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BEST CONSTANTS IN MARTINGALE VERSION OF
ROSENTHAL’S INEQUALITY -2

By Pawer HITCZENKO

Texas A & M University

The following generalization of Rosenthal’s inequality was proved by
Burkholder:

A HlIs(Hp + 1d*l1p} < 1F ¥, < B{lls(Fllp + ld*ll,p},

for all martingales (f,). It is known that A, grows like \/17 as p > . In
this paper we prove that the growth rate of B, as p - «is p/In p.

1. Introduction. Let (d,) be a martingale difference sequence with re-
spect to an increasing sequence of o-algebras (.%,). The following inequality
was proved by Burkholder (1973): For 2 < p < «,

A;l{(E( Z‘Ek—ldi)p/z)l/p + (ES‘;P|dk|p)1/p}

<(Bzaf)” <B{(B(T B at))” + (Bawpiar) ),

where A, and B ,are constants depending only on p (see the next section for
notation). The special case of independent random variables which is a funda-
mental generalization of Khintchine’s inequality was proved by Rosenthal
(1970). Rosenthal’s proof yielded only exponential of p estimate for the growth
rate of B, as p — . Later on, Johnson, Schechtman and Zinn (1985) showed
that the best possible bound on B, (still, in the independent case) is p/In p.
Using difficult isoperimetric techniques, Talagrand (1989) extended this result
to the case of independent Banach-space-valued random variables. Recently,
Kwapiei and Szulga (1988) obtained a completely elementary proof of Tala-
grand’s result. As to the general case of martingale difference sequences, it
seemed that Burkholder’s argument, which was based on the good A inequal-
ity, gave exponential-type estimates on B,. However, as was pointed out by
Hall and Marron (1988), page 170, the careful choice of various parameters
involved in the good A inequality shows that B, < K - p(In p)*, where K is an
absolute constant and s is any positive number. We would like to mention that
Garsia’s (1973) book contains ‘“‘almost explicitly” a linear of p bound on B,.
More precisely, Garsia (1973), Theorem 3.5.1, proves that for any martingale
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difference sequence (d,,), the following is true:

1/2
(B ) oo 25| (mb), b2,

where vy is any function in L, such that

0 2
En( Y dk) <E,y® as,nx>1.

Since

® 2
En( Z dk) =d721 +En

0
Y Ek_ldﬁ) a.s.,
k=n+1

one can take

yZ = supldkl + Z E,_,dZ,
k=1
which shows that B, < 10p. This bound can be further improved. We will
prove below that the actual growth rate of B, is, as in the independent case,
p/In p. Let us mention in passing that the constant A, is known to be of
order p'/2. Indeed, as is well known

(E(Z Ek_ldi)P/z)l/Z <K p”2- (E| ) dklp)l/p

holds, for all martingale difference sequences (d,) [see, e.g., Garsia (1973),
Theorem 4.3.1], and, on the other hand, for the ‘‘double or nothing” sequence
d), = (=D* -1, - L5 3-++1, k > 1, where (r,) is Rademacher sequence, we have

(E|2 dk|”)1/p ~1, ld,l <1,

and

(E(Z Ek_ldi)"/z)l/p ~ pl/2,

Our proof will exploit some ideas of Burkholder (1973, 1977), Johnson,
Schechtman and Zinn (1985), as well as a remark of Hall and Marron
mentioned above. Let us recall that in order to conclude the inequality
EIXF <K gEIYI” for some random variables X and Y, it suffices to establish
the following good A inequality:

(1) P(IX| > BA, Y] < 81) < e(a) - P(IX] > A),

for some 8 > 0, B > 1 + §, all positive A’s and sufficiently small e(a), where
a=(B-1-8)/6.1f X=Xd, and Y=(ZE,_,d})"? V sup,ld,|, the origi-
nal proof of Burkholder (1973) gives only polynomial decay of ¢ as a function
of a [actually, he obtained s(a) = a~2]. It turns out, however, that much more
is true. We will prove (1) with (@) = 2 exp(—(a/2)In(1 + a/2)). Once this is
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established, minimalization over all possible choices of 0 <8 < 8 — 1 yields
K, <K p/In p, for some absolute constant K.

Let us mention that inequalities of type (1) with exponential dependence of
¢ as a function of a have already been used in probability [see Burkholder
(1977)] as well as in harmonic analysis [see, e.g., Murai and Uchiyama (1986)
and references therein].

