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THE FIRST EXIT TIME OF A TWO-DIMENSIONAL
SYMMETRIC STABLE PROCESS FROM A WEDGE!

By R. DANTE DEBLASSIE
Texas A & M University

Let Ty, be the first exit time of a symmetric stable process [with
parameter a € (0, 2)] from a wedge of angle 26, 0 < 6 < 7. Then there are
constants p, , > 0 such that for starting points x in the wedge, E.TP <o
if0 <p <pg,and E,TP = if p > p, ,. We characterize p, , and obtain
upper and lower bounds.

1. Introduction. Let {X,: ¢ > 0} be the symmetric stable process in R? of
index a € (0, 2); namely that process with stationary independent increments,
whose transition density f(¢, x —y) (with respect to Lebesgue measure) is
determined by its characteristic function

exp{ ~tl¢|"/20(a/2)} = [ ™ f(t, %) da.

For x € R? let ¢(x) be the magnitude of the angle between x and (0, 1).
Given 6 € (0, 1), define

Wy={xeR%:x#0,7—-0<o¢(x)<m)
and call it a wedge of angle 260. Define
T, = inf{t > 0: X, & W,},

the first exit time of X, from Wj. In this paper we study the distribution of T,.

In the case of a two-dimensional Brownian motion B(t), it is known that for
p>0and x € W,

o

(1.1) ETf <oep <4—0
[Burkholder (1977), page 192, and Spitzer (1958)]. There are several ways to
obtain this result. The heat equation can be solved explicitly for P(T, > ¢) by
separation of variables. Spitzer (1958) solves the heat equation using an
integral transform from which he deduces (1.1). Burkholder’s approach in-
volves use of his two-sided L” inequalities for stopping times of Brownian
motion—he is able to reduce consideration to solution of a simple Dirichlet
problem for the Laplacian. It is not possible to mimic, these techniques for the
symmetric stable process X, because its generator is an integral operator. The
trouble is all the techniques described involve separation of variables.
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EXIT TIMES OF STABLE PROCESSES 1035

However, it is known [Blumenthal and Getoor (1960), pages 264 and 265] X,
can be represented as a two-dimensional Brownian motion run with an
independent clock (namely, a stable subordinator). The important observation,
due to Molchanov and Ostrovskii (1969), is that this representation can be
interpreted as the trace of a degenerate diffusion (described in detail below).
This is our starting point. We will prove the following theorem, making
essential use of the results of Bass and Cranston (1983). Here R} := {x € R™
x, > 0}.

TueoreM 1.1. Let 6 € (0, 7). Then there exists a constant p, , > 0 such

that for x € W,
ExTBP <o Iifp <Py s

ExTop =ow ifp > Dy o
Moreover,

@) 6 € (0,7) > p, , is continuous and decreasing;
(iD) for 8 € (0,7/2), Ppo > 5= Py,
(iii) for 6 € (7w /2, m),

Do {o =2+ [(a = 2)* + [(1 + cos 6) /sin 6] a(4 - a)]l/z}/2a;

v) for 6 € (0,7), py , < 1;
) for a =1, E Tpor = .

In fact, let 8 = 8(8) = sin 8/(1 + cos §) and Hs = R2\[{0} X [R\ (-4, d)]].
Then p, . = {—2 — a) + [(2 — @) + 4),;]'?} /20, where A is the principal
eigenvalue of the differential operator

1 92 92 2(1 —a)v, ) 9
L=—(v, +v2+1)|4v,— + —5 +2 2—a—(——2—)—1— —
4 vy vy vy +vy +1)0dy,;
2(1 —a)v, 9

v, +vi + 1 dv,

on Hy. More precisely,

As=— sup sup [—I(u)],
Uex(8) w(U)=1

where the u’s are probability measures, %#(8) = {U ¢ R2: U is bounded and
open in R2 with C* boundary in R? and U c U C H; in R} and I(u) is the
Donsker—Varadhan I-function associated to L,

Lf
I(w) = —inf{/de,u,: fe C*R2)

and f = constant outside a compact subset of Ri} .
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Now we describe the method of solution. Let Y, = (Y0, Y@, Y®) € R?,
where Y,V is a Bessel process with parameter 2 — a, Y(z) and Y® are
one- d1mens1onal Brownian motions and YO, Y@, Y® gre 1ndependent The
generator of Y, is
(1.2) G 1{02 l1—a 9 92 92 R

: - + — +—+—!, yeERS,

2|0y y1 9y 9yi  9y3 ’

and Y, has state space R? if Y{V > 0.

THEOREM 1.2 [Molchanov and Ostrovskii (1969)]. Let B, be the inverse
local time of the Bessel process YV and 0. If Y{ = 0 then

= (0,Y®(8,),Y(B,)).
is a symmetric stable process with index a.
Define
Z, = ((Yt(l))z, Y®, Yt‘B)), t>0,

(1.3)
= inf{t > 0: Z, € {0} X W}.

We consider Z, rather than Y, because it is easier to get a martingale
characterization of Z,. Now T} is the first time X, hits Wy and 7, is the first
time Z, (or Y,) hits {0} X Wy. Since Z, € {0} X Wy only if Z¥ = 0, we see that
(0, X(T,)) and Z(7,) have the same distribution. If .%, = ¢(Z,) then (Z®, Z®)
is a two-dimensional .%,-Brownian motion and 7, is an %,-stopping time. Thus
Burkholder’s (1977) Theorem 3.1 and Remark 3.1 results hold, and in particu-
lar for ¢ > 0,

(1.4) E,|Z(7g)* <o iff Egd <o,z =(0,x).
Hence we get 5
(1.5) E |X(T,)* < o iff By v < .

Bass and Cranston (1983) have analogues to Burkholder’s result (1.4) for X,.
Thus the problem is reduced to the study of 7,, a stopping time of a dlﬂ‘uszon
We find and study p,, > 0 such that for z € (0} x W,, E7} is finite if
0 <p <py, and infinite if p > p, ,. Our method is not refined enough to
settle the case p = p, , except when a = 1.

Under the change of coordinates (on R?),

(1.6) %= (ylz’yz’yB)’ yE Ri’

the operator G in (1.2) becomes the generator G of Z,, where

1.7 G ! 4 62 2(2 o ” R3
. = — +2(2 - a)— — 1, € R3.

(1.7) T R RO R F
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Introduce the new coordinates (p, v) = ®(2), z € R3\{(0, 0, a): a > 0}, where
P = (zl + 222 + 232)1/27
v= (31/(1) - 23)2, z3/(p — 23))-

Then in these coordinates, the operator G in (1.7) becomes

1{32 3—a 9 (v1+v§+1)2[ 2f o
—_— _+—

(1.8)

é = - + Vi— + —
2| ap? p dp 4p? Lov?  gu2

(1.9)
2(1—a)v1} d 2(1 —a)v, 9 }}

+2l2 —a - — L) Zo AT T
[ v, +vi+1 (v, vy +vE+ 10,

R3\[{0} X Wy] is taken to (0,«) X Hs and [{0} X WS\ {(0,0,a): a > 0} is
taken to (0,%) X [R2\ H;] (details in Section 4), where Hj is as in Theorem
1.1. Now u(t,z) = P,(r, > ¢t) solves (3/0t — Gu(t,2z) = 0 for (¢,2) € (0,%) X
[R3\({0} x W,)] with initial data u(0, 2) = 1, z & {0} X Wy and boundary data
u(t,z) = 0 for all (¢, 2) € (0,) X ({0} X Wy). Expressed in the coordinates
(1.8), separation of variables is the obvious means of solution, but the v-eigen-
value problem involves a degenerate non-self-adjoint differential operator.
Thus the classical means of resolving the eigenvalue problem are not available.
However, Donsker and Varadhan have a way to characterize the principal
eigenvalue for such operators and it is their machinery that we employ.

We see from (1.9) that Z, has a skew product representation (R(¢), V(A(2))),
where R and V are independent and A(#) is continuous, strictly increasing,
and depends on R not V. Below we show V(-) can explode in some cases, but
ignoring this for the moment, for n, = inf{t > 0: V(¢) € R2\ H,} [where § =
sin 8 /(1 + cos 0)]

P,(7,>t) = P(V(A(s)) & R2\ H; for s € [0,¢])
= Pz(nﬁ > A(t))

= [P, > a) d,P.(A(2) < a).
0

A(?) is easy to analyze and the Donsker—Varadhan theory gives us information
about P,(n; > u) as u — ». Thus we can decide when E,7§ < .

The paper is organized as follows. In Section 2 we impose a convenient
framework: the martingale problem formulation. A skew product representa-
tion of Z, comprises the content of Sections 3 and 4. In Section 5 we establish
the groundwork for the application of the Donsker—Varadhan theory to char-
acterize the principal eigenvalue of the v-part of G on Hj; The
Donsker—Varadhan results and Pinsky’s theorem are used in Section 6 to
obtain lower bounds on P,(n; > u) as u — «. In Section 7 we obtain upper
bounds. Using techniques of Donsker and Varadhan, we prove equality of the
upper and lower bounds in Section 8. In Section 9 we study the p-part of Z,.



1038 R. D. DEBLASSIE

Section 10 is concerned with properties of the principal eigenvalue of the
v-part of G on Hj as a function of §. Theorem 1.1 is proved in Section 11 and
there we also discuss an application.

