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RANDOM WALKS AND INTERSECTION LOCAL TIME!

By Jay RoseN
College of Staten Island, CUNY

With each random walk on Z? we associate a functional related to the
number of steps which the walk spends in sites occupied at least % times.
We show that if our random walk is in the domain of attraction of a stable
process of order greater than 2(2k — 2)/(2k — 1), then our functional
coverges to the intersection local time of the limiting process.

1. Introduction. We begin with 2 independent random walks S(1, -),
S@2,+),...,S(k, ) in Z? and study the set of times (i, ...,i,) such that

S(1,i,) = S(2,iy) = -+ =S(k,i,).

Note that we do not require our walks to collide; it is enough that their paths
cross. The number of such times, suitably normalized, we define as

n 1
(11) I(n)= ) Z 6(S(17”1)7S(27”2)) 6(S(k_17ik71)’s(k’ik));

i1,...,1=1

where
1 ifx=y,
0 otherwise

3(x,) = {

is the usual Kroenecker delta.

If our random walks converge in some sense to independent Brownian
motions W(1,), W(2), ..., W(k,), we would expect I(n) to converge (in some
sense) to -

fol " fol5(W(1,t1) — W(2,1,)) -

1.2
(1.2) X8(W(k —1,t,_,) — W(k,t,))dt, - dt,,
where 6 is now the Dirac delta ““function.” Of course, (1.2) is purely formal,
but can be defined rigorously as follows. We replace the & functions by
approximate §’s,
e~ /2e

Ps(x) = _277_5

b
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960 J. ROSEN

and define
a(e,B) = [ - [p(W(L,1) - W(2,15)) -

(1.3)
Xp(W(k —1,t,_,) — W(k,t,))dt, - dty.

It can be shown that a(B) = lim, _, , a(e, B) exists and defines a measure on
{(tl’ EEEE tk)IW(l’ tl) == W(k’ tk)}'

«a is called the intersection local time [see Geman, Horowitz and Rosen (1984)].
Formally, (1.2) corresponds to «([0, 1]*), and our first theorem says that under
suitable conditions I(n) — a([0, 1]*). Let us spell out the conditions on our
random walks. If

S(n)=X,+ - +X,,

where the X; are i.i.d., we require that

1. X; have mean zero,
2. Var(X;) = 1, and
3. S(n) be strongly aperiodic [see Spitzer (1964)].

TaeEOREM 1. I(n) — ([0, 11%) in distribution.

REMARK. This theorem is not a simple consequence of Donsker’s theorem,
since a(-) is not a continuous functional of the Brownian paths.

Our theorem was motivated by the work of Le Gall (1986), who studied a
related functional of %2 random walks. He was able to show that for his
functionals, all moments converge to those of a(-), but except for £ = 2, 3, the
standard criteria do not allow us to conclude that the distribution of «([0, 1]%)
is determined by its moments. The particular form of I(n) was proposed by
Le Gall.

Let us now turn to the study of self-intersections of a single random walk
S(n). If, in analogy with (1.1), we set

. 1
[n)= L 8(8(ix),SGia) - 8(S(ix-), S(ia))

1<i;< - <ip<n

we cannot expect a nice limit as n — . This is due to the fact that the
analogue of (1.3),

(14) a(e, B) = fB fps(W(tl) = W()) - p(W(t,-1) — W(t,)) dt,

will, in general, diverge as ¢ — 0. Actually, if we restrict our attention to sets
B cR:={(t;,...,t,)|0 <t < -+ <t,} which lie away from the diagonals
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t =

t;,1, then a(e, B) will converge to a measure a(B) supported on
{(tl’ L 7tk) € RélW(tl) = = W(tk)}

[see Rosen (1984)], but if we do not wish to limit ourselves to B away from the
diagonals, we must find a remedy for the divergence of a(e, B).
In Rosen (1986a) we showed that, with the notation (Y} = Y — E(Y),

v(e, B) = [ o [{p.(W(t) = W(2,))} -+

X{pt(W(tk D)~ W(tk))} di

converges (in L,) as ¢ — 0, for all bounded Borel sets B € R, to a random
variable y(B), called the renormalized intersection local time. The analogue of
(1.5) for random walks is

R(n) = z {8(8(21), 8(ip))} -

1<i;<ig< -+ <ip<n

1
X{8(S(ir-1),S(ix))} o
With the notation [0, 1]¥ = [0,1]* N R* , we have the following theorem.

(1.5)

(1.6)

THEOREM 2. R(n) — y((0, 11%) in distribution.