The main tool used in the proof of our good A inequality is a refinement of
Prokorov’s ‘“‘arcsinh” inequality for martingales obtained by dJohnson,
Schechtman and Zinn (1985). We also use Davis’ decomposition of a martin-
gale and conditional symmetrization argument. The notion of tangent se-
quences introduced quite recently by Kwapiefi and Woyczynski (1988, 1989)
turned out to be very useful in that context.

The paper is organized as follows: The next section collects some definitions
and preliminary material. The good A inequality, as well as Prokorov’s in-
equality, are proved in Section 3, and the main result is derived in Section 4.
In Section 5 we apply our martingale result to obtain optimal constants in
similar inequality for nonnegative random variables.

2. Preliminaries. This section contains preliminary facts needed for the
proof of our result. We will also fix some notation.

Given an increasing sequence of o-algebras (%,) on some probability space
(Q, &, P), we denote by E, _,(-) = E(-|%,_,) the conditional expectation oper-
ator (with the convention that E, = E, the expectation operator). The L,-norm
of a random variable X is denoted by IXll,, 1 <p < ». A sequence ( ) of
integrable random variables is a martingale (resp. supermartingale) if f,
&,-measurable and E, _,f,=f,_, (vesp. E, _,f,<f,_),n=1A sequence
(d,), where d, =f, — f,_1, is called a martingale difference sequence [of a
martingale (f,)l. For any martingale (f,) with difference sequence (d,),
following standard notation, we will write

® 1/2
s(f) = ( Y Ed)
k=1

and

n 1/2
s.(f) = ( 5 Ed) .
k=1

For any sequence (X)) of random variables X* denotes sup, . ;|X,| and

X} = max |X,|.
1<k<n
A sequence (X)) is (%, )-adapted [resp. (Z,)-predictable] if X, is % -measura-
ble (resp. %, _;-measurable) random variable, for n > 1. In the sequel we will
simply write adapted (resp. predictable) without any risk of confusion. The
indicator function of a set A is denoted by I(A). Recall, that if r is a stopping
time (i.e., a positive integer-valued random variable such that {r = n} € &%,
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for each n > 1), then % is the o-algebra of all F~measurable sets A such that
An{r=n}le &%, foraln>1.

We will need a notion of tangent sequences which was introduced by
Kwapiefi and Woyczyfiski (1988, 1989).

DeFINITION 2.1. (a) Two adapted sequences of random variables (X,,) and
(Y,) are said to be tangent if for each real number A and for all n > 1,
P(X >AMF,_)=PY, = AF_)as.

(b) An adapted sequence (X,,) is conditionally symmetric if (X,,) and (—-X,,)
are tangent sequences of random variables.

We will denote the conditional distribution of a random variable X, given a
o-algebra 4 by £(X|£). Thus, the above definition says that (X,) and (Y,)
are tangent if for each n > 1, A(X,|%,_,) = Z(Y,|%,_})) as.

The usefulness of that notion stems from the fact that, on one hand, any
sequence of random variables admits a tangent sequence which, in a sense,
behaves like a sequence of independent random variables and, on the other
hand, there is a remarkable similarity in behavior of two tangent sequences.
As a consequence, some properties of arbitrarily dependent random variables
can be deduced from the corresponding results for independent random vari-
ables. For our purpose we will need only the simplest properties of tangent
sequences; we refer the reader to the papers of Kwapiefi and Woyczyhski
(1988, 1989) for the full exposition of the above ideas. Let us introduce one
more notion used by these authors.

DEFINITION 2.2. An adapted sequence (Y,) of random variables satisfies
condition (CI) if there exists a o-algebra & c % such hat Z(Y, |7 _,)) =
Z(Y,|#) as., n>1 and such that (Y,) is a sequence of Zconditionally
independent random variables.

For a given sequence (X,,) there is a canonical way to construct (perhaps on
an enlarged probability space) a sequence (Y,) which satisfies condition (CI)
and is tangent to (X,). Let us state this fact as a lemma.

LEmMMA 2.3. Let &, be the g-algebra generated by the first n coordinates in
RN, & =a(U%,) and let (X,) be any adapted sequence of random variables
on (Q, 7, P). Deﬁne a new probabllzty space (Q, Z, P) and a sequence (%) by
the formulas

Q=QxRY, F=90%, =037,

and
P(AXB) = fA( ® _/(anz_l))(B), Ac F,Be &
n=1

[here, £(X,|F,_,) is a regular version of the conditional distribution of X,,
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given F,_;; cf., e.g., Shiryaev (1984)]. If X (w, (t,)) = X (@) and Y (0, (¢,)) =
t,, then the sequences (X,) and (Y,) are tangent, and (Y,) satisfies condition
(CI) with = & {¢,RN}.