2. A convenient setup. Let S be a complete separable metric space and
define C,(S) = {f: S — RIf is bounded and continuous}. Give it the sup norm
topology. Denote by Q¢ the set C([0, »), S) of continuous functions from [0, )
into S endowed with the topology of uniform convergence on compacta. Let
2(w) = 0(t), w € Qg, be the t-coordinate map and define .#, = o(x,: s < ?),
M =o(x,: s> 0). Suppose D c C,(S) and L: D - C,(S) is an operator. A
probability measure P on (Qg,.#) solves the (L, D)-martingale problem,
starting at x, iff

@ P(x(0)=x) =1, .

(i) f(x(#)) — [{Lf(x(s))ds is an .#,-martingale for any f € D.

The (L, D) martingale problem is well posed iff there is a unique solution
for each x € S. In the case when S = R™ we will write 2, for Qg.

3. Representation of the v-process. Let L be the v-part of G [see
(1.9)],

L=2 0) + 03 + 1) 4o, v 0) s 4 2
= — \ vV 0)— + —
4((U1 ) +us + ) (Ul )30% 3v%
(3.1)
2(1 —a)(v; vVO0) ] 9 2(1 — a)v, ad
+2|2 —a - — |— - 2
(v;vVO0)+vs+1|dv; (v VO0)+vs+1du,

Notice it only behaves ‘“badly” near v, = 0, and there the [4(1 — a)(v; V 0)/
(v, V 0) + vZ + 1]19/dv, part is negligible. So we eliminate that part and also
the d/dv, part via a transformation of drift. The (v, vV 0) + v2 + 1)* can be
eliminated via time change and we are left with a nice operator. We start there
and reverse this procedure to get a representation of the process governed by
L. Set

2¢
(3.2) L, = -L,
((Ul\/0)+v§+1)
3.3 I - 2|4 oa2 o 2(2 i
(3.3) c= 3 (v, Vv )ﬁ+@+( a)avl-

Since L = [((v, V 0) + vZ + 1)?>/2¢]L,, we see the & should be irrelevant in
the representation of the L-process. Of course it is in the sense that the
representation will be independent of ¢. However, in Section 10, ¢ plays a
crucial role in obtaining bounds on the principal eigenvalue of L on Hj.
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By the results of Ikeda and Watanabe (1981), Example 8.3, pages 223-225,
for each v € R? there is a (pathwise) unique strong solution V@) =
(VO(>), V() to

dv(t) = 3,(V(t)) dB(¢) +b,(V(t)) dt,
V(0) = v,

where B(:) is a Brownian motion on some filtered probability space
(‘Q" ‘9; {‘97;}’ P)’

(3.4)

7.(y) = ([48(3’1 volt o ),
0

e
B() = (5(20““)),

for y € R2. Moreover, VO(#) > 0 a.s. and so the law induced by V.(-) on
(Q,, .#) furnishes the unique solution to the (L,, C&R?))- martmgale problem
starting at v € R%, and the law is supported on C([O ®),R%). Here C2(R?) is
the set of C? functlons of compact support on R2.

€

(3.5)

Define
a.(y) =0o.(y)a*(y),
- 2(1 — « 1—«a
5.(y) =¢2 - a- ( 2)yl’_ ( 2)yz .
(3.6) ity +1 yty,+1

_()_{ S0 (6(y) —B.(y)), ¥1>0,
9 yISO,

for y € R2. Then writing ( , ) for the usual Euclidean inner product, we have

(8.7) sup (@,5,(¥),2.(y)) < (1 —a)’.

71>0

Let

= t, = — - =
R2(0) = exp [ 52,(V.(w)), dV.(u) = B(V(w)) d)
(3.8)
1. _ _ =
—5[0<pcs,aepcs>(";(u))du}-
Then by the Cameron-Martin—Girsanov transformation, RP is an %
martingale and for p = 1 gives rise to a new process, call it V,(¢), such that

(3.9) the law of V,(¢) on (Q,, .#) is the unique solution
to the (L,, C2(R?))-martingale problem starting at v € R%, and it is supported
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on (C[0, »), R%);

R = exp [!( = p(V.(w), V() = B,(Vi(w) )
(3.10) 0

1.
+§f <pce,a€pcs>(Ve(u))du}
0
is a martingale;
forany A € 7,

3.11
*4 P(V.€A) =E,R(t)I(V.€ A), P(V,€A)=ERL)I(V, €A);

(3.12) forany p >0, E,[R?(t)] =E,[R?(t)] =1.

LemmaA 3.1. Forp > 1,
1sEv[§§(t)]p < exp{%p(p -1)(1 - a)zet},

E[R{)]" =< 1.
Proor. We have

L _ 1) . _
E[R¥0)]" - Ev[Ré’(t)exp{&——) [ <ae,aeae>(V;(u))du}],

1 —
E,[RY1)]" = EU[Rf(t)exp{%ﬂft@u a.c.y(V(uw)) du}}
0
The lemma follows from these using (3.7) and (3.12). O

Now we make the time change. Define 7.(¢, w) by
(3.13) t= [2e[VO(s) + V(s)? + 1] ds.
0

Unfortunately, it is possible for [72¢[VV(s) + V®(s)? + 1]72ds to be finite,
in which case the process

(3.14) V(t) = V/(7.(2)), t=0,

explodes to « in finite time. However, it is easy to’ see we have the following
theorem.

’ THEOREM 3.2. Up to a possibly finite explosion time é, the law of V(-) on
(Qy, #) furnishes the unique solution to the (L, CZ(R2))-martingale problem

starting at v € R%. Thus V() is independent of ¢ > 0.
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4. Skew product representation of Z,. By the results of Ikeda and
Watanabe (1981), pages 223-225, Z, has a representation as the (pathwise)
unique strong solution to the stochastic differential equation (* = transpose)

[4(z® v 0)]"* o o 2-a
dZy = 0 L oldBr+{ o |at,
0 0 1 0

- 3
Z,=z€ Ry,

with state space R3. The 1mportant point is that as a consequence of this, the
law of Z, induced on (Qg, .#) is the unique solution to the (G, Cg([R?’ )-
martmgale problem starting at z € R3. Let us emphasize that CO(IR3) is the
set of all C? functions on a neighborhood of R3 whose support is a compact
subset of R3.

In the Appendix we show that Z, never hits 0, but it can hit the half-line
{(0,0, @): a > 0} with positive probability when 1 < a < 2. This causes some
minor technical difficulties. As we shall see, Z, hitting {(0, 0, a): @ > 0} corre-
sponds to ®(Z,) exploding to « in the v-coordinate.

THEOREM 4.1. Up to the first time Z, hits the half-line {(0,0, a): a > 0}, the
law of ®(Z,) on (Qs,.#) furnishes the unique solution to the (G C2((0, ) X
R2))-martingale problem up to its explosion time, starting at <I>(z) [where
Z0 =2z € R3\{(0,0,a): a > 0}].

Proor. We need only verify that the mapping
< (41)  zeRN\((0,0,a):a =0} > (2) = (p,v) € (0,2) X RE,

from (1.8) is a diffeomorphism onto, that the image under v of a nelghborhood
of {(0, 0, a): @ > 0} corresponds to a neighborhood of the point at e for R2, and
that G is just G expressed in the coordinates (p, v).

For this, let ¥: S2\ (0,0,1) be the stereographic projection of the unit
sphere S2? in R® centered at the origin,

V(y) = (y1,52) /(1 —y5), ¥y €8*\(0,0,1),

and define the stereographic coordinates

(42)  (r,u) =, ¥Y0/bD), y<R\{(0,0,a):a > 0}.
Then y € R3\{(0,0,a): a > 0} - (r,u) € (0,) X R is one to one and onto
with inverse

(2"“1’ 2ruy, r(jul® - 1))

e . (ru) € (0,%) xRY.
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In these coordinates the operator G [from (1.2)] becomes

1(a 38-ad (u2+1)°[o o2 ui-u+1 9
sl e M L D L
2\ ar roor 4r ou? = oul ui(jul? + 1) du,
4.3
(4.8) 2u, - 0
(1 -a)————
u|“+ 1 du,

[cf. DeBlassie (1987a), Section 3]. Hence by (1.8), (1.6) and (4.2) we see that
y 12 Y2
(vl —55)* I — s

(4.4) (p,v) = ®(2) = (Iyl,

= (r , U %’ u2)‘
From this, (1.7) and (4.3) we see that G 'is just G expressed in the coordinates
(p, v). Also, it is clear that the map in (4.1) is one to one and onto with inverse

D Yp,v) =2 =(¥% 95 9s)

_ 4riu? 2ru, r(u®-1)
(ui2 +1)" w®>+17 ju?+1

4p%v, 2pv, p(v; +vZ—1)
(vl+v§+1)2’v1+u§+1’ v, +vi+1

That the map in (4.1) is a diffeomorphism is immediate. O

REMARK 4.2. Let N be a neighborhood of {(0,0, a): @ > 0} in R3. Then by
(4.4) the projection onto the v-plane of ®(N) = p(N) X v(N) corresponds to a
neighborhood of « in R%. Thus Z, hitting {(0,0, @): @ > 0} corresponds to v(Z,)
exploding to .

In Section 8 we will need the following result which follows from the
preceding proof.