Dynkin (1988a) has proposed a different renormalization for a(e, B), and
proven (1988b) an analogue of our Theorem 2 for his renormalization. Our
methods are very different, as are those of Stoll (1986), who considers the case
k = 2 and S(1) finite range.

We now remove the requirement that our random walks have finite vari-
ance (condition 2).

We consider the case of random walks in the domain of attraction of a
nondegenerate strictly stable process X(¢) of order 8 > 1, i.e.,

S(n)
b(n)

with b(x) a function of regular variation of index 1 /8.

(1.7) - X(1),

THEOREM 3. If B > 2 — 2/k, then
( )2(k 1)

(1.8) —r 7 l(n) »a L([0,11%).

Here ay(-) denotes the analogue of (1.2) and (1.3), where we substitute %
independent copies of X(¢) for the W(i, ¢)’s [see, e.g., Rosen (1984)].

THEOREM 4. If B > 2 — 2/(2k — 1), then
b( )2(k 1)

71—3('1) - yx([0,1])%.
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Once more, yx(-) is obtained from the analogue of (1.5) with X(¢) substi-
tuted for W(z) [see Rosen (1986b)].

Theorems 1 and 2 are subsumed under the general Theorems 3 and 4, but
we intend to spell out the details of the proof in the simpler case (Sections 2—-4)
so that the interested reader will be able to follow more easily. In Section 5 we
will show how to modify the proof for the more general case.

A forthcoming article with J.-F. Le Gall [Le Gall and Rosen (1988)] will
apply the results of this paper to develop the asymptotics of the range of a
random walk in the plane.

Let S(n) be as in Theorem 4, thus, in the domain of attraction of a stable
process X,. |S(0,n)| will denote the number of distinct sites visited by our
walk during its first n steps. Then if + < 8 < 2,

b*(n)

n2

(15(0,n)] = E(S(0,n)])) > —¢*rx([0,1]%),
where ¢ is the probability of never returning to the origin. If 8 < 3, a suitably
normalized version of |S(0, n)| converges to a normal law.

The case of a random walk with finite covariance was considered in Le Gall
(1986). We note that the range of a random walk in dimensions > 3 was
considered in a series of papers by Jain, Pruitt and Orey [see references in
Le Gall (1986)]. However, it is only now with the concept of intersection local
times yy that random walks in the plane can be successfully analyzed.

2. Proof of Theorem 1. Although we cannot apply Donsker’s theorem
directly to the discontinuous functional «, we will apply it to a(e, - )—and
then show how to remove the cutoff.

We begin by rewriting

n 1
I(n) = Z 6(S(l,i1),S(2,i2)) S(S(k - 17ik71)7S(Ze7ik));
i1reens ip=1
_ ¥ B . - L 1
@) = X Mo/, eelin(SG) -G -1 0)]dp,
n 1 k1 (8(4,i;) =S(j—1,i;.,))
= — i > »hy—-1 )
il,.;iﬂ nt JI:Iz (2m)? flp,losvﬁexl) ®i Vn “j:

where |(x, )|, = max(|x|, |y|).
We then define a functional which will interpolate between I(n) and
ale, - ), a “link” (a term coined by Dynkin):

n 1 % 1

I(S’n)_—‘ - Z _k_l—[

i—1 1 =2 (2m)*
(2.2)

_(SGi) =8 -1,i;.,))
x /|pj|0<\/ﬁn-eXp[lpj - ‘/; - exp[ —Spjz] dpj'
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LEMMA 1.
(2.3) II(n) = I(e,n)|; < ce®,

for some ¢ < o, 6 > 0 independent of n.

Lemma 1 implies that
(2.4) |E(eiAI(n)) _ E(ei/\I(s,n))| < ced

independent of n. Choose £, > 0 so that both ce) < y for small, given y, and
also

(2.5) \E(exp{i,\a(eo, [0,1]*)}) — E(exp{ia([0, 1]k)})\ <y

[see Geman, Horowitz and Rosen (1984) for (2.5)].
From (2.2) we see that

Iegn) = ¥ ) +0(ee)

(2.6)

(S(j,ij) -8(j—1,i;_,)
Vn

k
[ J TP (W( ) = W = 1,8;)) de + O(e™™),
[0, 11*

where W(j, ) = S(j,[nt])/ Vn , and O(e~*") is generic. By Donsker’s theo-
rem [see Skorohod (1957)] we can find N,, such that for n > N,

(2.7) ’E(exp{i)\I(eo, n)}) - E(exp{ira(z,,[0,1]*)})| < 7.
Combining (2.4), (2.5) and (2.7), we have that for all n > N,

| E(e1™) — B(exp{ira([0,1]*)})] < 3y
which completes the proof of Theorem 1, subject to the following.

