M) g_M, \end{split}$$

where $K(M) \to \infty$ as $M \to \infty$, as desired. \square

Now let us work on the lower bound.

Lemma 8.4. Let $U \in \mathcal{K}(\delta)$ (as in Theorem 6.1). Then

$$\sup_{\mu(\overline{U})=1} \left[-I(\mu) \right] = \sup_{\mu(\overline{U})=1} \inf_{f \in \mathscr{C}^+ \cap \{\sup Lf/f < 1\}} \int \frac{Lf}{f} \, d\mu.$$

Proof. By (6.1)

$$\sup_{\mu(\overline{U})=1} \left[-I(\mu) \right] = \sup_{\mu(\overline{U})=1} \inf_{f \in \mathscr{C}^+} \int \frac{Lf}{f} d\mu.$$

For any $\mu \in \mathscr{M}$ with $\mu(\overline{U}) = 1$, we see that $\inf_{f \in \mathscr{E}^+ \cap \{\sup Lf/f < 1\}} \int (\underline{Lf}/f) \, d\mu$ is unaffected by the behavior of \underline{Lf}/f outside a neighborhood of \overline{U} ; consequently

$$\sup_{\mu(\overline{U})=1}\inf_{f\in \mathscr{C}^+\cap \{\sup Lf/f<1\}}\int \frac{Lf}{f}\,d\mu = \sup_{\mu(\overline{U})=1}\inf_{f\in \mathscr{C}^+\cap \{\sup Uf/f<1\}}\int \frac{Lf}{f}\,d\mu.$$

Thus the lemma comes down to showing

$$\sup_{\mu(\overline{U})=1}\inf_{f\in\mathscr{C}^+}\int\frac{Lf}{f}\,d\mu=\sup_{\mu(\overline{U})=1}\inf_{f\in\mathscr{C}^+\cap\{\sup_{\overline{U}}Lf/f<1\}}\int\frac{Lf}{f}\,d\mu.$$

Just as in Lemma 8.1 we can use Sion's minimax theorem to interchange inf and sup on both sides [since $\{\mu \colon \mu(\overline{U}) = 1\}$ is compact]. Then it suffices to show

$$\inf_{f \in \mathscr{C}^+} \sup_{\overline{U}} \frac{Lf}{f} = \inf_{f \in \mathscr{C}^+ \cap \{\sup_{\overline{U}} Lf/f < 1\}} \sup_{\overline{U}} \frac{Lf}{f}.$$

But this is easy (cf. Lemma 8.2). \square

We can now prove equality of the bounds.

THEOREM 8.5. The upper and lower bounds are equal:

$$\sup_{U\in\mathscr{X}(\delta)}\sup_{\mu(\overline{U})=1}\left[-I(\mu)\right]=\inf\left\{\sup_{H(\delta)}\frac{Lf}{f}\colon f\in\mathscr{S}(\delta)\right.^{+},\,\sup_{H(\delta)}\frac{Lf}{f}<1\right\}.$$

Here $\mathcal{K}(\delta)$ is as in Theorem 6.1.

PROOF. It suffices to show \geq (because \leq follows immediately from Theorems 7.1 and 6.1). Since $H(\delta)^{**}$ is compact, by Lemmas 8.1(a) and 8.2

$$\inf \left\{ \sup_{H(\delta)} \frac{Lf}{f} \colon f \in \mathscr{I}(\delta)^{+}, \sup_{H(\delta)} \frac{Lf}{f} < 1 \right\}$$

$$\leq \inf \left\{ \sup_{H(\delta)^{**}} \frac{Lf}{f} \colon f \in \mathscr{I}(\delta)^{+}, \sup_{H(\delta)} \frac{Lf}{f} < 1 \right\}$$

$$= \sup_{\mu \in \mathscr{M}_{**}} \inf \left\{ \int \frac{Lf}{f} d\mu \colon f \in \mathscr{I}(\delta)^{+}, \sup_{H(\delta)} \frac{Lf}{f} < 1 \right\} \quad \text{[by Lemma 8.1(a)]}$$

$$= -\lambda_{\delta} \text{ (by Lemma 8.2)}.$$

Hence by Lemmas 8.3 and 8.4, it suffices to show

(8.4)
$$\sup_{U \in \mathscr{K}(\delta)} \sup_{\mu(\overline{U})=1} \inf_{f \in \mathscr{C}^{+} \cap \{\sup Lf/f < 1\}} \int \frac{Lf}{f} d\mu \\ \geq \inf \left\{ \int \frac{Lf}{f} d\mu_{0} \colon f \in \mathscr{G}(\delta)^{+}, \sup_{H(\delta)} \frac{Lf}{f} < 1 \right\},$$

where μ_0 is from Lemma 8.3 ($\mu_0\{\pm\infty\}=0$). So consider any $U\in \mathscr{K}(\delta)$ with $\mu_0(\overline{U})>0$ and let

$$f \in C^+ \cap \left\{ \sup \frac{Lf}{f} < 1 \right\}.$$

Since $\overline{U} \subseteq H_{\delta}$ in \mathbb{R}_2^+ it is no loss to assume $f \equiv \text{constant on } \partial_+ H_{\delta}$ and hence

$$f \in \mathscr{G}(\delta)^+ \cap \left\{ \sup_{H(\delta)} \frac{Lf}{f} < 1 \right\}.$$