CoroLLARY 4.3. Under the change of coordinates u € R2—> v € R2, where
v =(u3 u,), the v-part L of G [from (3.1)] expressed in the u-coordinates

becomes

o (upr+1)?[ 2 82 ul—u+1 9
R O 0 B G (e
1 2 1 1
1 2u, 9
( a)|u|2+10u2 '

e

Now we can give the skew product representation of Z,. Let R(¢) be a
Bessel process with parameter 4 — a. We take R(-) to be independent of the
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process V(-). Thus R(¢) is that unique diffusion governed by

45) . 1/( d? 3—a d 0

: = —{—+ - > 0.

( R 2 dpz p dp ’ p

Since 4 — a > 2, R(¢) > 0 a.s. if R(0). Thus for each r > 0, the law of R(-) on

(Q,, #) uniquely solves the (Gg, C4(0, ©))-martingale problem starting at r.
Define

1,
A(t)=§f0R(s) ds, ¢t>0.

Then t — A(¢) is continuous, strictly increasing and independent of V(-).
Recall é is the explosion time of V().

THEOREM 4.4. For any z € R3\{(0,0,a): a > 0}, if (R(0), V(0)) = ®(2)
and Z, = z, the law of (R(2),V(A() up to time A~Y(&é) on (Qs,.#) is the
same as that of ®(Z,) up to the first time Z, hits {(0,0, a): a > 0}.

Proor. By Theorem 4.1 and Remark 4.2 it suffices to show (R(¢), V(A(2)))
solves the (G, C2((0, ) X R2))-martingale problem up to time A~1(&). It is no
loss to restrict attention to f € C((0,%) X R2) of the form f(p, v) = f,(p) f(v),
where f, € C2(0,) and f & CZ(R2). By Theorem 3.2 and the independence of
R(-) and V(-), the rest of the proof is straightforward. O

In the sequel, we will abuse the P,, P,, etc., notation, letting the subscript
denote the starting points of the processes inside the P.

Next we determine the image of o := ({0} X W)\ {(0,0,0): @ > 0} under
the mapping z — (p,v) in (1.8). Observe the image of {y € J} in the stereo-
graphic coordinates (r, ) in (4.2) is (0, %) X {0} X (R\ (-8, 8)), where
| 4.6 6 =246(0 sin 0

(4.6) _()_1+cos0'
Thus by (1.6), (4.2) and (4.4) wehave z€J @ y € J = (r, u) € (0, ©) X {0} X
R\ (=8,8)) = (p,v) € (0,0) X {0} X R\ (—8,8)). Consequently, the first
time 7, that Z, hits {0} X Wy is the same as the first time v(Z,) explodes or
exits the set
H(3) = H; = RA\[{0}) X (R\ (-8,8))].
Thus if we define
ns = inf{¢ > 0: V(¢) & H,}
then for z € W, and (r,v) = ®(z) we have by Theorem 4.4 and independence
P,(7y>t) = P,(v(Z,) € H forall s < t)
=P, ,(V(A(s)) € H; forall s <¢)

(4.7) =P, ,(n; A &> A(t))

= [Pn; A 6> 5)d,PA(t) < 5).
0
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REMARK 4.5. When « = 1, Y, is a three-dimensional Brownian motion [see
(1.2)] and hence Y; has a skew product representation (R(¢), ®(A(¢))), where
R(t) is a Bessel process with parameter 4 — a = 3, O(¢) is an independent
Brownian motion on S? governed by the Laplace-Beltrami operator Lgz2 on
S?% and A(t) = 3/¢{R(s)"2ds. Thus © and V represent the same process in
different coordinates and é = « a.s. Hence for y = (‘/Z ,29,25) and (r,u) =
(yl, ¥(y/|y])), where ¥ is the stereographic projection, we have

P,(0(s) € ¥(({0} x W2) \ {(0,0,a):a > 0}) forall s € [0,¢])
=P,(n; > 1t).

Since Lge is self-adjoint with respect to Haar measure on S2, once we know
lim, ¢ 'log P(ns >t) = —As < 0 then (obviously)

tll_l)n t~tlog P,(0(s) € ¥(({0} x W)\ {(0,0,a):a > 0}) forall s €[0,¢])

= —2;<0
and it will follow that
P,(0(s) € ¥(({0} x W)\ {(0,0,a):a > 0}) forall s € [0,¢])
~ C(u)exp(—Azt) ast — o
[cf. Port and Stone (1978), pages 121-127]. In particular, we have
(4.8) P(ms>t) ~C(v)exp(—Azt) ast - o, a=1.
5. Preliminaries to the study of n; A é. For any locally compact Haus-
dorff space D with countable base define
C(D) = {f: D - R|f is continuous},
B(D) = {f: D - R|f is bounded and measurable with respect
to the topological Borel o-algebra},
Cy(D) = C(D) n B(D),
Co(D) = C(D) N {f:supp f is a compact subset of D}.

For any D c R? let np, = inf{t > 0: V(¢) & D}. The process V(+) induces the
following semigroups:

(5.1) T, f(v) = E,[ f(V(2))I(é > ¢)], f € B(R?),
(5.2) TPf(v) = E,[F(V(£))I(np A é> t)], fe B(R2).

We describe various properties of these semigroups via the following sequence
of lemmas. In the sequel we will say “D is an open subset of R%” and we will
mean that R? is endowed with the relative topology of R? and D is an open set
in the relative topology. We will write 4, D for the boundary of D in R2 and
dD for the boundary of D in R2,

It is desirable to have the semigroup T, strong Feller for open subsets D of
R2, but the proof seems difficult. However, we have a property very close to
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this and just as useful, at least for our purposes.

LemMA 5.1. For any open subset D of R%, o> 0 and fe BR2) the
function

veD - f e "' TPf(v) dt
0
is continuous.

Proor. We have for n%, = inf{t > 0: V.(¢) ¢ D},

/Owe-vt TPf(v) dt = [ e~ E, f(V(£))I(np A &> ) dt
0

= [ B[ F(Vi(r()I(nh > 7(1)] de by (3.13)]

(5.3) *
= | Eoexp(=ori () F(Vi()) () > s)

« 2ds
[Vl‘”(s) + [v@(s)]* + 1]2

Now the components of the V, process are the square of a Bessel process with
parameter 2 — a and an independent one-dimensional Brownian motion. Hence
it has an explicit density and enjoys various nice properties. Since V; is
obtained from V, from a transformation of drift, it enjoys many of the same
properties. Thus it is not too hard to prove the ds-integrand in (5.3) is
continuous as a function of v € D. A little more argument shows that the
integral itself is continuous as a function of v € D. For the sake of brevity we
" leave the details to the reader. O

Lemma 5.2, For any 6 > 0,
Pv(sup[V(s) = 8) -0 ast—0
s<t

uniformly on compact subsets of R2.

Proor. We have for y > 0,

Pv( sup(V(s) —v| > 8) = Pv(sup[Vl(Tl(s)) —v| = 3)

s<t s<t

< P(suplVi(s) = vl = 5] + P,(y(8) = 7).
s<y
The_ first term on the left goes to 0 uniformly on compacta as y — 0 by the
Cameron—Martin-Girsanov formula (3.11) and that the corresponding result
holds for the nice process V,(-). Once we know the second term is upper
semicontinuous in v for given ¢ and v, then for fixed y small and sufficiently
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small ¢, by compactness P,(7r,(¢) > y) is uniformly small for v in a given
compact set. But upper semicontinuity is easy: For ¢ and y > 0, let f, € C,(R)
satisfy f,(x)| I, ;(x) as n > o with f, < 1. The function

2ds

[xl(s) +x,(s) + 1]2

Y
wEQ2—>f
0

is continuous and bounded, hence
f 2ds
0 [ay(s) +xo(s)° + 1]

is also continuous and bounded. Since the law ¢_ Vi(*) on (Q,,.#) is the
unique solution to the (L, CA(R?))-martingale problem starting at v € R? [see
(8.9)], v € R2—> E, (77 (y)) is continuous and consequently P(r(t) > y) =
P(t > 77 (¢)) is a decreasing limit of continuous functions. O

w€Qy,—>f,

LEMMA 5.3. Let D be an open subset of R%. Then
C&(R?) N {supp f N R%c D}
c 2(D) = {f:lim,_ ot {TPf - f] = Lf uniformly on D}.

Proor. Let f& CZR? N {supp /N R3c D} and set K = RiN supp f.
Choose a compact subset K c D such that K cK,Kni, D=0 and d(R2\ K,
K) > 0. Set
(5.4) ¢=d(K,0,D) Ad(R3\K,K) (>0).

For K¢ = R2\ K and K°¢ = R2\ K, by the strong Markov property applied at
time 7ngze,

sup P,(V(s) € K) < sup P,(nge < s)

vekKe® veke

< sup P(mge<s)

(55) y€6+K
< sup Py(supr(u) -yl = 6).
yeda K u<s

Since f=0on d,D U {x} we get
TPf(v) = B, f(V(£)I(np A é> ) [by (5.2)]
=E,f(V(t Amp A é))
and because the law of V(-) on (,,.#) solves the (L, C3(R%))-martingale
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problem up to time é (see Theorem 3.2) we have

Suglt_‘[Tth(v) ~ ()] = Lf (v) |

sup
veD

sup (") v sup ()
vek veD\K

(1) v (2), say.

eE, [ LA(V(s) ds — Lf(v)
0

IA

Now for v > 0,

(1) < t'lftsuQEvI(nD A é>8)ILf(V(s)) — Lf(v)|ds
veK .