Proor or LEMMmaA 1.

E(I(n) = I(e,n))*

1 n 1
= Wi1{~'¥ik_=1 (277_)4@—1)
FATRERT) Jr .
Y {1 [ (S(Li) = U~ 1,i,.1)
exp|ip
1Plos lglo=myn | 1=2 ! \/;
+iq, l T 22| Fe, p,q) dpda,
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where

2]

for |plo, 19:lo < mVn, and for ease in our proof we consider F(e, p,q) to be
extended periodically, with period 27mvn .
The expectation in (2.8) is

k p?
(2.9) F(e,p,q) = (1 - expl—s Y ?]

=2

k S(,¢ S(1,j
[E(II:I:LeXp[i(Pz —pl+1)%]exp[i(q, - QI+1)—(‘/%I)])

k S, S(l,Jj
= E[E(exp[ilil—(‘/—Tl)]exp[iu,—(\/%l)]),

where p; =q; =0and &, =p, = p; 1, 4 =91~ Qus1-
If i, <j,, this expectation is

qbil(i)quz—il(i)
l ‘/’7 l ‘/; )
where v, = i, + u,; and ¢,(u) = E(e*5¢D). If j, < i,, we have an analogous

expression. For simplicity we concentrate on the case i; <j;, V [.
We then bound the contribution to (2.8) by

(2.10)

k
1) f [1G(L,n,u)G(L,n,v)F(e, p, q) dpda,
Iplos 1glo<myr I=1

where

1
G(l,n,u) = -

TM:

¢f(

5=

0
Since our assumptions imply

u
o( 7]
where ((1)) is the representative of u mod 2mV/n of smallest absolute value, we
have

(2.12) < e b@)?/n,

n
G(l,n,u) < ) e-b(k/nX(u»Zl
k=0 n

1 1 2
— + e ~btw) dt)
[ e

n

IA

(2.13) . .
FEB——
’ no 1+ ((u))

C
< —,
1+ ((w))

IA

since |(w))| < 4mV/n.
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Thus, (2.11) is bounded by

k -1 oy 1
cf 1131(1 +((#))?) (1 +((v)*) \F(e,p,q)ldpdg

Iplo, lglo<myn

k 1 1) 78
=c CTT T+ ((w))?) (1+((w))?) |F(e, p,q) dpdgq
Plos lglo<myn m=1\1l+m
(2.14) k“’ "*
<cT1 [ T+ ()
m=1|"Iplo, I9lo<myn l+m

b1 1/k
x(1+ ((v))?) v IF(e,p,q)Idpch]

Since each p,,q, is a linear combination of elements of the set {u;,v,,
i # m} for any fixed m, we have

|F(e,p,q)l <ce®) Ip°Y g,
< (1 + Y () + ((v»)”).

l+m

(2.15)

Here we used the fact that
I(Cx + )1 < 1((x))] + ()]

From (2.15) we see that (2.14) is bounded by ce®, once we prove the finiteness
of

1
‘ 26 d2u,
(2.16) /|u|0s4vﬁ(1 - () )(1 + ((u))z)k/k‘1

where we have expanded the region of integration, sifice, e.g., |y, =
P, — Pro1 + 4, — Qi41) < 4mVn . (2.16) is clearly finite if § < 1/(k — 1). O

3. Proof of Theorem 2. As in the proof of Theorem 1, we define

El
-

1
(3.1)

. (S(ij)_S(ij—l)) —ep? /2

and once again it suffices to prove the following.

LEMMA 2.
(3.2) - |R(e,n) — R(n)|; < ce?,

for some ¢ < ©, § > 0 independent of n.
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Proor. We have
E(R(n) — R(e,n))*

_ L k ; (S(i,) - S(il—l)):l}
(33) n2k 1gi1<2~ <iy<n '(Plo Iglo<myn (l;—[ { [pl ‘/;

1<)y < o+ <jp=n
S(j) —S(J-1
x{exp[iql( () ‘/;Z—(J ))]})F(e,p-q),

where F(e, p, q) is given by (2.9).