REMARK. Note that the above construction shows that the random vari-
ables X, and Y, are .#,_;-conditionally independent, n > 1. In particular, the
sequence (X, — Y,) is conditionally symmetric.

Sequences with property (CI) share many properties of sequences of inde-
pendent random variables. Thus, for example, we have the following lemma.

LEmMMA 2.4. Let (g,) be a martingale, such that the difference sequence
(e,) satisfies condition (CI). Then, for 2 < p < © we have

K-p
Log p

where Log x = max{1,In x} and K is an absolute constant.

lg*ll, < {lIIs(&)llp + lle*ll,},

Proor. By the results of Johnson, Schechtman and Zinn (1985) mentioned
above, for every sequence (¢,) of independent mean-zero random variables we
have

K-p
IZ&l, < tog 7 (IZ &, + llexl,)-

Applying this inequality to the conditionally independent sequence (e,), we
get

K .
(B eaf1)” s Tt ((B(E ea)') ™ + (Berrir) 7).
Since
2 1/2 1/2
(E(Z e,) Lﬁ) = (EX e2¥)
= (X Ee2l#)”* = (L B, 1¢2)"" = s(g),
we obtain
D 1/p K 'p
IZ e, (BT uflr) 7] < Eog 7 ot + o1y )
K-p
< Tog p {IIs()l, + lle*ll,},

as desired. O

The last lemma in this section is a particular case of the Lemma 1 in
Hitczenko (1988).
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Lemma 2.5. If (X,) and (Y,) are any tangent sequences of random vari-
ables, then for each positive number A the following inequality holds:

P(X*> 1) <2P(Y*> ).

Throughout, the letter K will always denote an absolute constant, not
necessarily the same from one use to the next.

3. The good A inequality. We begin this section with the following

b €

version of Prokorov’s ‘“arc sinh’’ inequality for martingales. Our result refines
Proposition 3.1 of Johnson, Schechtman and Zinn (1985).

ProposITION 3.1. Let (f,) be a mean-zero martingale such that |d,| <M
a.s., k> 1and ||s*(f)ll. = K? < ». Then, for each A > 0,

P(|Z dy| 2 )t) < 2exp(§_la— . arcsinh(%)).

Proor. Let, for ¢ > 0,

n c
Y, =exp|c- ) d, — —sinhcM - s2(f)].
k=1 M

Then (Y,,) is a supermartingale. Indeed,
EY, -7, exp(— —]%sinh M - End3+1) B, ecdnu,
and it suffices to check that
E,exped, ;< exp(—;zsinh cM - Endﬁﬂ).

But, since x <e* ! and e* —x — 1 <e* + e * — 2 < x sinh x, for all real x,
we can write
E,expcd, ., < exp(E,(e®» — 1)),
and then
E (c®¢n1—1) = E, (et —cd,,, — 1) <E,cd,,, sinhed,
<E,cld,.|sinhcld,, |

sinh ¢|d,, , I

— 272
- Enc dn+1

c
S sEnd§+1~—Msinth,
n+1

which gives the desired inequality. Therefore, for all positive numbers ¢ and A



1662 P. HITCZENKO

we have
P( Zn‘, d, > )t) < P{exp( zn: - —s1nh cM - s3( f))
k=1 k=1
c
> eXP(c)t - —Msinh cM - Kz)}
< exp(—c)t + %sinh cM - K2) - EY,
< exp(—c)t + —l%sinh cM - Kz)
and if
1 M
Co = 772rC s1nhW
we have
A sinth'M. 9
2 M ’
so that
n CoA Y AM
P(kz=:1dk > Al < exp(—T) = exp(marcsmh SK? )
and finally
n —A AM
P( kgldk ) <2exp(warcs1nh2K2),

which completes the proof. O

The above proposition and a stopping-time argument yield the following
good A inequality.