+171 [*sup P,(s = mp A O)ILf(v)] ds
0yeR

<t! fotsuPE"I(”D A &> 8)ILF(V(s)) — Lf(v)II(IV(s) — vl <) ds
veEK

+ t-1/’t2[sup[Lf|] sup P,(JV(s) — v| = y) ds
0 vek

+ t'lftsuva(s > np A é)sup|Lf|ds.
0yer
The first term on the right can be made arbitrarily small for y sufficiently
small independent of ¢ (by uniform continuity of Lf). In the third term, by
5.4)
P(s=2mpAé) < Pv(supr(u) -v| > 5).
u<s

Hence by Lemma 5.2, for y > 0 given (small), we can make the second and
third terms arbitrarily small too. Thus we can choose v > 0 small and then
¢t > 0 small so that (1) is arbitrarily small.

As for (2), since Lf = 0 off supp f = K c K,

(2) < t‘lft sup E,[I(np A &> s)LF(V(s))|] ds
0 veD\K

< [suplLfI]t_lfOt sup ﬁPv(nD Aé>s,V(s) €K)ds.
veD\K

By (5.5) and Lemma 5.2 the ds-integrand can be made arbitrarily small for ¢
sufficiently small. Thus f € 2(D) as desired. O

LEMMA 5.4.
CZ(R%) n {f = constant outside some compact subset of R%}

c {fe Cy(R2): lim sup [T)f - F(v)]](v) = O}
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Proor. Let
f € CZ(RZ) N {f = constant outside compact subset of R2}.

By replacing f by f — f(w) it is no loss to assume f € CZ(R2). Let K = supp f,
a compact subset of R2. Then

sup [Tf — f(v)I](v)

IA

sup (") V sup (")
vekK® veK

(1) v (2), say,

(5.6)

and since f= 0 on K¢,

(1) = sup [TJf\(v) = Ifi(v)].

By Lemma 5.3 (with D = R2) the latter goes to 0 as ¢ — 0. Moreover, for
B (v) = {w: |w —v| <9},

(2) = sup{T[f(-) = F(0)lLp,0(0)] () + T[If () = F(@)a ()] (v)

IA

(") + (2suplf]) s%pP,,(V(t) € B,(v)°)

< (") + (2suplf)) sup P, (sup|V(s) — vl 2 ).

s<t

The first term on the right can be made arbitrarily small if ¥ > 0 (independent
of ¢) is small enough and then given vy, the second term goes to 0 as ¢ — 0 by
Lemma 5.2. O

6. Lower bounds. To get lower bounds on P(n; A é >¢t) as t > », we
use the results of Donsker and Varadhan (1976). Let .# be the set of
probability measures on R% and endow it with the topology of weak conver-

gence.
For any u € .# with suppu being a compact subset of R2, define the

Donsker-Varadhan I-function
Lf
6.1 T = — inf | —du,
(6.1) (w) = = inf, J 7 an
where
¢ = {f € C2(R%): f = constant outside a compact subset of R? }

and
¢ ={fe ¢:inf f> 0}.

Our lower bound is given in the following theorem.

“THEOREM 6.1. Let Wbe a cémpact subset of R2. Then

liminf ¢~ 'log inf P(n; Aé>t) > sup sup [—I(u)],
U vew Uex(3) wO)=1
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where
H#(8) = {U < R2: U is bounded and open in R2 with C* boundary in R?
and U c U c Hy)

Proor. First observe that in the right-hand side sup,, 7, ; may be replaced
by supgpp . cv- Let U € #(8), v € W. It is loss to assume W c U. We have

(6.2) P(ns Né>t) = P(ny>1t),

where 7y = inf{t > 0: V(¢) & U}. Thus we are only concerned with the behav-
ior of V() on a neighborhood of U. Hence the complicating factor of the
possibility of V(-) exploding does not really enter into the scheme of things. So
outside of U we modify the coefficients of the differential operator L associ-
ated to V() in a convenient manner, and then apply the Donsker—Varadhan
theory. Now the details.

Modify the coefficients of L outside a neighborhood of U in such a way that
a new operator I is obtained with the followmg properties. First, L is
associated to a process V(¢) with state space R2 if V(0) € R2. Second, the law
of V(-) on C([0,), R%) is the unique nonexplodmg solution to the
(L, CA(R?))-martingale problem and V(-) = V(-) in law up to the first exit time
from U. We will write 7, = inf{t > 0: V(¢) & U}. Of course, ny = iy in law,
so our problem is reduced to obtaining lower bounds on inf, . v P,(7, > t) [see
(6.2)].

Define a random measure L, € .# by
~ t ~
L(A) =t [1(V(s)) ds
0

where A is a Borel set in R2. Thus L, A) is just the proportion of time up to ¢
spent by V in A. Observe L, induces a probability measure Q, , on .# defined
by

Q,(2) =P(L(") € 2),
where & is a Borel set in .#. The semigroup
T,: B(R) - B(R?)
defined by V [ie., T, f(v) = E, f(V(t)), f € B(R?)] is actually Feller:
(6.3) T: Cy(R}) = Cy(R3).

This is because the law of V(-) on C([0,»), R%) is the unique nonexploding
solution to the (L, C2(R2))-martingale problem [cf. Stroock and Varadhan
(1979), proof of Corollary 6.3.3, pages 151 and 152].

Let L be the strong infinitesimal generator, with domain & c C4(R?), of
the semigroup {T\}. We write 9*= {f € Z: inf f > 0}. For each u €.# with



1050 R. D. DEBLASSIE

supp u € U, define
Lf
I(p) = — inf [—du.
(m) fél}@+ff n

Apparently there is a conflict of notation with (6.1). However, since V() gives
rise to the unique solution of the (L, C2(R2))-martingale problem, by Pinsky’s
theorem [Pinsky (1985), Theorem 1.4 and Section 4, pages 344, 361 and 362]
for u € .# with supp u € U we have
L L
inf —fd,u = inf —fd,u,.
reo’ f ree*’ f
Since supp 4 < U, the latter is inf, . .+ [(Lf/f) du and there is no ambiguity.
The following hypotheses are required in the Donsker-Varadhan theory.
Define

(6.4) Tf(v) = E,[ F(V())I(7y > t)],  feB(R%),
(6.5) B(v, A) = f:e"“(’f‘,UIA)(v) dt, A>0,AcCR?.

Let m be Lébesgue measure on R2. Let

B, = {fe Cy(R2): lim sup|T, f — f| = 0},
t—-0 v

(6.6) .
By, = {fe Cb(Ri): lim Sup[TtIf_f(v)'](v) B O}'

t—-0 v
An argument similar to that in the proof of Lemma 5.4 shows
{f € C3(R2): f = constant outside some compact subset of R2} < B,.

Hyporuesis H,. For each v € U, R} (v, dy) < m(dy).

Hypotuesis Hy,. Let a € .# with I(a) < ®. Then every neighborhood of «
in # contains a neighborhood of the form

(6.7) {,L e ffj[dﬂ —da]

where f1, ..., fi € By,-

<s,1sjsk},

Hypotuesis Hy. Let u € .# with I(un) < © and supp u € U. Then for any
f € B(R?) there is a sequence {f,} C B, such that sup|f,| < sup|f] and f,, = f
a.e. (u).

« Hypotuesis H,. Ifv € U and E c U with m(E) > 0, then R}(v, E) > 0.

Hyporuesis H,. For each EcU and A >0, ve U- R}, E) is
continuous.
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Now we can state the lower bound of Donsker and Varadhan (1976),
Theorem 8.1, page 446.

THEOREM 6.2. Let u € # satisfy I(un) < © and suppu € U. Suppose N is
a neighborhood of w in .# and .#(U) is the set of probability measures in .#
with support contained in U. Under Hypotheses H,-H,

liminft'log @, (N N.#(U)) = —I(n),

t—> o0

uniformly for v in compact subsets of U.

ReEMark. For H; Donsker and Varadhan (1976) actually require the exis-
tence of a reference measure 8 on R2 such that P (V(¢) € dy) = p(¢, v, y)B(dy).
However, examination of the proof shows that this is needed only to assert

y(v, dy) < B(dy)—our Hypothesis H;. Also, their Hypotheses H; and H,
are only required for the measure p in the statement of their Theorem 8.1.

THEOREM 6.3. In the present context, Hypotheses H,-H; hold.