The expectation will depend on the relative ordering of the 2% integers
i1y-+-sLpy J1s---»Jp- Fix such an ordering. We assume for now that our 2%
integers are distinct and we rename them

ry<rg< - <Tg.
Later we deal with the case when some of the integers coincide. We will refer
to iy,...,1, as blue integers and to j,,..., j, as white.
We will say that [r,,_;, r,,]is an isolated interval if r,,_;, r,, are of the same

color. If, e.g., [r,,_1, 7, ] = [7;,1,_,], then we say that p, is an isolated variable
and write v,, = p,. Let #= {m|[r, ] is isolated}.
We can write

Y p(83,) —S(i;-)) + X a,(S0y) - SUi-1)
= Z um(s(rm) - S(rmfl))’
where v, is necessarily the sum of one p and one g—more precisely, if

[E7ETS 72 Nl /SR Y B=1 E Uy ) §

then u,, =p, + 9n- -

If [r _1T,] is an isolated interval, one of these (p, or g,) will be the
isolated variable v,,, and we denote the other by w,, and refer to it as the
coisolated variable for m.

If we expand those brackets in the expectation of (8.3) which refer to
nonisolated intervals, then we will obtain a sum of many terms, the simplest of
which can be written, with .#¢ denoting the complement of .7, as

- S(r,) =8(r,, 1) . S(r,) = 8(rp-1)
E(m];[/Cexp[tum 7 ] Il {exp[wm I ]}

1 7"m

(3.4)

me.#
. 8(r,) = S(r,-1)
02 oo S |
e e e )
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We first control this term—and then come back to the other terms which arise
from expanding the brackets.
As in the proof of Lemma 1, it suffices to bound

]‘—[ (1 + ((um))zs)Gl(n,um)
(36) 1Plos 1glo<m/n me.#¢

X ml;[/(l + ((#,))”)H(n,v,,,w,) dpdg,

where

(3.7 G(n,u) = %

and

(3.8) H(n,v,w) = — Z

In the next section we prove the following lemma.
LEMMA 3. For any 8 > 0 small, we can find & > 0 such that

(3.9) f [1+v®)H(n,v,w)d? <c(1+ w?).
[v|o=<myr

Since all coisolated variables w,, are linear combinations of u;, i € .#¢, and
recalling (2.13), we see that it suffices to bound

(3.10) / IT (1+ ((2.)*)

Iplos 1glo <y mes 1+ ((u,))

where dp dq means that integration is restricted to nonisolated variables.

It is easy to check that, even after omitting any one element from the set
u,,, m €. 7° we can still generate all nonisolated variables. As in the proof of
Lemma 1, this shows (3.10) bounded for § small.

We now consider the other terms generated from expanding the brackets in
(3.3) for nonisolated intervals. The effect is to replace some of the factors
¢,/ V) in (3.5) by " (Piimy/ VNI (g i)/ V) where 1, = Py +
q j(m)- Then in (2.13) we replace expl —bk/n((u,,)?] by

exp| ~bk/n((Pigny))’ + ((4;,))"] < exp[ ~Bk/n((u))7,

since (&, = [(Piim) + @i < (DD + (@ jmy)|. This leads once
again to (3.10).

Finally, we consider the effect of allowing some of our r;’s to coincide. Since
integers of the same color cannot coincide, we see that the effect is to allow
some of our nonisolated intervals to collapse—thus, in the definition of
G(n,u), (8.7), we must also allow & = 0. However, this has already been dealt
with in (2.13); hence, once again we are led to the bound (3.10).

5z dpdq
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This completes the proof of Lemma 2, hence of Theorem 2, subject to the
proof of Lemma 3, which is the subject of the next section. O

4. Proof of Lemma 3. We must show that for any § > 0 small we can

find § > 0 such that
(%) - ) )
¢( T ¢ Tn ¢ Tn dq

n

(1+¢%)

Z —
(4.1) -1 qlo<mym
<c(1+ p%).
We begin by bounding the left-hand side by the sum of two terms,

(4.2) y - (1 +q%) ¢k(%)Hl —¢’“(% dq

k=1 1 “lglosmym

and
q+tp

no1 ~ q
4.3 - 25\| 1% _ k|1
( ) Z=: n flﬂos‘”\/ (1 Ta ) d) ( vn ) ¢ ( vn ) dq‘
For (4.2) we use the bound

n

2y
b
< C[E(7|S(k)|27)