ProposiTION 3.2. Let (d,) be a martingale difference sequence, such that
ld,| <w,, where (w,) is a predictable sequence of random variables. Then,
forall 6 >0,B>1+ 8 and A > 0 the following inequality holds:

P(f*>BAr,s(f) Vw* <8)) <2e(a) - P(f*> ),
where a = (B — 1 - 8)/5 and &(a) = exp(—(a/2)In(1 + a/2)).
Proor. Following Burkholder (1973), we write
=inf{n:If,| > A},
v =inf{n:|f,| > BA},

r=inf{n:s,.,(f) > dror w,,, > 8A}.
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Since both sequences (s,(f)) and (w,) are predictable, all of u, v and 7 are
stopping times. Thus v, =I(u <k <v A7) is a %,_,-measurable random
variable and (L }_,v,d,) is a martingale. Therefore,

P(f*>BA, s(f) Vw*<81) =P(v<w, 7=
< P(|Z vadi| 2 (B - 1-8)1)

Y d,

k=p+1

= EP

>(B-1 —S)AIZ).

But, conditionally on %, (£}, ,d,) is a mean-zero martingale, and since

VAT
Y E,_dZ<8%
k=1

and w*, < 8\ by the preceding proposition, we get

VAT —

VAT
Pl| X d,|=(B—-1-9)AlF,
k=p+1
po| _(BL1=OX  (B-1-8))
- o0
< exp{ 9o arc sin 2522 } if uw < oo,
0 ifu =

2 2 arcsinh— | - I
= exp(—Earcsm 5) (p < ).

Integrating both sides and using the inequality arcsinh x > In(1 + x), x > 0,
we conclude that

VAT

Z dn

k=p+1

P >(B-1-28)A

< 2Ea(%)1(,u <o) = 28(%)P(f* > ),

which completes the proof. O

The next lemma was suggested by the observation of Hall and Marron
(1988).

LEmMA 3.3. Assume that X and Y are nonnegative random variables such
that for all 6 > 0, B > 1 + 8, A > 0 the following is true:

P(X>BA, Y <6)) < 2e(a)P(X>)),

where ¢ and a are as in Proposition 3.2. Then, for all p > e?,

p
X K- -— .
1Xll, < lnpIIYIIp
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Proor. Since P(X > BA) < P(Y > 8A) + P(X > BA, Y < 6)), by our as-
sumption we get
P(X > BA) <P(Y>8A) +2eP(X > )).

Multiplying both sides by pA?~! and integrating over R, with respect to A, we
obtain

E(X/B)" <E(Y/8)" + 2¢EXP
or
EXP < (B/8)" - (1 —2BPe) "' - EYP?,

whenever BPe < 3. Choosing now & =~ In p/p and B = const and using the
inequality (1 + x)? < exp(px), we obtain the lemma for p > p,, where p, is
large enough [the choice

1
0=—-—In—o, B=1+4

2
_"L_l)
Inp

gives p, =e?]. O

4. Rosenthal’s inequality. This section contains a proof of the following
theorem.

THEOREM 4.1. There exists an absolute constant K, such that for all
martingales (f,) and all p, 2 < p < «, the following inequality is true:

I f*ll, < K- p/Log p{lls( f)ll, + lId*Il,}.

ReEMARK. Of course the order of growth rate p/Log p is best possible,
since it is already best possible in the case of independent random variables [cf.
Johnson, Schechtman and Zinn (1985)].

Proor or THEOREM 4.1. First of all let us observe that for 2 < p < e?, by
the result of Burkholder (1973) mentioned in Section 1, || f*Il, < B {lls(f)l, +
ld*ll,} for some constant B,. In that range of p we, of course, have B, <
Kp/Log p, so we can assume without loss of generality, that p > e2 It is
convenient to split the proof in two steps. In the first step we will prove our
theorem for conditionally symmetric sequences, while in the second we explain
how to reduce the general case to the case of conditionally symmetric random
variables.

STEP 1. Assume that (d,) is conditionally symmetric. We will use Davis’
decomposition of a martingale [cf., e.g., Burkholder (1973) or the original
paper of Davis (1970)]: Write d, = d;, + d, where d/, =d, I(ld,| < 2d*_))
and d;, =d,I(ld,| > 2d*_,). Note that by the conditional symmetry of (d,),
E, ,d, =E,_,d}; =0, so that both sequences (d) and (d”) are martingale
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differences. To estimate [(L d})*|l,, observe that on the set {|d,| > 2d}_,},
Id,| +2d¥_, <2ld,| <2d}¥.
Hence, |d”| < 2(d* — d#_,) and L|d’| < 2d*. Consequently,
|5 asl, <I T kg, < 21a,.