Proor. H;: Let E be a Borel set in U with m(E) = 0. Then for each
t>0,

fte"‘s P(7iy>s,V(s) €E)ds
0

= fte'“ P(ny>s,V(s) €E)ds
0

= [ P,(nb > 71(s), Vi(ri(s)) € E) ds [by (3.14)]
2ds
) —3-
[VO(s) + ViP(s)® + 1]

— E, [ (> 5, Vi(s) € E
0

But
P,(Vi(s) €E) = E,Ri(s)I(V(s) € E)  [by (3.11)]
< ecs[PU(Vl(s) S E)] 12 (by Lemma 3.1)
=0, '
since V,(+) has a density with respect to m (cf. the proof of Lemma 5.1). Thus

BY(v,E) = lim e P(fiy>s,V(s) €E)ds =0
U v U

t—o Y
as desired.
H,: Let @ €.# and consider any neighborhood N of a. It is no loss to
dssume that for some ¢ > 0 and h,..., h, € CHR?),

N={/.¢ eA: fhjd(a—u) <£,1$j$p}.
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~ Choose M > 0 such that
a(R2\ B,,_,(0)) < 3[16 max sup|h«|]A

Let fe CAR) satisfy 0 <f <1, f—lon[M ©)and f=0on (-0, M — 1].
Set hp+1(x) = f(jx|), and observe it is in By, For K = R2n BM(O) extend
hjlk, 1 <j <p, by h; € CAR?) with |h;| < h;| pointwise. Thus %; € By,
1 <j < p. All that remains is to show for y=@G ‘A [16 max, _;_, sup|h 117 Ve,

{,L e/:‘fhjd(a—,u)l<y,1$j$p+1}gN.
Indeed, if u satisfies lfﬁj dla —p)| <vy,1<j<p+1,then for K° = R%\ K,
w(K®) < [iz,pﬂdﬂ <y+ fizp+1da
<yt a(ﬂ"\?i\ BM—I(O))
< ¢|8 max suplh |

l<j=<p
Thus for 1 <j < p we have

fhjd(a—,u) < fﬁjd(a—,u)] +][(hj—ﬁj)d(a—u)]

Sy+V C(hj—fzj)d(a—p,)

€
<=+ [2 max suplhj|][a(Kc) + u(K°)]
2 1<j<p
€ _
<=+ (2 max sup|h | [8[16 max supthI]
2 l<j<p l<j=<p

-1
+¢|8 max suplh | ]
l<j<p

<eE.

H,: Since CZ(U) is dense in LYU, du), we can choose f, € CAU) with
f. = flU in LX(U, dw) and supylf,| < supylfl. Extract a subsequence fn, = flu
a.e. (w). Since f, € CHU) c C§R3) c By, < By, H; follows.

H,: Let E c U with m(E) > 0 and v € U. First assume v = (v, v,) satis-
fies v; > 0. Then we can choose a bounded open (in R?) set D € D < (0,%) X R
with v € D and m(D N E) > 0. Since the diffusion V is very well behaved
on D,

< fwe‘“Pu(V(s) €D forall0 <s <tand V(¢) € EN D)dt
0

< fwe*“ P(7iy>t,V(t) € E)dt
0

= R} (v, E) as desired.

An easy stopping time argument handles the case when v, = 0.
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H,: This follows immediately from Lemma 5.1 and the fact that TV = T'U.
This completes the proof of Theorem 6.3. O

Now we complete the proof of Theorem 6.1. We have

liminf¢~!log inf P,(ny > ¢) = liminf¢~!log inf P,(7, > t)
veW tow vew

t— .
= liminf¢~!log inf @, ,(.#(U))
t— o0 veWw ’
sup [—I(n)]
supp ucU

by Theorems 6.2 and 6.3. Since U € .%¥(§) was arbitrary, by (6.2) the desired
conclusion holds. O

%

7. Upper bounds. For d,H; = {0} X {R\ (-8, 8)} (as before) define

£(8) = {fe C?( H;)| for some constants ¢, and ¢,, lim f(v) = ¢,
v—9d, H(8)

L
lim f(v) = ¢y, — < inf L loglfl, sup7f < 00}.

v

Write £(5)* for those elements f of #(8) with inf f> 0. Our upper bound is
given in the following theorem.

THEOREM 7.1.

lim suptz~!logsupP,(ns A € > t)
t—o H(5)

L L
sinf{sup—]f: fe f(8)+, sup—}f < 1}.
e | H()

For the proof we need the following results.

Let H(8)** = H; U { £} be a two-point metrizable compactification of Hj
obtained by identifying d . H; to —o and then performing the usual one-point
compactification procedure on the result by adjoining +. Thus a neighbor-
hood of + is of the form (Hy; U {—=})\ K for some compact subset K of
Hj U {—o} and a neighborhood of — o is of the form R2N U for some open set
U c R? with {0} X {R\ (-5,8)} c U.

Define the semigroup T,**: B(H¥*) — B(Hj*) by

T () = B, f(V(t A 1y A 8)) |
TH®f(v) + f(—©)P(n; A€ <t,m; <é)
(71) _ +f(©)P(ns NEé <t,ms>¢), v € H,
) (=), v= -,
f(), ' v =
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Let 2(8) = 25 be the domain of the strong generator .#; of T,**. Then for
any f S &

(7.2) Tp*f—f= [Tr*syfds = [£,Tr+fds
0 0
[Dynkin (1965), volume 1, page 23, 1.3.C].

THEOREM 7.2 (Maximum principle). Assume f € B(H*)

(1) f(t,)e 2, fort=0,
af
(ii) —(t, ‘)€ 25 fort=0,
(iii) [«/(t )] = [ (¢, )J
Then

o
B f(6,V(E Amg 4 2)) = £0,0) = By [/ 50+ 47 | Viw A g 1) da

Proor. Write £(2) = V(¢ A n5 A é). Then
Euf(t: f(t)) - f(O,U)
=E [f(t £(t)) = £(0,£(¢)) +£(0,£(¢)) —£(0,v)]

—Ef L, £(1)) du + E, [(4£(0, )(£(w)) du

[by (7.2) and ()]
- B[ o (e du+ B[] S, 600) = S )|
+B, [ 43 £, )] (£(w)) du
+Evft[[»/3f(0, )] (&) = [ F(u, )](E(w))] du
—Ef

B[ [ (s, D) (6w)) dsdu by (7.2) and Gi)].

+jf](u £(u)) du +E[f[ ](u,g(s))dsdu

The proof will be complete once we show that the last two terms cancel.
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Indeed, in the last term, by (iii) and an interchange of integrals,

B[ s, 600 dact = [ L] 2 0, 6000

S

precisely the second-to-last term, as desired. O

Proor or THEOREM 7.1. Write
L L
ly = inf{sup—f: feZ(s)", sup—f < 1}.
Ho) | H(3)

Let ¢ > 0 and choose f € £(8)* with sup Lf/f < l; + ¢. Consider any g €
Cs(R%) N {suppg N R2C H,} with 0 < g < 1. Define w(t,v) = cf(v)els™*",
where ¢ = [inf ]~ . Notice

w e CY2([0,%) X H;) N Cy([0,) X Hy),
w(0,v) =cf(v) 21> g(v),

i L
-
We are going to use the maximum principle (Theorem 7.2) to show w > T#®g.
Indeed, let T > 0 and for ¢ € [0, T'] define h(t,v) = TH#®g(v) if v € H; and 0
if v € {+0}.
For the rest of the proof we take v € H;. Notice T ®g = T,**g and
THO®Lg = T**Lg on H;. Then by Lemma 5.3, Lg and g € Z; and .£,g =
Lg. Moreover, h(t,-) = T#*g(-)and h(t, - ) € Z; for t € [0,T]. Also,

oh
(7.4) ot

(7.3)
l + — _f) > 0
5 € f w=0.

ad
(t,) = == [Tr*g)| = -4Tivg
s=T-t¢

= —T7*Lg € Z;,

and consequently

oh
S

ior (6) = —£Ti% L

Ii] Ii]
= [TF*Lg] = a—t%TT*_*,g

a
= 550 ().

Thus (i)-(iii) in Theorem 7.2 hold for (¢, - ), t € [0, T ], and hence for ¢t € [0, T']
we have ’

oh
F +.,/3h](u,V(u Ams A é))du.
v

E,h(t,V(¢t Amy A &) — h(0,v) = Euf"
0
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By (7.4) 0h /0t = —_Zsh so this becomes

E,h(t,V(t AmsAé))—h(0,v)=0, ¢te][0,T]
But A(¢, +®) = 0 by definition, hence we get
(15)  E,[h(t,V(£))I(n; Aé> )] —h(0,v) =0, ¢te[0,T].

Since the law of V(-) on (,, .#) solves the (L, CZ(R?%))-martingale problem
up to time é (Theorem 3.2), by optional stopping we have for any bounded
open subset K of Hj,

Ew(T — ¢t Ang, V(¢ Ang)) — w(T,v)
tAng w
=EU[0 (Lw— —a;)(T—s,V(s))ds

<0 by (7.3)

[cf. Stroock and Varadhan (1979), Theorem 4.2.1, page 86]. Letting K 1 H;
gives

Ew(T—tAnsAé,V(t AnsAé))—w(T,v) <0, te[0,T]

Subtraction of (7.5) yields
Ew(T -t Ams A&, V(t Ay A &) — E[{THDg(V(2))(ns A é>t)]
<w(T,v) - Tf®g(v),
where ¢ € [0, T]. Since w > 0,
E[w(T - t,V(2)) - TFPg(V() | I(ns A é > t) <w(T,v) - TH¥g(v),

and upon letting ¢ 1 T,

E[w(0,V(T)) — g(V(T)]I(n; Aé=T) <w(T,v) - Ti®g(v),

where we have used Lemma 5.3 to get TH®g — g as ¢ — 0, uniformly
on Hj. Now the left-hand side is nonnegative by (7.3), hence we end up with
TH®g(v) < w(T,v). Let g 11 pointwise on H; and obtain P(n; A é>T) <
w(T, v). Finally, we get

fe(l5+£)t

=1l;+e.

su
limsup¢ !logsup P(ns A é > t) < limsup¢™! log[ -
t— o H(5) t—>x lnf

Since ¢ > 0 was arbitrary, the proof of the theorem is complete. O

8. Equality of the bounds. First we work on the upper bound.
Let H(8)** be as in Section 7. For any

+ Lf
fe G(6) ﬁ{sup—<1}
He
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define
Lf

(£) = li Lf( )

— (£ ) = limsup —(v).

f an T

For any metric space S define .#(S) to be the space of probability measures
on S; endow .Z(S) with the topology of weak convergence.