2y

P I
SCFE(IS(’%)I )

to see that (4.2) is bounded by

2y n Y 2y n Y

p k 25\ _ 2 p k

L% () Lt (q))e et dg <P ¥ (2]
nop=1\n flqloswﬁ( ) nop=1\N

1
(k/n)1+§ :
If we take y = 28, this is less than

R 1 sl 1
L — cp®— -
n Z1 (k/n) P k2=:1 k1O
# < cp®®

Thus, (4.2) is bounded as required by the lemma.
Let now J(k) denote the integral in (4.3). We will derive two distinct bounds
for J(%) and then interpolate between them.
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For the first bound, by periodicity,

'/|.Q|057r‘/—(1 + qzs) ¢’k( In )(dq
= 25 k
[ =)o) s
(4.4) _ _ ! 2
< |q|osvﬁ(1 +p¥ +gq )eXP[—c;((q)) ]dq
1+p%®
<c———.

A similar estimate with ¢*((p + q)/ Vn ) replaced by ¢*(q/ Vn ) gives our first
bound,

25

(4.5) J(k) < e P
. <c———=.

(k/n)1+5

For our second bound we use the mean value theorem together with the fact
that
x 1((x))]

lv“’(ﬁ)‘“ i
to find that

|((q*))| 25

w2 f%ﬂr ne (7)‘(1+<<q)) ) da

(49) <c1p|( [[ ((q*))]

k- _

xexp| —e = ()2 (1 + ((a)F) da,

where ¢* = ¢ + 6p, |6] < 1.
If & # 1, we see from this that

(1+((¢))*)dg.

@D g =epl(2) [ en-er(@)

If |p| < |g|/4, then, since |p|, < mVn, |g|, < mVn, we must have |(g*)| =
|| /4; hence, if J,(k) denotes the integral in J(%) over.|q| > 4p,

'/|‘¢I|057T‘/ﬁ

(1 + |q|*) dg

k2 k
Ji(k) SCIPI(;) eXp[—Czl(Il2

B -
- (k/n)1/2+3’

(4.8) f'q"°£”ﬁ

lpl < lql/4, & # 1.
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On the other hand, if |¢| < 4|p|, then by (4.7) if J,(k) is the integral over
lg| < 4|pl,

(kY2 14 g%
Jy(k) <c(1+ I((p))|3+35)(;) ITW dq
(4.9)
NN lq|
3+35\[ _
Putting together (4.8) and (4.9),
1 + 3+35
(410) J(k) SC%, k+1.
n
For k = 1, we return to (4.6), which gives
| .
J(1) < — 1((g*))I(1 + 1g1*) dq
n Yiglo<myn

1 -
<c(1+ [p|2);n3/2’”s
c(1+ |pl*)
Thus, for all 2 we have
oL+ b
(k/n)1/2+4§ ‘

We now interpolate between (4.5) and (4.11). For any 0 < ¢ < 1,
1+ |p|(3+35)t+2§(1—t)

(4.11) J(k) <

(4.12) J(k) <c (k/n)(1/2+§)t+(1+5)(1—t) :

We need to choose ¢ so that
B=(3+8)t+(1+8)(1-1) <1,

ie, 25 <t
By choosing 6 sufficiently small, we can arrange for

(3 +38)t+25(1—1t) <28,
for any 8 > 0 small. Thus, ’

J(k) <c(1+ [p|*)

1
(k/n)B’ B <1
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As before, this bounds (4.3):

n o1 L | 1
—J(k) < —c(1+ |p|®
kgl n (k) = k§1 nC( Pl )(k/n)lB

n 1
L F

k=1

<c(1+ |p|®) e

<c(1+ |p|*).

5. Proof of Theorems 3 and 4. Let S, be a random walk in 72, lying in
the domain of attraction of a stable process X, of order 8. Thus,

S, x
b(n) T

with b(x) a function of regular variation of index 1/B8. For the facts that we

use concerning functions of regular variation we refer to Bingham, Goldie and

Teugels (1987). We may assume that &(x) is continuous and strictly monotone

increasing and then its inverse, [(y) will be of regular variation of index .
We note that for any ¢ > 0.