For $\mu_U(B) := \mu_0(\overline{U})^{-1}\mu_0(B \cap \overline{U})$ and $\overline{U}^c = \mathbb{R}^2_+ \setminus \overline{U}$ we have

$$\begin{split} \mathrm{RHS}(8.4) & \leq \int \frac{Lf}{f} \, d\mu_0 = \mu_0(\overline{U}) \int_{\overline{U}} \frac{Lf}{f} \, d\mu_U + \int_{\overline{U}^c} \frac{Lf}{f} \, d\mu_0 \\ & \leq \mu_0(\overline{U}) \int_{\overline{U}} \frac{Lf}{f} \, d\mu_U + \mu_0(\overline{U}^c) \end{split}$$

and taking the infimum over all such f yields

$$\begin{split} \mathrm{RHS}(8.4) & \leq \mu_0(\overline{U}) \inf_{f \in \,\mathscr{C}^+ \cap \{\sup Lf/f < 1\}} \int \frac{Lf}{f} \, d\mu_U + \mu_0 \big(\mathbb{R}_+^2 \backslash \, \overline{U} \big) \\ & \leq \mu_0(\overline{U}) \sup_{\mu(\overline{U}) = 1} \inf_{f \in \,\mathscr{C}^+ \cap \{\sup Lf/f < 1\}} \int \frac{Lf}{f} \, d\mu + \mu_0 \big(\mathbb{R}_+^2 \backslash \, \overline{U} \big) \\ & \leq \mu_0(\overline{U}) \mathrm{LHS}(8.4) + \mu_0 \big(\mathbb{R}_+^2 \backslash \, \overline{U} \big) \\ & \to \mathrm{LHS}(8.4) \quad \text{as } \overline{U} \uparrow H_\delta, \, U \in \mathscr{K}(\delta), \end{split}$$

since $\mu = \{\pm \infty\} = 0$. \square

COROLLARY 8.6. The quantities in Theorem 8.5 have common value $-\lambda_{\delta}$.

This follows immediately from the proof of Theorem 8.5. \Box

As an immediate consequence of Theorems 6.1, 7.1 and 8.5 we have the following result.

Theorem 8.7. For any compact set $W \subseteq \mathbb{R}^2_+$,

$$\lim_{t\to\infty}t^{-1}\log\inf_{v\in W}P_v(\eta_\delta\wedge\hat{e}>t)=\lim_{t\to\infty}t^{-1}\log\sup_{v\in H(\delta)}\dot{P_v}(\eta_\delta\wedge\hat{e}>t)=-\lambda_\delta.$$

9. Analysis of the ρ -part of Z_t . In this section we study the quantity

$$P_r(A(t) \le s) = P_r \left(\int_0^t \frac{du}{2R(u)^2} \le s \right)$$

appearing in (4.7). Our main result is the following theorem.

THEOREM 9.1. For any l > 0 and r > 0,

$$\int_{0}^{\infty} e^{-lu} d_{u} P_{r} \left(\int_{0}^{t} \frac{ds}{2R(s)^{2}} \leq u \right) \sim B(l) (r^{-2}t)^{-a(l)/2}$$

as $t \to \infty$, where

$$a(l) = \left\{ -(2-\alpha) + \left[(2-\alpha)^2 + 4l \right]^{1/2} \right\} / 2,$$
 $B(l) = 2^{-a(l)/2} \Gamma(\left[a(l) + 4 - \alpha \right] / 2) / \Gamma(a(l) + (4-\alpha)/2).$

PROOF. Consider the diffusion W_t on \mathbb{R}^3 whose generator in stereographic coordinates (4.2) is

$$\frac{1}{2}\left\{\frac{\partial^2}{\partial r^2}+\frac{3-\alpha}{r}\frac{\partial}{\partial r}+\frac{\left(|u|^2+1\right)^2}{4r^2}\left(\frac{\partial^2}{\partial u_1^2}+\frac{\partial^2}{\partial u_2^2}\right)\right\}.$$