For (d’) we first use Proposition 3.2 with w, = 2d}_,, and then Lemma 3.3
to conclude that

I(Z d4)*], = Kp/Log p{lis( £, + 2ld*ll,}

< Kp/Log p{lls(f)ll, + lld*ll,}.
Collecting the above estimates, we obtain

Il £*Il, < Kp/Log p{lls( F)lI, + lld*ll,},
which completes the proof of this part.

Step 2. Let (d,) be an arbitrary martingale difference sequence and
denote by (e,) a sequence which is tangent to (d,,) and satisfies condition (CI).
Assume also, that for each n > 1 the random variables d, and e, are
&, _,-conditionally independent (see Lemma 2.3 above and the remark follow-
ing it). Let us write d, = d, — e, and denote by (f,) and (g,) sequences of
pa.rtlal sums of (d,) and (e, ) respectlvely Obviously, (g,) is a martingale and
since d, and e, are %,_ 1-cond1t10nally independent, (d,) is conditionally
symmetrlc sequence of martingale differences. Therefore, by the first part of
the proof

I £*Il, < Kp/Log p{lls(f)ll, + Id*Il,}
< Kp/Log p{lis(&)ll, + Is(f)ll, + lld*Il, + lle*ll,} .

Since (d,) and (e,) are tangent sequences, we have: s(f) =s(g), and by
Lemma 2 5 lle*|l, < 2'/P|ld*|l,. Therefore, the right-hand side of the above
inequality is dommated by Kp/Log plllsCHIl, + ld*ll,}.
Applying Lemma 2.4 to the martingale (g,), we see that
lg*ll, < Kp/Log p{lls(g)ll, + lle*lx},
and the same argument as above yields
llg*|l, < Kp/Log p{lls( f)ll, + lld*ll,}.
Finally,

I £*I, < I £*Il, + llg*ll, < K - p/Log p{lls( )ll, + lld*Il,},
which completes the proof. O

REMARK. It turns out that the above method can be applied to other
quasilinear operators on martingales rather than s(f) Vv d*. The details will
appear elsewhere.
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5. The case of nonnegative random variables. In this section we will
use our result to obtain the optimal constant in similar inequality for nonnega-
tive random variables.

THEOREM 5.1. For any adapted sequence (X,) of nonnegative random
variables the following inequality is true:

|Z X.|, < & p/Log p{| & BsconXi]|, +1X*1,},  p=1,

for some absolute constant K. The growth rate p /Log p is best possible.

Apart from the best constant the above inequality was first proved by
Burkholder (1971) [or Burkholder (1973), page 40] and, under the assumption
that (X,) are independent (in which case the first term on the right-hand side
is equal to ||X X,[l;) by Rosenthal (1970). Later on, Johnson, Schechtman and
Zinn (1985), using an ‘“‘unbalanced” version of Rosenthal’s argument, proved
that the optimal choice of a constant in the independent case is p/Log p.
Unfortunately, this approach does not seem to be useful in the general case,
but as we will show below, the result can be easily deduced from Theorem 4.1
and Davis’ decomposition.

Proor oF THEOREM 5.1. Given (X,) let us write

X=X, I1(X, <2Xp},)
and

Xél = XkI( Xk > 2Xk*—1)'
Then

|Z %, <[ Z Xil, +] £ Xx],
and, by the same computation as in the proof of Theorem 4.1 we have
|£ xel, = 2171,
To estimate [|X X/||,, we write
| Z Xil, <|Z Xk - BeooXil, + ]| Z Exa X,
<|E % - Bl 4| Z Eeui],

and apply Theorem 4.1 to the martingale difference sequence (X; — E,_, X})
to get

|12 % = Bo-ail, = Kp/Logp{”(Z By (Xi - Ek—lXé)z)I/zup

+||Sup|X,; - Ek_]_Xél “p}, p= 2.
k
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Since
IXk’ - Ek—IXél S 4Xk*—1 S 4X*,

the second term on the right-hand side above does not exceed 4 - | X*||, and
the first is dominated by

"( 24X By X} - Ek—lx’él)l/2 "p
= H(4X*)1/2( YE,_(X}+ Ek-IXé))l/Zup
xS B

<[ex*X(L Bx)

This last quantity, in view of Schwarz inequality applied to the random
variables (8 X*)?/% and (L E,_,X,)?/?2 is no greater than

(IBX1, | £ By X, )"

This, combined with our earlier estimates, completes the proof for p > 2.
For 1 <p <2 the result follows by the same argument as at the very
beginning of the proof of Theorem 4.1 above. O

< 8IX*, +| X Buor X,
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