(5.1)

(5.2) cn/PA+e) < p(n) < dnt/PA-9),
We can write
(5.3) b(x) = x/Ps(x),

for s(x) a function of slow variation. Then, setting

h(x) =sP(1(x)),
we find that A(x) is of slow variation and satisfies
h(b(x)) =sP(1(b(x))) = sP(x)
so that by (5.3),
b#(n)
n=-——"r.
h(b(n))
For small p we can write ¢(p) = Ee(*P51) = ¢ ¥P) and (5.1) implies that

(5.4)

p b
> o) 7Sl | =
for all |p| < 1 and n > n,. Therefore,
¥(p/b(n)) p
(5.6) n—pB—— - S(H) < 2By,

for all ;< |p| < 1and n > n,.
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It is a basic property of functions of slow variation that

__h(b(n))
k(b(n)/Ipl)

H(p,n) -1 asn—

uniformly in 1 < |p| < 1.
Together with (5.4), we now have

¢(p/b(n)) ~ S(ﬂ)
(lpl/b(n))?h(b(n)/Ipl) lp|
¥(p/b(n)) p
(5.7) = Wo1/6(n)) "R (b(n)) _S(H) (P )
+ s(%)‘u — H(p,n)|
< ¥, which can be taken arbitrarily small.
Thus,
¥(q) q
(5:8) 2Ph(1/q) ‘S(m) <%

for all 1/[2b6(n)] < |q| < 1/b(n) and n > n,,.
Since b(n) is of regular variation of index 1/8, we have
2b(n) 2
b(2n) 21/
(we, of course, assume B > 1), hence, possibly increasing n,, the intervals
1/[2b(n)]l < g < 1/b(n), n = ny,2n,,4n,, ... overlap; thus, (5.8) holds for all

0+ |q <& =1/b(ny.
From this we have

>1

(5.9) Rey(q) = cq®h(1/lql), gl <4,
(5.10) 1W(q)l <cqPh(1/1q]), lql <.
By (5.9) for all |p| < 8b(n),
p [ p
"”(m) Se"p_‘Re‘”(b(—n))]
(2.11) < exp —cpﬁ&b(;z);/)—lpg]

[ p? h(b(n)/Ip))
—exp_ c— Ro(n)) |
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By Bingham, Goldie and Teugels [(1987), Theorem 1.5.6], for any £ > 0 we
can choose & > 0, and constants A, A such that

h(b(n)/Ip!)
h(b(n))
first for n > n large, and then for all n by adjusting the constants. Similarly,

an analogous inequality holds for |p| < 1.
In particular, returning to (5.11), we have

On the other hand, for |p| < wb(n) we automatically have, by (5.2), that
lp| < Enl/B(l—e)’

(5.12) Ap~f < <Ap®, 1< |p|<éb(n),

(5.13)

hence,
—__nBl—¢) < é
np -

Using strong aperiodicity, and possibly readjusting the constant ¢, we find
that (5.13) also holds for § < |p|/b(n) < . Summarizing,

(5.14) ’¢(b—(%)

Therefore,

c
< exp[— ;pﬁ(l’e)], 1< |p| <wb(n).

1 n
G(n,u) = ;;kZ:O

(5 )‘

. (5.15) c% + j;lexp[—ct((u))ﬁ(l_E)] dt

IA

< c
S ((w)P

first for 1 < |((w))] < wb(n) [we have used (5.2) once more], but of course
(5.15) will also hold for |((z))| < 1.

Proor oF THEOREM 3. This is quite similar to the proof of Theorem 1.
Skorohod [(1957), Section 3] provides an analogue of Donsker’s theorem which
is sufficient for our purposes. As before, we change variables to find

b2(k—1)(n)
n
n 1k 1
- ¥ oI
P Liyenes ip=1 nkj=2 (277)2
(8(,¢;) =80 = 1,i;_1))
X exp|ip; dp
[pj|05#b(n) P pj b(n) pj
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and we define our link,

n 1 k 1
L(e,n) = . Z l—kl:[ 2#)
- (8G:i) =8 = 1), i)
X f|p1|oswb(n)exp[lpj b(n) eXp[ TEp; ] dp.l

and it suffices to prove the analogue of Lemma 1.
By (5.15) we are reduced to bounding

1

8
f(l +uf?) 1+ PA-XE/E-T) du,

which is finite for 8, £ small if
k
B( 7 —1 ) > 2,
which is our hypothesis: B8 > 2 - 2/k. O