Then W_t has a skew product representation $(R(t), \theta(A(t)))$, where R(t) is the Bessel process with parameter $4-\alpha$ and generator G_R [see (4.5)], $\theta(t)$ is Brownian motion on S^2 with generator

$$L_{S^2} = rac{ig(|u|^2+1ig)^2}{4} igg[rac{\partial^2}{\partial u_1^2} + rac{\partial^2}{\partial u_2^2}igg]$$

[see (4.5)], and

$$A(t) = \frac{1}{2} \int_0^t R(s)^{-2} ds.$$

Thus the theorem comes down to proving for each $x \in \mathbb{R}^3 \setminus \{0\}$,

$$(9.1) \qquad \int_0^\infty e^{-lu} \, d_u P_x(A(t) \le u) \sim B(l) \big[|x|^{-2} t \big]^{-a(l)/2} \quad \text{as } t \to \infty.$$

Let $\varphi(x)$ be the magnitude of the angle between $x \in \mathbb{R}^3 \setminus \{0\}$ and (0,0,1) and for $\theta \in (0,\pi)$ let $C_\theta = \{x \in \mathbb{R}^3 \setminus \{0\}: 0 \le \varphi(x) < \theta\}$ be the open right circular cone of angle θ and vertex $0 \in \mathbb{R}^3$. Define

$$\begin{split} \tau_{\theta}^W &= \inf\{t > 0 \colon W_t \notin C_{\theta}\}, \\ \eta_{\theta}^W &= \inf\{t > 0 \colon \theta_t \notin C_{\theta} \cap S^2\}. \end{split}$$

Then

$$(9.2) P_x(\tau_{\theta}^W > t) = P_x(\theta(A(s)) \in C_{\theta} \cap S^2 \ \forall \ s \in [0, t])$$
$$= P_x(\eta_{\theta}^W > A(t))$$
$$= \int_0^{\infty} P_x(\eta_{\theta}^W > u) \ d_u P_x(A(t) \le u).$$

Now

$$(9.3) P_x(\eta_\theta^W > t) \sim e^{-l_\theta t} m_\theta(x/|x|) \int_{C_\theta \cap S^2} m_\theta d\sigma \text{ as } t \to \infty,$$

where (l_{θ}, m_{θ}) is the first eigenvalue-eigenfunction pair of L_{S^2} on $C_{\theta} \cap S^2$ with Dirichlet boundary condition, and $d\sigma$ is normalized Haar measure on

S^2 . Moreover, the mapping

$$\theta \in (0,\pi) \to l_{\theta}$$

is strictly decreasing and continuous, with range $(0, \infty)$.

By the results of DeBlassie (1988) (there the case $\alpha=1$ was done, but the proof is valid for $0<\alpha<2$)

$$(9.4) \quad P_x \left(\tau_{\theta}^W > t\right) \sim B(l_{\theta}) \left(|x|^{-2} t\right)^{-a(l_{\theta})/2} m_{\theta}(x/|x|) \int_{C_{\theta} \cap S^2} m_{\theta} \, d\sigma \quad \text{as } t \to \infty,$$

where

$$\begin{split} a(l_{\theta}) &= \left\{ -(2-\alpha) + \left[(2-\alpha)^2 + 4l_{\theta} \right]^{1/2} \right\} / 2, \\ B(l_{\theta}) &= 2^{-\alpha(l_{\theta})/2} \Gamma(\left[\alpha(l_{\theta}) + 4 - \alpha \right]/2) / \Gamma(\alpha(l_{\theta}) + (4-\alpha)/2). \end{split}$$

Thus

$$\theta \in (0,\pi) \to a(l_{\theta})$$

is strictly decreasing and continuous with range $(0, \infty)$. Using the method of DeBlassie (1988), (9.2)–(9.4) imply (9.1). \square

10. Properties of λ_8 .

$$\begin{array}{ll} \text{Lemma 10.1.} & \text{(i) } 0 < \delta_1 < \delta_2 \Rightarrow \lambda_{\delta_1} > \lambda_{\delta_2}. \\ \text{(ii) } 0 < \delta_1 < \delta_2 \Rightarrow \lambda_{\delta_1} \leq (\delta_2/\delta_1)^2 \lambda_{\delta_2}. \end{array}$$

PROOF. Since $0 < \delta_1 < \delta_2$, $\mathcal{K}(\delta_1) \subseteq \mathcal{K}(\delta_2)$. Thus (i) follows from Theorem 8.5 and Corollary 8.6.