LEMMA 8.1. For any compact set C € H(8)**,

. Lf + Lf
mf{ sup—: fe€ Z(8) , sup— < 1}
c | He

a
(a) L
= sup 1nf{/~—d,u, feL£(8)", sup— < 1}
pe(C) e [
L L
(b) inf sup — A = sup inf f ——f du.
fes(8* C f nweAC) fe2(8)*

Proor. The proofs of (a) and (b) are quite similar, so we only furnish that
for (a). Let

+ Lf
S= {log f: fe£(8) and sup— < 1}
H(5) f
and observe that for h € .7 with

u=ehef(8)+m{sup£’-p <1}

H(5)
we have
Lu 1 Le”
(8.1) - =Lh + §<th,Vh>= -5
where
a(v) = —;—(v1 +v3 + 1)2(4:))1 (1))
Thus

ol
S= {h € C?(H;) N C,(Hg*)| — o < inf Lh, sup —5- < 1}
H(3) He €

For h € .7 define %, to be the collection of sets of the form

N .
<e, Vxe HF* and

N, ({e}) = {

Le”
< sup|——

Le?®
sup|——
eg

)
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where {¢,} € (0,©)7®" Then {#,: h € .} induces a topology on . in which
%), is a neighborhood base at & for each » € .. Moreover, if A, — h in this
topology then

Le Le"
T (x) > —(x)

for each x € Hj** and supn,x|Le »/ehn(x)| < . Thus, for fixed u €.#(C),
the function

Leh

is lower semicontinuous (by Fatou’s lemma) and convex [by (8.1)]. Since
Le* /e is upper semicontinuous on Hj}* for each h € ../, u €.#(C) -
[(Le"/e*)du is upper semicontinuous and linear. Now .#(C) is convex and
compact and .~ is convex, so by Sion’s minimax theorem [Sion (1958),
Corollary 3.3, page 174] we have

Le”

RHS(a) = sup inf [—,—l—dﬂ
pes(C)her’ ©
) Le*
= inf sup /_hd/‘"
hespenc)’ €
) Le"
= inf sup —
her Cc €

Lf + Lf
inf{sup—: feL(8) ,sup— < 1}
c f ue)

(by definition of .#). O

LEmMmA 8.2. For 4, ,, = .#(H(8)**), we have

—Ag == sup inf f———d,u
I-"E‘/l** ij(5)+

L
= sup 1nf{f du:fEf(6)+,sup—f<1}.
nEM, , H(5) f

Proor. Clearly < holds. For the opposite inequality, let —A; be the

left-hand side. By Lemma 8.1(b), — 5 < 0 and moreover, given 0 <& < 1 we
can choose f € (8)" such that
Lf
sup —

—As; +e <1
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Thus

+ Lf
f e Z(6) ﬁ{sup—<1}
FORS

L - L
sup inf{f—fd,u: fe (8", sup—}—c < 1} < —A; +e.
WEA g 4 f H(5)

Letting ¢ — 0 gives the desired inequality. O

Lemma 83. For A; as in Lemma 8.2, there is p, € .4, 4, such that
wol £} = 0 and

—As =inf{[£fd,u,0: feZ(s", supH < 1}.
f H()

ProorF. By upper semicontinuity, the first supremum in Lemma 8.2 is
taken on, say at u,, and hence

inf /Efi—rd%: sup inf{/fffd,u feZ(s)", supff <1}

— A
fe L)+ WEM g H(8) f

[\

Lf . Lf
inf! [ — du,: f€ L(6 — <1
ln{ffuofe (),Zl(lgf<}

\

Lf
inf —duy= —As.
fef(‘o‘)*‘[ f Ho °

Thus

(8.2) —)\5=inf{[L—ffd/.L0: fef(8)+,:1(11))£]_0<1}.
é

It remains to show uq{+ =} = 0.
First assume uy{ —} > 0. Consider the ordinary differential equation
2

M
g,(x) + _Z;g(x) = Oa

2 -«

n +
g"(x) ox

where M > 1. A solution is given by [see Gradshteyn and Ryzhik (1980), page
971, 8.491.3]

g(x) = Cx*/*"J_, 5(V2 Mx'/?),
where oJ, is Bessel’s function and C is chosen so that
% ( _ 1) kM2kxk

8(x) = ,}50 2kIT(k+1—a/2)

Let g,,(v) = g(v,) for v € R2. Then for v, small, g,,(v) > 0, and hence there
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is a neighborhood N of 9, H; = {0} X {R\ (-8, §)} in R2 such that inf,, g,, > 0
and for v € N,

Lgy(v) = L{g(v,)]

_ W—2+1)[4v1g”(v1) - 2(2 —a- M)g’(vi)}

4 v, +vs+ 1
(v1+v§+1)24 2-a M?
- | - e ) - st
(8.3) +2(2 SR 1)g(v1)J
(v, +v2 + 1)2 4(1 - a)v,
- oM%(v,) - '
2 { g(vy) (U1 +oE+ l)g(vl)}

(v, + V2 + 1)2
4

IA

{_2M2g(vl) +g(v1)}

1
Z[l - 2M2]gM(U)-

By changing g outside a small neighborhood of 0, we can assume g,, € £(5)".
Set uy(B) = uo(B N {—})/ue{ -}, an element of .#Z({—»}). Then by (8.2)

IA

L L
—A5 < ,u,o{—w}inf{/——fd,ul: fe£(8)", sup —f < 1} + 1.
. f He)
Since u; € .#({—}) we see the infimum on the right only depends on the
behavior of Lf/f, f € £(5)*, in a neighborhood of { —}. Thus by (8.3)

Lg
—As < uo{—w}/;ﬂ duy + 1
M

1
< ﬂo{_w}z[l - 2M?] + 1,

and upon letting M — » we get —A; = —», a contradiction. Hence
ﬂo{_°°} =0.

Next assume wq{+} > 0. If for each M > 1 we can find f,, € 4(8)* and
K(M) > 0 such that Lf;,, < —K(M)f,, on a neighborhood of + and
K(M) - o, then a simple modification of the argument above yields —A 5=
—o, a contradiction. Thus u{+»} = 0. So let us find f,,.

By Corollary 4.3, L is L expressed in the coordinates (v, vy) = (U2, uy),
u € R%. Thus it suffices to find f,, € C%(H,) such that f,, has limits at + oo,
I‘IfM~s —K(M)fy _on a neighborhood of +w, inf f;; >0, and —o <
inf L(og f3), sup Lfy,/fy < .
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Expressing L in polar coordinates (p, 8), where |u|? = p% and tan 6 = u,/u,,
we see its radial part is

) (p2+1)2[32 +1(1+ (1—0()(1—;02))1}‘.

, 4 W p p2+1 ap
Then it suffices to find £ > 0 and g,, € CZ((¢ ™, )) such that inf -1 ,, gy > 0,
lim, . gy(p) = C >0 exists and D,g, < ~K(M)gy, on (¢~ !,), where
K(M) > xas M — .
Changing variables s = p~!, we need to find £ > 0 and g,, € CZ(0, ¢) with
infy ., gy > 0, lim, ,, gy(s) = c and D gy < —K(M)gy, on (0, ), where

5 (1+32)2ld2 1( L 232(1—a))d]’

s 4 s 1+s2 |ds

ds? s

The differential equation

fl/ +

2 -«

. fr+M?*f=0

has
f(s) = Cs(a—l)/zJ(l—a)/z(Ms)
as a solution, where ¢/, is Bessel’s function [Gradshteyn and Ryzhik (1980),
page 971, 8.491.6] and C is chosen so that
= (=Df(Ms)*
fs) = L FRT((3—a)/2 + k)

k=0

. Set g5, =f and see that for ¢ > 0 sufficiently small, g;, > 0 on [0, &), g3 €
CZ0, ¢) and on (0, &)
2s*(1 —a))
e L
1 25%(1 — a) ) }
2—a- ————" gk

Lis2 1) 2« M? +
= — - /+ —
D ( S &k gM) S T+ 42

1 . 12 1 9
—(s2+ e+ —|2-a-—
4(3 ) | &ir s (]

2s%(1 — a)

TTiaer ST Mng]

1
= J(s7+ 1)?

1
2(32 + 1)2[gM - Mng]

IA

1 2
—Z(M -Dgy

IA

1

where K(M) — © as M — =, as desired. O
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Now let us work on the lower bound.

LEMmMA 8.4. Let U € %1(8) (as in Theorem 6.1). Then

Lf
sup [—-I(u)] = sup inf f—— du.
w@)=1 w(@)=1 fe€*n{sup Lf/f<1} f

Proor. By (6.1)

Lf
sup [—I(u)] = sup inf f— du.
w@)=1 W@ -1 feer’ T
For any u € .# with u(U) = 1, we see that inf;c o+~ gz, r<py [(LF/f)du
is unaffected by the behavior of Lf/f outside a neighborhood of U; conse-
quently
L L
sup inf —f du = sup inf f —f du.
w@)=1 fe € n{sup Lf/f<1} f w(@)=1 fe€¢*n{supy Lf/f<1} f
Thus the lemma comes down to showing
: L
sup inf f—fdu = sup inf f— du.
w@)=1 feec* f w(O)=1 fe€*n{supg Lf/f<1} f
Just as in Lemma 8.1 we can use Sion’s minimax theorem to interchange inf
and sup on both sides [since {u: u(U) = 1} is compact]. Then it suffices to show

. Lf . Lf
inf sup — = inf sup — .
fe€t U fe¢*nlsupgLf/f<1}y U

But this is easy (cf. Lemma 8.2). O
We can now prove equality of the bounds.