Proor oF THEOREM 4. We proceed as in the proof of Theorem 2, arriving at
the analogue of (3.6), where G is now given by (5.15), and

1) = # oo ) sm )'

We will soon establish that, for any 8 > 0 small, we can find § > 0 such that

H(n,v,w) = — Z

(5.16) / (1+¢)H(n,q,p) d*q < c(1 +p>#*°).

|glo<mb(n)
This will complete the proof of Theorem 4, as before, once we know the
finiteness of

1 —_—
_— w2 B*%dpdq,
'[mI;LC 1+ uen_s m1;[/ P aq
where we integrate over nonisolated variables. This is essentially proven in
Rosen (1986b), under our hypothesis 8 > 22k — 2)/(@2k — 1).
It remains to prove (5.16)—the analogue of Lemma 3. As in the proof of
that lemma, we bound (5.16) by the sum of two terms:

Uy SR U b | R el | 2
(5.18) p2 1n'[q|0<17b(n)( +q*) d>k(b(n)) ¢k((—)’
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By (5.10) and (5.12) we have that, for any 0 <y < 1.

=

=|1 — e kHB/bY)|

b(n))‘

p? b(n)
(5.19) < ck? i )h( )

(k)’ By(h(b(n)/tm) )

) R(b(n))

k\? p|
<ecl— vB(l+e) 4 fi <
<c(n) (p 1), for 5(n) <§,
while if |p| = 8b(n) > cn'/F1*9 [see (5.2)], we have pP**/n > ¢ > 0, so the
above bound holds for all p. Thus, (5.17) is bounded by

c[1+p®" “2‘3‘”‘1”)] 1+ (1+PP)e(ck/ma* g

|g|0<mb(n) a

n ( k )2/3—1+25

n,_i\n

n 1

1
<C(1 +P2 B+8)n kzl (k/n)l 3

<c(1+ p?P*%) asrequired.

(for 8, & small)

Let M(%) denote the integral in (5.18). Our first bound is quite similar to
(4.5):

1
(k/n)2/13+§ '

Now let M(k) and M,(k) denote, respectively, the integral in (5.18) over
lq| > 4|p| and |q| < 4|p|. The following bound for M,(k) is elementary:

(5.20) M(E) < c(1 + p??)

B
+4q
M,(k) < c(1 + p2+28° ———d
<c(1 + p2+2p),
In M,(k) we can assume |q| > 4. We use the mean value theorem,

q* [ q
V¢(b(n>) ¢ (b(n)

ES

(1+¢"%) dq.

c|p|
(5 22) My(k) < b(n) '[25|¢I|o<”'b(n)

pl<lql/4
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In the region |g| < 8b(n), and with %2 # 1, we make use of the bounds (5.9),
(5.13) and

wwun|sé%Rewun, pl <5

[Proposition 5.4 of Le Gall and Rosen (1988)] to obtain the bound

clpl [

(5.23)

q*
b(n)

](1 +¢°) dq

k . < c|p|
< clplfg exp[—c;qﬁ(l )](1 + qB'S) dq < (k/n)1//3(1—e)+5/(1—s)‘

qu*l Re tp(q*/b(n))exp[—ck Re 1,0(

On the other hand, we always have
|Vé(g*/b(n))| < E(S(D)]) <c
and if |q| > 8b(n) and |p| < |q|/4,
l¢(q*/b(n))l <z <1,
so that the expression in (5.22) will be bounded by
clp|b*+P3(n) kz*.

Since kz* < d/kY/BA-9+5/0=e) for d large (think first of & large), we are led
to the bound appearing in (5.23). Note that this approach also works for the
case k = 1, for all |g|, < wb(n). Thus,

(1 + |p))
(k/n)l/B+§ '
We first interpolate between (5.21) and (5.20),

(2+2B8)s +(1—5)B5)
(k/n)(2/3+5)(1—s) ’

Taking s = 1 — B/2 + ¢, we find that (2/8 + §)(1 — s) < 1 for & small, and
this leads to the bound required in (5.16).
We then interpolate between (5.20) and (5.24),

1+ ps+(1—s)/35

(5.24) M(k) <c

(5.25) My(k) <c|l+ 0<s<l.

0<s<l1.

(5-26) M1(k) = c(k/n)(1/3+5)s+(2/ﬁ+5)(1—s) ’

We now take s = 2 — B + ¢, and once more obtain the bound required in
(5.16). O '
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