As for (ii), let $0 < \varepsilon < 1$ and note that the components of the solution $\overline{V}_{\varepsilon} = (\overline{V}_{\varepsilon}^{(1)}, \overline{V}_{\varepsilon}^{(2)})$ to the stochastic differential equation (3.4) have the following scaling properties (here $\mathscr L$ denotes "law of") for any c > 0:

$$\begin{split} & \mathscr{L}\big(\overline{V}_{\varepsilon}^{(1)}(\,\cdot\,)|\overline{V}_{\varepsilon}^{(1)}(\,0)\,=\,v_1\big) = \mathscr{L}\big(\,c^{\,-2}\overline{V}_{\varepsilon}^{(1)}(\,c^{\,2}\,\,\cdot\,)|\overline{V}_{\varepsilon}^{(1)}(\,0)\,=\,c^{\,2}v_1\big),\\ & \mathscr{L}\big(\overline{V}_{\varepsilon}^{(2)}(\,\cdot\,)|V_{\varepsilon}^{(2)}(\,0)\,=\,v_2\big) = \mathscr{L}\big(\,c^{\,-1}\overline{V}_{\varepsilon}^{(2)}(\,c^{\,2}\,\,\cdot\,)|\overline{V}_{\varepsilon}^{(2)}(\,0)\,=\,cv_2\big). \end{split}$$

Since $cH_{\delta}=H_{\delta c}$ we have for $\xi_{\delta}=\inf\{t>0\colon \overline{V}_{\varepsilon}(t)\not\in H_{\delta}\}$,

$$\begin{split} P_v(\xi_\delta > t) &= P\big(\overline{V}_\varepsilon(s) \in H_\delta \ \forall \ s \le t | \overline{V}_\varepsilon(0) = v \big) \\ &= P\big(\big(c^{-2} \overline{V}_\varepsilon^{(1)}(c^2 s), c^{-1} \overline{V}_\varepsilon^{(2)}(c^2 s) \big) \in H_\delta \ \forall \ s \le t | \overline{V}_\varepsilon(0) = \big(c^2 v_1, c v_2 \big) \big) \\ &= P\big(\big(c^{-1} \overline{V}_\varepsilon^{(1)}(c^2 s), \overline{V}_\varepsilon^{(2)}(c^2 s) \big) \in H_{\delta c} \ \forall \ s \le t | \overline{V}_\varepsilon(0) = \big(c^2 v_1, c v_2 \big) \big) \\ &= P\big(\overline{V}_\varepsilon(c^2 s) \in H_{\delta c} \ \forall \ s \le t | \overline{V}_\varepsilon(0) = \big(c^2 v_1, c v_2 \big) \big) \\ &= P\big(\overline{V}_\varepsilon(s) \in H_{\delta c} \ \forall \ s \le c^2 t | \overline{V}_\varepsilon(0) = \big(c^2 v_1, c v_2 \big) \big) \\ &= P_{(c^2 v_1, c v_2)} \big(c^{-2} \xi_{\delta c} > t \big). \end{split}$$

The function

$$\bar{\tau}_{\varepsilon}^{-1}(t) = \int_{0}^{t} 2\varepsilon \Big[\overline{V}_{\varepsilon}^{(1)}(s) + \overline{V}_{\varepsilon}^{(2)}(s)^{2} + 1 \Big]^{-2} ds$$

is continuous in t and so by Proposition 5.4 of Ikeda and Watanabe (1981), page 24, $\bar{\tau}_{\varepsilon}^{-1}(\xi_{\delta})$ is $\mathscr{F}_{\xi_{\varepsilon}}$ -measurable. Then

$$(10.1) \quad \left\{ \xi_{\delta} > \bar{\tau}_{\varepsilon}(t) \right\} = \left\{ \bar{\tau}_{\varepsilon}^{-1}(\xi_{\delta}) > t \right\} = \left\{ \bar{\tau}_{\varepsilon}^{-1}(\xi_{\delta}) > t \right\} \cap \left\{ \xi_{\delta} > \frac{t}{2} \right\} \in \mathscr{F}_{t},$$

where we have used $\bar{\tau}_{\varepsilon}^{-1}(\xi_{\delta}) \leq 2\xi_{\delta}$, $\varepsilon < 1$. Thus for $c = \delta_1/\delta_2 < 1$, p and q > 1 with 1/p + 1/q = 1 and $v \in H_{\delta_1}$ we have $\max_{a \geq 0} (a+1)/(a+c^2) = 1/c^2$ since c < 1 and