THEOREM 8.5. The upper and lower bounds are equal:

, Lf + Lf
sup sup [—I(n)] =inf{sup—: fe £(8) , sup— < 1}.
Uex(5) wT)=1 He He [

Here %(5) is as in Theorem 6.1.

Proor. It suffices to show > (because < follows immediately from
Theorems 7.1 and 6.1). Since H(8)** is compact, by Lemmas 8.1(a) and 8.2

L L
inf{sup—f: fe£(6)+, sup—f < 1}
He H(s)

. Lf + Lf
<inf{ sup —: feL(d) ,sup— <1
Hey | e

= sup inf{fﬂcdp,: fe£(8)", sup _[_4—0 < 1} [by Lemma 8.1(a)]
REM y & f H(5) f

—A; (by Lemma 8.2).
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Hence by Lemmas 8.3 and 8.4, it suffices to show
Lf
sup  sup inf f —du
Ue #(8) w(U)=1 fe ¢*n{sup Lf/f<1} f

> inf{/—l—},fduoz fez", sup)ffl—c < 1}
H(3

(8.4)

where 1, is from Lemma 8.3 (uo{ + o} = 0).
So consider any U € #(8) with uy(U) > 0 and let

Lf
fecCtn {sup——f— < 1}.

Since U C H; in R} it is no loss to assume f = constant on a +Hj; and hence

L
fef(8)+ﬂ{sup7/f < 1}.
H()
For py(B) == puo(U) wo(B N U) and T° = R2\ U we have

L _ L L
RHS(8.4) < [—f'f dug = Mo(U)fﬁ_ff duy + fgc“ffd

—_  Lf —
< uo(T) [ — duy + no(T)
uf
and taking the infimum over all such f yields

_ Lf _
RHS(8.4) < uo(D) inf f —duy + wo(R2\ T)
feernlsupLf/f<1y’ f

<po(U) sup / d/«L + uo(RI\T)
w@)=1 fe/*n(supo/f<1)
< po(U)LHS(8.4) + po(R3\ T)
- LHS(8.4) as U1 H;, U € %(5),
since w = {+x} =0. O
CoroLLARY 8.6. The quantities in Theorem 8.5 have common value —Aj;.

Proor. This follows immediately from the proof of Theorem 8.5. O

As an immediate consequence of Theorems 6.1, 7.1 and 8.5 we have the
following result.

THEOREM 8.7. For any compact set W C R,

lim ¢~ !log 1an(175 ANE>t) = hmt llog sup P(ns Aé>t) = —
Unde veH(s)

9: Analysis of the p-part of Z,. In this section we study the quantity
t du
P(A(t) <s) = P,.(/(; W < S)
appearing in (4.7). Our main result is the following theorem.
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THEOREM 9.1. Forany! > 0 andr > 0,

o ds
e d, P [ —— <u|~B)(r2) "
fo ‘ r(fozR(s)2 u) (1)(r~2)

as t = o, where

a(l) = {-(2-a) + [(2-a)*+ 41]1/2}/2,
B(1) = 279921([a(l) + 4 — a]/2) /T(a(l) + (4 — a)/2).
Proor. Consider the diffusion W, on R?® whose generator in stereographic
coordinates (4.2) is
1{9 38-ad (u?+1)?[e o
—{—+ — + : — + — |-
2\ or r or 4r dui  dujy
Then W, has a skew product representation (R(¢), 8(A(¢))), where R(t) is the
Bessel process with parameter 4 — @ and generator Gy [see (4.5)], 6(¢) is
Brownian motion on S? with generator
(u)? +1)°] 92 o2
=1 |zt
[see (4.5)], and
1 . g
A(t) = — .
() = 5 [0 R(s) %ds
Thus the theorem comes down to proving for each x € R\ {0},

< (9.1) fwe‘“‘ d,P.(A(t) <u) ~ B(1)[x %] D2 gt o .
0

Let ¢(x) be the magnitude of the angle between x € R3\ {0} and (0,0, 1)
and for 9 € (0,7) let C, ={x € R®*\ {0}: 0 < ¢(x) <6} be the open right
circular cone of angle 6 and vertex 0 € R3. Define

v =inf{t > 0: W, & C,},

ny = inf{t > 0: 6, & C, N S?}.

Then
P (7% >t) =P, (6(A(s)) €C,nS2V¥se[0,t])
(9.2) =Px(nXV>A(t))
= [(P(n} > u)d,P(A(t) <u).
0
Now
9.3)  P(nl>t)~emy(x/i) [ mpda ast— e,
C,NS?

where (1,, m,) is the first eigenvalue-eigenfunction pair of Lgz on C, N S?
with Dirichlet boundary condition, and do is normalized Haar measure on
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S2. Moreover, the mapping
6 (0,7) =1,

is strictly decreasing and continuous, with range (0, «).
By the results of DeBlassie (1988) (there the case @ = 1 was done, but the
proof is valid for 0 < a < 2)

(94) P(w> ) ~ BU) (I 720" my(x/le) [ mydo asto e,
c,NS

where
aly) = {-@2-a) +[(2-a)+ 410]1/2}/2,

B(l,) = 27T ([a(ly) + 4 - ] /2)/T(a(ly) + (4 —a)/2).
Thus
0 (0,7) = a(ly)
is strictly decreasing and continuous with range (0, »). Using the method of
DeBlassie (1988), (9.2)-(9.4) imply (9.1). O
10. Properties of A;.

LEmMA 10.1. (1) 0 <68, <8, = ASI > As,y
() 0 < 8; <8y = A, <(8,/8))%,,.

Proor. Since 0 < §; < §,, #(8;) € #1(8,). Thus (@) follows from Theorem

8.5 and Corollary 8.6.
As for (ii), let 0 <& < 1 and note that the components of the solution

V. = (V®,V.®) to the stochastic differential equation (3.4) have the following
scaling properties (here _# denotes “law of”’) for any ¢ > 0:

L(VO)VD(0) = v1) = £(e2V,D(c? )IVD(0) = c®vy),
L(VE)IVP(0) = v5) = £(c7VE(c? ) VA(0) = cvy).
Since cH; = H;, we have for ¢, = inf{t > 0: V.(¢) & H,},
P(&>1t) =P(V/(s) € H; Vs <t|V,(0) =v)
= P((c72VD(c2%5),c7 V. P(c2%s)) € Hy ¥V s < t]V.(0) = (c?vy, cvy))
=P((c™VD(c%),V.®(c%)) € Hy, Vs < t|V.(0) = (c?vy, cvy))
= P(V(c*) € H,, Vs <t|V,(0) = (czvl,cvz))
— P(V(s) € Hy, ¥ s < ?V,(0) = (¢, cvy)
= P(czvl,cv2)(c_2§80 > t)-

The function

1'-;1(1,‘) = ftzg[zu)(s) + ‘75(2)(3)2 + ll_zds
0
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is continuous in ¢ and so by Proposition 5.4 of Ikeda and Watanabe (1981),
page 24, 7. '(¢;) is % -measurable. Then

t
(10D (&> 7(0) = (&) > 1) = (&) > ) n g, > 5<%
where we have used 7['(¢;) < 2¢;, ¢ < 1. Thus for ¢ =4,/6, <1, p and

&

g>1with 1/p+1/g =1 and v € H; we have max, . ((a + 1)/(a + c?) =
1/c? since ¢ < 1 and

P,(&,> 7.(t))

- P(F%Zs[‘_’él)(s) +7D(s)% + 1] " ds > ¢7.(0) = ,,)
0

2, T -2 T@( -2, 12 "2, Y
Pf “‘2&[‘/; (e %u) + VP(c 2u) +1] c %du >tV (0) =v
0
= P([gﬁ‘Zs[c_z‘_fs(l)(u) + ¢ V() + 1]_2c_2du
0

> ¢V,(0) = (szpcvz))

Il

P(f§8‘28[‘78(1)(u) + VO(u)® + 2| P du > ¢ 2V(0) = (czvl,cvz))
0

a+1
P([max

(10.2)

2

[*26[ TO(u) + VO(w)? + 1] du
0

IA

a0 a + ¢

> ¢ 2|V (0) = (czvl,cvz))

= P(czvl,cuz)(‘f&l > ?e(czt))
= Ey,, cop RU) I(mg, > 7.(c?)) [by (3.11), (10.1) and that ¢ < 1]

= (E(czvl,cuz)[Ri(t)]p)l/p(P(czul,cu2)(n§1 > Ts(czt)))l/q

< (Pt cup(5, A 6> czt))l/q

(c®vy, cvg)

[by Lemma 3.1 and (3.14)].
Thus

P(n5, A &> t) = Py(n3, > 7.(2)) [by (3.14)]
= E,RL(t)I(&,>7.(¢)) [by(3.11) and (10.1)]

< (EB[R®)]") (P&, > =.(1)))*

= exp(3(p —~ (L = ) %eth{[ Pu, cop(ms, £ 6 > )] /)
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[by Lemma 3.1 and (10.2)]. This yields
1 R 1 2 1 R R
?log Pv(m;2 ANéE>E) < E(p -1D(1-a)’e + tq—zlog P(czvl’%)(r,s1 ANé>c t)‘

Let ¢ — 0, then let ¢ - © and use Theorem 8.7 to get
c\2 5, \°
_ 21
_)t52$ —(‘(;) )tsl— q (32) )\81.
Letting g | 1 gives — A, < —(8,/8,)°A;, as desired. O
Lemma 10.2. For a(+) as in Theorem 9.1, we have a(A;) < a for § > 0.