$$\begin{split} P_v \Big(\xi_{\delta_2} > \bar{\tau}_{\varepsilon}(t) \Big) \\ &= P \bigg(\int_0^{\xi_{\delta_2}} \! 2\varepsilon \Big[\overline{V}_{\varepsilon}^{(1)}(s) + \overline{V}_{\varepsilon}^{(2)}(s)^2 + 1 \Big]^{-2} \, ds > t | \overline{V}_{\varepsilon}(0) = v \Big) \\ &= P \bigg(\int_0^{c^2 \xi_{\delta_2}} \! 2\varepsilon \Big[\overline{V}_{\varepsilon}^{(1)}(c^{-2}u) + \overline{V}_{\varepsilon}^{(2)}(c^{-2}u)^2 + 1 \Big]^{-2} c^{-2} \, du > t | \overline{V}_{\varepsilon}(0) = v \Big) \\ &= P \bigg(\int_0^{\xi_{\delta_1}} \! 2\varepsilon \Big[c^{-2} \overline{V}_{\varepsilon}^{(1)}(u) + c^{-2} \overline{V}_{\varepsilon}^{(2)}(u)^2 + 1 \Big]^{-2} c^{-2} \, du \\ &\qquad > t | \overline{V}_{\varepsilon}(0) = \left(c^2 v_1, c v_2 \right) \bigg) \\ &(10.2) = P \bigg(\int_0^{\xi_{\delta_1}} \! 2\varepsilon \Big[\overline{V}_{\varepsilon}^{(1)}(u) + \overline{V}_{\varepsilon}^{(2)}(u)^2 + c^2 \Big]^{-2} \, du > c^{-2} t | \overline{V}_{\varepsilon}(0) = \left(c^2 v_1, c v_2 \right) \bigg) \\ &\leq P \bigg(\bigg[\max_{a \geq 0} \frac{a+1}{a+c^2} \bigg]^2 \int_0^{\xi_{\delta_1}} \! 2\varepsilon \Big[\overline{V}_{\varepsilon}^{(1)}(u) + \overline{V}_{\varepsilon}^{(2)}(u)^2 + 1 \Big]^{-2} \, du \\ &\qquad > c^{-2} t | \overline{V}_{\varepsilon}(0) = \left(c^2 v_1, c v_2 \right) \bigg) \\ &= P_{(c^2 v_1, c v_2)} \Big(\xi_{\delta_1} > \overline{\tau}_{\varepsilon}(c^2 t) \Big) \\ &= E_{(c^2 v_1, c v_2)} \Big(\xi_{\delta_1} > \overline{\tau}_{\varepsilon}(c^2 t) \Big) \quad [\text{by (3.11), (10.1) and that } c < 1] \\ &\leq \Big(E_{(c^2 v_1, c v_2)} \Big(R_{\varepsilon}^1(t) \Big]^P \Big)^{1/P} \Big(P_{(c^2 v_1, c v_2)} \Big(\eta_{\delta_1}^{\varepsilon} > \tau_{\varepsilon}(c^2 t) \Big) \Big)^{1/q} \\ &\leq \Big(P_{(c^2 v_1, c v_2)} \Big(\eta_{\delta_1} \wedge \hat{\epsilon} > c^2 t \Big) \Big)^{1/q} \end{split}$$

[by Lemma 3.1 and (3.14)].

Thus

$$\begin{split} P_v \Big(\eta_{\delta_2} \wedge \hat{e} > t \Big) &= P_v \Big(\eta_{\delta_2}^\varepsilon > \tau_\varepsilon(t) \Big) & \quad \text{[by (3.14)]} \\ &= E_v \overline{R}_\varepsilon^1(t) I \Big(\xi_{\delta_2} > \overline{\tau}_\varepsilon(t) \Big) & \quad \text{[by (3.11) and (10.1)]} \\ &\leq \Big\{ E_v \Big[\, \overline{R}_\varepsilon^1(t) \big]^p \Big\}^{1/p} \Big\{ P_v \Big(\xi_{\delta_2} > \overline{\tau}_\varepsilon(t) \Big) \Big\}^{1/q} \\ &\leq \exp \Big\{ \tfrac{1}{2} (p-1) (1-\alpha)^2 \varepsilon t \Big\} \Big\{ \Big[\, P_{(c^2 v_1, \, c v_2)} \Big(\eta_{\delta_1} \wedge \hat{e} > c^2 t \Big) \Big]^{1/q} \Big\}^{1/q} \end{split}$$

[by Lemma 3.1 and (10.2)]. This yields

$$\frac{1}{t} \log P_v \big(\eta_{\delta_2} \wedge \hat{e} > t \big) \leq \frac{1}{2} (p-1) (1-\alpha)^2 \varepsilon + \frac{1}{tq^2} \log P_{(c^2 v_1, \, c v_2)} \big(\eta_{\delta_1} \wedge \hat{e} > c^2 t \big).$$

Let $\varepsilon \to 0$, then let $t \to \infty$ and use Theorem 8.7 to get

$$-\lambda_{\delta_2} \leq -\left(\frac{c}{q}\right)^2 \lambda_{\delta_1} = -q^{-2} \left(\frac{\delta_1}{\delta_2}\right)^2 \lambda_{\delta_1}.$$

Letting $q \downarrow 1$ gives $-\lambda_{\delta_2} \leq -(\delta_1/\delta_2)^2 \lambda_{\delta_1}$ as desired. \square

LEMMA 10.2. For $a(\cdot)$ as in Theorem 9.1, we have $a(\lambda_{\delta}) < \alpha$ for $\delta > 0$.

PROOF. If τ is the first time the process Y_t (hence Z_t) hits the plane $x_1 = 0$ then τ is really just the first time a Bessel process with parameter $2 - \alpha$ hits the origin. Thus for $y_1 > 0$,

$$(10.3) \hspace{1cm} E_{\mathbf{y}}\tau^{p} = \begin{cases} C_{p,\,\alpha}y_{1}^{2p} & \text{if } 0$$

[see (2.10) of DeBlassie (1987b)].

By Theorem 9.1, (4.7) and Theorem 8.7, for any $\theta \in (0, \pi)$ and $y_1 > 0$,

(10.4)
$$E_{y}\tau_{\theta}^{p} \begin{cases} < \infty & \text{if } p < \frac{a(\lambda_{\delta(\theta)})}{2}, \\ = \infty & \text{if } p > \frac{a(\lambda_{\delta(\theta)})}{2}. \end{cases}$$

Roughly speaking, (4.7) and Theorem 8.7 say

$$E_{y} au_{ heta}^{p} = \int_{0}^{\infty} P_{y} (au_{ heta} > t^{1/p}) dt$$

is like

$$\int_1^\infty \! \int_0^\infty \! e^{-\lambda_\delta u} \, d_u P_{|y|} \! \left(\int_0^{t^{1/p}} \! \frac{ds}{2R(s)^2} \leq u \right) dt,$$

and Theorem 9.1 says the latter is like $\int_{1}^{\infty} t^{-\alpha(\lambda_{\delta})/2p} dt$.

Since $\tau \leq \tau_{\theta}$ for $\theta > 0$, by (10.3) and (10.4) we get $a(\lambda_{\delta(\theta)}) \leq \alpha$. If $a(\lambda_{\delta(\theta)}) = \alpha$ for some $\theta \in (0, \pi)$, then since $\theta_1 < \theta$ implies $\delta(\theta_1) < \delta(\theta)$ [see (4.6)] implies $\lambda_{\delta(\theta)} < \lambda_{\delta(\theta_1)}$ (see Lemma 10.1), we get $\alpha = a(\lambda_{\delta(\theta)}) < a(\lambda_{\delta(\theta_1)}) \leq \alpha$. Contradiction. Thus $a(\lambda_{\delta(\theta)}) < \alpha$ for all $\theta \in (0, \pi)$. \square

Next we use a result of Bingham (1973) to explicitly evaluate λ_1 .

LEMMA 10.3. For
$$\delta = 1$$
, $\lambda_1 = \alpha(4 - \alpha)/4$.

PROOF. By (4.6), $\delta=1$ iff $\theta=\pi/2$. The distribution of the first time $T_{\pi/2}$ the two-dimensional symmetric stable process exits the wedge $W_{\pi/2}$ of angle π is the same as the distribution of the first time \tilde{T} that a one-dimensional symmetric stable process \tilde{X} exits the half-line $(0,\infty)$. Bingham (1973), Theorem 3b, has shown that for $x_2>0$,

$$P_{x_2}(\tilde{T} > t) \sim C(x_2)t^{-1/2}$$
 as $t \to \infty$.

Thus for $x \in \mathbb{R}^2$ with $x_2 > 0$, $E_x T_{\pi/2}^{p/\alpha} < \infty$ iff $p < \alpha/2$. Hence by the results of Bass and Cranston (1983), Theorems 3.1 and 3.2, $E_x |X(T_{\pi/2})|^p < \infty$ iff $p < \alpha/2$. By (1.5) we get $E_{(0,x)} \tau_{\pi/2}^{p/2} < \infty$ iff $p < \alpha/2$. Comparing with (10.4), $\alpha/2 = a(\lambda_1)$. Solving for λ_1 [recall a(l) is defined in Theorem 9.1], we get $\lambda_1 = \alpha(4-\alpha)/4$. \square

Remark 10.4. By Lemmas 10.1 and 10.3, $\lambda_{\delta} > 0$. Hence by (4.8) when $\alpha = 1$,

$$P_v(\eta_{\delta} > t) \sim C(v) \exp(-\lambda_{\delta} t)$$
 as $t \to \infty$.

Thus (10.4) becomes: for p > 0 and $\alpha = 1$, $E_{\gamma} \tau_{\theta}^{p} < \infty$ iff $p < \alpha(\lambda_{\delta(\theta)})/2$.