Proor. If 7 is the first time the process Y, (hence Z,) hits the plane x; = 0
then 7 is really just the first time a Bessel process with parameter 2 — a hits
the origin. Thus for y; > 0,

a
Cp’ayf" if0<p< 3
(10.3) EgP = o
0 ifp > 5

[see (2.10) of DeBlassie (1987b)].
By Theorem 9.1, (4.7) and Theorem 8.7, for any 0 < (0, 7) and y; > 0,

a(A
<w ifp< (25‘”)),
. (104) E P
v . a()‘s(o))
=0 ifp> —s

Roughly speaking, (4.7) and Theorem 8.7 say
By = | P,(7, > t'/7) dt
is like
% . ds
[ [ewapy | [ =2 <),
170 0 2R(s)

and Theorem 9.1 says the latter is like [y~ **»)/2P dt.

Since 7 < 7, for 8 > 0, by (10.3) and (10.4) we get a(A;,) < a. If a(A;,) =
for some 6 € (0, 7), then since 8, < 6 implies 5(8;) < 6(6) [see (4.6)] implies
Asoy < Asgq,) (see Lemma 10.1), we get @ = a(As4) < alAsq,) < a. Contradic-
tion. Thus a(As,) < a for all 6 € (0,7). O

Next we use a result of Bingham (1973) to explicitly evaluate A,.

LEmMa 10.3. For 6§ =1, A, = a4 — a)/4.
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Proor. By (4.6), 6 = 1iff 6 = 7 /2. The distribution of the first time T,
the two-dimensional symmetric stable process exits the wedge W, , of angle 7
is the same as the distribution of the first time T' that a one-dimensional
symmetric stable process X exits the half-line (0, «). Bingham (1973), Theo-
rem 3b, has shown that for x, > 0,

Px2(f' >t) ~C(xy)t™% ast — o,

Thus for x € R* with x, > 0, E,T?/;* <  iff p < a/2. Hence by the results
of Bass and Cranston (1983), Theorems 3.1 and 3.2, E,|X(T, )P <« iff
p <a/2. By (1.5) we get E, ,77/3 <« iff p < /2. Comparing with (10.4),
a/2 = a(A;). Solving for A, [recall a(l) is defined in Theorem 9.1], we get
A =ad—-a)/4. O

REMARK 10.4. By Lemmas 10.1 and 10.3, A; > 0. Hence by (4.8) when
a=1,
P (ns>t) ~C(v)exp(—Azt) ast — .

Thus (10.4) becomes: for p > 0 and a = 1, E7f < o iff p < a(A4)/2.

11. Probf of Theorem 1.1. Define
(11.1) Dy o = a()‘s(o))/a,

where a(+) is as in Theorem 9.1 and 8(8) is as in (4.6).
Observe by (10.4) and (1.5)

E | X(Ty)P <o if p < a()‘a(o)),
E | X(T,)PP = ifp> a()‘sw))~

By Lemma 10.2, a(A,4,) < @, and hence by the Bass—Cranston results [Bass
and Cranston (1983), Theorems 3.1 and 3.2]

E.Tf <o if p <a(Asp)/a = Dp o
ETf = ifp> a()ts(g))/a = Do o

Moreover, by Remark 10.4, for a = 1, E, T/** = «. This gives (v).

Part (iv) is an immediate consequence of Lemma 10.2 and (11.1).

As for part (iii), observe for 8 € (w/2,m), 8(6) > 8(w/2) =1 [by (4.6)].
Hence by Lemma 10.1(ii), Lemma 10.3 and (4.6),

1 77 1+cosfl?a(4 —a)
)\5(0)2 W A1= 4 .

sin 6
Thus

4

1+cosf]%a(4 - a)
sin 0 ’

a(As)) 2'a(

This yields part (ii).
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By Lemma 10.3, p, /2, = 3. Once part (i) is proved we get that p, ,
Prjoa = L for 6 € (0, / 2). Of course, this is exactly the assertion of part (11)
Thus all that remains is the proof of part (i).

By (4.6) and Lemma 10.1(), 6 — A4, is decreasing. Since [ — a(l) is
increasing, the monotonicity assertion follows from (11.1). Moreover, the
continuity assertion will also follow once we prove § — A; is continuous. For
this use Lemma 10.1: Let §, > 0. Then

Ay < lim Ay < lim (8,/8)%A; = A5 < lim (8/8,)%A; < lim (8/8,)°A;, = A
£ 5111?08 slm(o/) 50 50 Sllfgo(/o) 5 Slingo(/()) As, 50

and lim; 5 A; = A, as desired. O

APPLICATION. Let a = 1 so that Y, is a three-dimensional Brownian mo-
tion. By (1.4) and (1.5), since Y(7,) = Z(7,), for x € W,

E(x,O)IY(To)|2p <o iff E|X(Ty)?P < o

and by the Bass—Cranston (1983) results and Theorem 1.1 the latter is finite
iff p < py ;. By Burkholder’s (1979) results we get for y € R\ [{0} X W],

(11.2) E|Y(7,)?? < iff p <p, ;.

Consequently, we get the following theorem.

THEOREM 11.1. Consider the Dirichlet problem
Au =0 inR3\ [{0} X W],
u=f on {0} X Wy,

« where f is continuous on {0} X Wy. If f= O(|x|P) for some p < 2p, , then
(11.3) possesses a solution.

(11.3)

APPENDIX

THEOREM A.l. Let | be the half-line {(0,0,a): a > 0}. for Z,+ 0, Z(-)
never hits 0. For Z, & 1, if 0 <a < 1, Z(*) never hitsland if 1 < a < 2, Z(*)
can hit | with positive probability.

Proor. For Z, # 0, by Itd’s formula p(Z,) = [Z® + (ZP)* + (ZP)?]V/2 is
a Bessel process with parameter 4 — a > 2 [cf. (1.9)]. Then p(Z,) never hits 0
and consequently neither does Z,.

If Z, & I, then by Itd’s formula the process p(Z,) = [Z® + (ZP)*]'/? is a
Bessel process with parameter 3 — @. Thus (Z,) never hits 0 if 1 > « and
p(Z,) hits 0 a.s. if 1 <a < 2. But p(Z,) hits 0 iff Z, hits the line {(0,0, a):
a € R} and the desired conclusion follows. O

Acknowledgment. It is a pleasure to thank Terry McConnell for telling
me about this problem and the Molchanov-Ostrovskii representation.



1070 R. D. DEBLASSIE

REFERENCES

Bass, R. F. and CransToN, M. (1983). Exit times for symmetric stable processes in R". Ann.
Probab. 11 578-588.

BingHAM, N. H. (1973). Maxima of sums of random variables and suprema of stable processes. Z.
Wahrsch. Verw. Gebiete 26 273-296.

BLUMENTHAL, R. M. and GETOOR, R. K. (1960). Some theorems on stable processes. Trans. Amer.
Math. Soc. 95 263-273.

BURKHOLDER, D. L. (1977). Exit times of Brownian motion, harmonic majorization, and Hardy
spaces. Adv. in Math. 26 182-205.

DEBLAsSIE, R. D. (1987a). Exit times from cones in R™ of Brownian motion. Probab. Theory
Related Fields 74 1-29.

DEBLassIE, R. D. (1987b). Stopping times of Bessel processes. Ann. Probab. 15 1044-1051.

DEBLaSSIE, R. D. (1988). Remark on “Exit times from cones in R” of Brownian motion.” Probab.
Theory Related Fields. 79 95-917.

DONSKER, M. D. and VARADHAN, S. R. S. (1976). Asymptotic evaluation of certain Markov process
expectations for large time. III. Comm. Pure Appl. Math. 29 389-461.

DynkiN, E. B. (1965). Markov Processes 1, 2. Springer, Berlin.

GRADSHTEYN, I. S. and Ryzuig, I. M. (1980). Table of Integrals, Series and Products. Academic,
New York.

IkEDA, N. and WATANABE, S. (1981). Stochastic Differential Equations and Diffusion Processes.
North-Holland, Amsterdam.

MoLcHANOV, S. A. and OstrovsKil, E. (1969). Symmetric stable processes as traces of degenerate
diffusion processes. Theory Probab. Appl. 14 128-131.

Pinsky, R. (1985). On evaluating the Donsker—Varadhan I-function. Ann. Probab. 13 342-362.

Porr, S. C. and STONE, C. J. (1978). Brownian Motion and Classical Potential Theory. Academic,
New York.

SioN, M. (1958). On general minimax theorems. Pacific J. Math. 8 171-176.

SpITZER, F. (1958). Some theorems concerning two-dimensional Brownian motion. Trans. Amer.
Math. Soc. 87 187-197.

StrROOCK, D. W. and VARADHAN, S. R. S. (1979). Multidimensional Diffusion Processes. Springer,
Berlin.

DEPARTMENT OF MATHEMATICS
TExas A & M UNIVERSITY
CoLLEGE STATION, TEXAS 77843-3368