11. Proof of Theorem 1.1. Define

$$(11.1) p_{\theta,\alpha} \coloneqq a(\lambda_{\delta(\theta)})/\alpha,$$

where $a(\cdot)$ is as in Theorem 9.1 and $\delta(\theta)$ is as in (4.6). Observe by (10.4) and (1.5)

$$egin{aligned} E_{x}|X(T_{ heta})|^{p} &< \infty & ext{if } p &< lphaig(\lambda_{\delta(heta)}ig), \ E_{x}|X(T_{ heta})|^{p} &= \infty & ext{if } p &> lphaig(\lambda_{\delta(heta)}ig). \end{aligned}$$

By Lemma 10.2, $a(\lambda_{\delta(\theta)}) < \alpha$, and hence by the Bass–Cranston results [Bass and Cranston (1983), Theorems 3.1 and 3.2]

$$egin{aligned} E_x T_{ heta}^{\,p} < \infty & ext{if } p < a ig(\lambda_{\delta(heta)} ig) / lpha = p_{ heta, lpha}, \ E_x T_{ heta}^{\,p} = \infty & ext{if } p > a ig(\lambda_{\delta(heta)} ig) / lpha = p_{ heta, lpha}. \end{aligned}$$

Moreover, by Remark 10.4, for $\alpha = 1$, $E_x T_{\theta}^{P_{\theta,1}} = \infty$. This gives (v).

Part (iv) is an immediate consequence of Lemma 10.2 and (11.1).

As for part (iii), observe for $\theta \in (\pi/2, \pi)$, $\delta(\theta) > \delta(\pi/2) = 1$ [by (4.6)]. Hence by Lemma 10.1(ii), Lemma 10.3 and (4.6),

$$\lambda_{\delta(\theta)} \ge \left\lceil \frac{1}{\delta(\theta)} \right\rceil^2 \lambda_1 = \left\lceil \frac{1 + \cos \theta}{\sin \theta} \right\rceil^2 \frac{\alpha(4 - \alpha)}{4}.$$

Thus

$$a(\lambda_{\delta(\theta)}) \ge a\left(\left[\frac{1+\cos\theta}{\sin\theta}\right]^2 \frac{\alpha(4-\alpha)}{4}\right).$$

This yields part (iii).

By Lemma 10.3, $p_{\pi/2,\alpha}=\frac{1}{2}$. Once part (i) is proved we get that $p_{\theta,\alpha}>p_{\pi/2,\alpha}=\frac{1}{2}$ for $\theta\in(0,\pi/2)$. Of course, this is exactly the assertion of part (ii). Thus all that remains is the proof of part (i).

By (4.6) and Lemma 10.1(i), $\theta \to \lambda_{\delta(\theta)}$ is decreasing. Since $l \to a(l)$ is increasing, the monotonicity assertion follows from (11.1). Moreover, the continuity assertion will also follow once we prove $\delta \to \lambda_{\delta}$ is continuous. For this use Lemma 10.1: Let $\delta_0 > 0$. Then

$$\begin{split} \lambda_{\delta_0} &\leq \lim_{\delta \uparrow \delta_0} \lambda_{\delta} \leq \lim_{\delta \uparrow \delta_0} \big(\delta_0 / \delta \big)^2 \lambda_{\delta_0} = \lambda_{\delta_0} \leq \lim_{\delta \downarrow \delta_0} \big(\delta / \delta_0 \big)^2 \lambda_{\delta} \leq \lim_{\delta \downarrow \delta_0} \big(\delta / \delta_0 \big)^2 \lambda_{\delta_0} = \lambda_{\delta_0} \\ \text{and } \lim_{\delta \to \delta_0} \lambda_{\delta} = \lambda_{\delta_0} \text{ as desired. } \Box \end{split}$$

APPLICATION. Let $\alpha=1$ so that Y_t is a three-dimensional Brownian motion. By (1.4) and (1.5), since $Y(\tau_{\theta})=Z(\tau_{\theta})$, for $x\in W_{\theta}$,

$$|E_{(x,0)}|Y(\tau_{\theta})|^{2p} < \infty \quad \text{iff } |E_x|X(T_{\theta})|^{2p} < \infty$$

and by the Bass-Cranston (1983) results and Theorem 1.1 the latter is finite iff $p < p_{\theta,1}$. By Burkholder's (1979) results we get for $y \in \mathbb{R}^3 \setminus [\{0\} \times W_{\theta}^c]$,

(11.2)
$$E_{\nu}|Y(\tau_{\theta})|^{2p} < \infty \quad \text{iff } p < p_{\theta,1}.$$

Consequently, we get the following theorem.

THEOREM 11.1. Consider the Dirichlet problem

(11.3)
$$\begin{cases} \Delta u = 0 & in \ \mathbb{R}^3 \setminus \left[\{0\} \times W_{\theta}^c \right], \\ u = f & on \ \{0\} \times W_{\theta}^c, \end{cases}$$

where f is continuous on $\{0\} \times W_{\theta}^c$. If $f = O(|x|^p)$ for some $p < 2p_{\theta,1}$ then (11.3) possesses a solution.

APPENDIX

THEOREM A.1. Let l be the half-line $\{(0,0,\alpha): \alpha \geq 0\}$. for $Z_0 \neq 0$, $Z(\cdot)$ never hits 0. For $Z_0 \notin l$, if $0 < \alpha \leq 1$, $Z(\cdot)$ never hits l and if $1 < \alpha < 2$, $Z(\cdot)$ can hit l with positive probability.

PROOF. For $Z_0 \neq 0$, by Itô's formula $\rho(Z_t) = [Z_t^{(1)} + (Z_t^{(2)})^2 + (Z_t^{(3)})^2]^{1/2}$ is a Bessel process with parameter $4 - \alpha > 2$ [cf. (1.9)]. Then $\rho(Z_t)$ never hits 0 and consequently neither does Z_t .

If $Z_0 \notin l$, then by Itô's formula the process $\tilde{\rho}(Z_t) = [Z_t^{(1)} + (Z_t^{(2)})^2]^{1/2}$ is a Bessel process with parameter $3 - \alpha$. Thus $\tilde{\rho}(Z_t)$ never hits 0 if $1 \geq \alpha$ and $\tilde{\rho}(Z_t)$ hits 0 a.s. if $1 < \alpha < 2$. But $\tilde{\rho}(Z_t)$ hits 0 iff Z_t hits the line $\{(0,0,\alpha): \alpha \in \mathbb{R}\}$ and the desired conclusion follows. \square

Acknowledgment. It is a pleasure to thank Terry McConnell for telling me about this problem and the Molchanov-Ostrovskii representation.

REFERENCES

- Bass, R. F. and Cranston, M. (1983). Exit times for symmetric stable processes in \mathbb{R}^n . Ann. Probab. 11 578–588.
- Bingham, N. H. (1973). Maxima of sums of random variables and suprema of stable processes. Z. Wahrsch. Verw. Gebiete 26 273–296.
- Blumenthal, R. M. and Getoor, R. K. (1960). Some theorems on stable processes. *Trans. Amer. Math. Soc.* **95** 263–273.
- Burkholder, D. L. (1977). Exit times of Brownian motion, harmonic majorization, and Hardy spaces. Adv. in Math. 26 182-205.
- DEBLASSIE, R. D. (1987a). Exit times from cones in \mathbb{R}^n of Brownian motion. Probab. Theory Related Fields 74 1–29.
- DeBlassie, R. D. (1987b). Stopping times of Bessel processes. Ann. Probab. 15 1044-1051.
- DeBlassie, R. D. (1988). Remark on "Exit times from cones in \mathbb{R}^n of Brownian motion." *Probab. Theory Related Fields.* **79** 95–97.
- Donsker, M. D. and Varadhan, S. R. S. (1976). Asymptotic evaluation of certain Markov process expectations for large time. III. *Comm. Pure Appl. Math.* **29** 389-461.
- DYNKIN, E. B. (1965). Markov Processes 1, 2. Springer, Berlin.
- Gradshteyn, I. S. and Ryzhik, I. M. (1980). Table of Integrals, Series and Products. Academic, New York.
- IKEDA, N. and WATANABE, S. (1981). Stochastic Differential Equations and Diffusion Processes.

 North-Holland, Amsterdam.
- Molchanov, S. A. and Ostrovskii, E. (1969). Symmetric stable processes as traces of degenerate diffusion processes. *Theory Probab. Appl.* **14** 128–131.
- PINSKY, R. (1985). On evaluating the Donsker-Varadhan *I*-function. *Ann. Probab.* **13** 342-362. PORT, S. C. and STONE, C. J. (1978). *Brownian Motion and Classical Potential Theory*. Academic, New York.
- Sion, M. (1958). On general minimax theorems. Pacific J. Math. 8 171-176.
- Spitzer, F. (1958). Some theorems concerning two-dimensional Brownian motion. Trans. Amer. Math. Soc. 87 187-197.
- Stroock, D. W. and Varadhan, S. R. S. (1979). *Multidimensional Diffusion Processes*. Springer, Berlin.

DEPARTMENT OF MATHEMATICS TEXAS A & M UNIVERSITY COLLEGE STATION, TEXAS 77843-3368