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THE ASYMPTOTIC BEHAVIOR OF THE SOLUTION
OF THE EXTERIOR DIRICHLET PROBLEM
FOR BROWNIAN MOTION PERTURBED
BY A SMALL PARAMETER DRIFT!

By Ross G. PINSKY

Technion-Israel Institute of Technology

Let L, = A + &b -V in R?, d > 3, generate a recurrent diffusion for
each ¢ > 0, where b € C%(R?), and let D c R be an exterior domain.
Then by the recurrence assumption, for each ¢ € C(dD), there exists a
unique solution in the class of bounded solutions to the Dirichlet problem
Lu,=0in D and u, = ¢ on 4D. On the other hand, by the transience
of d-dimensional Brownian motion, there is no uniqueness in the
class of bounded solutions for the Dirichlet problem 2Au =0 in D and
u =4y on dD. Since the Martin boundary at « for Brownian motion
consists of a single point, uniqueness is obtained by adding the condition
lim, . u(x) = c. We show that wuy(x)=1lim,_,,u.(x) exists and
satisfies 3Auq = 0in D, ug=¢ on 4D and lim, _,, ue(x) = c, where ¢
is given as follows. Let P! denote the measure associated with Doob’s
conditioned Brownian motion conditioned to exit D at 4D rather
than at . Let 7 = inf{# > 0: X(¢) € 9D} and define the harmonic meas-
ureu’(dy) = P}(X(7) € dy). Then pk =lim, . u" exists and
¢ = [;p¥(»ul(dy). We also show that the energy integral [p|Vu|? dx, when
varied over all bounded functions u € W% 2(D) which satisfy u = ¢ on 4D,
takes on its minimum uniquely at u,.

1. Introduction. Let L, = 1A + &b - V generate a recurrent diffusion in
R4, d > 3, for each ¢ > 0, where b € C*(R?), and let D c R be an exterior
domain, that is, the complement of a compact set. Assume that 4D is a
Lipschitz boundary. Then, for each ¢ € C(dD) and each ¢ > 0, the Dirichlet

problem
11 Lu=0 in D,
(1.1) u=y ondD

possesses a bounded solution u, € C2(R?). If ¢ > 0, then by the recurrence of
the process, this solution is unique in the class of bounded solutions and obeys
the maximum principle: sup, . p # . (x) = sup, ,p ¥(x). A proof of these facts
is sketched at the end of this section. On the other hand, when ¢ = 0, the
resulting diffusion process, namely Brownian motion, is transient and thus
there are infinitely many bounded solutions to (1.1). In order to obtain
uniqueness in the transient case, one must also specify boundary data on the
Martin boundary at «. In particular, the Martin boundary at « for Brownian
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PERTURBED EXTERIOR DIRICHLET PROBLEM 1603

motion consists of a single point, thus it follows from the Martin representa-
tion [6] that for each ¥ € C(dD) and each ¢ € R, there exists a unique solution
to

1Au =0 in D,
(1.2) u=y¢ ondD,
Illim u(x) =c.

In this paper, we study the asymptotics of «, as ¢ = 0. This problem is
very different from the classical small parameter problem in which the small
parameter appears in the diffusion coefficient rather than the drift and in
which the domain D is bounded (see [3], Chapter 4, for a good exposition of
the various guises of this problem). Before stating our results, we establish a
bit of notation and introduce Doob’s conditioned Brownian motion. Let Q =
C([0, ©), R?) with the topology of uniform convergence on compacts and let
X(-) denote the generic point in Q. Define 7 = inf{t > 0: X(¢) € dD}. Denote
by P the measure on  corresponding to the diffusion generated by L, and
starting from x and let P, denote d-dimensional Wiener measure starting
from x. The corresponding expectations will be denoted by E: and E,. Let h
be the unique solution to (1.2) in the case ¢ = 1 and ¢ = 0. Of course, by It6’s
formula, it follows that A(x) = P (7 < »). Then, following Doob [2], Brownian
motion in D, conditioned on exiting D at dD rather than at «, may be realized
as the Markov diffusion process on D generated by 3A*, where A is defined
by

h_l ) = 2th
Af—',;A( f)—Af+'h— f.

Denote by P} the measure on  corresponding to this conditioned Brownian
motion starting from x. Finally, let u*(dy) = P*(X(r) € dy) denote the har-
monic measure on 3D corresponding to the conditioned Brownian motion. We
can now state our main theorem.

THEOREM 1. Let D c R%, d > 3, be an exterior domain with Lipschitz
boundary and for € > 0, let u, be the unique bounded solution to (1.1), where
¢ € C(OD). Then uy(x) = lim, _, , u (x) exists and solves (1.2) with c given as
follows. The harmonic measures {u"}, ., possess a unique weak limit as
|x| — . Let

X|— o0
Then
(1.4) o= [ w(y)ul(dy).
aD

The measure u! can be represented in the following manner. Let B, c R?
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denote the ball of radius vy centered at the origin and let [(dx) denote Lebesgue
measure on 3B,,. Then if D C B,, the measure u” satisfies

Jop_ B (x)1(dx)
Jop 1 (x)1(dx)

(1.5) pk =

REMARK 1. An alternative formulation of the theorem is this: The har-
monic measures u’(dy) = P{(X(7) € dy) satisfy

wolimps, = P (7 <@)u + Py(7 = @)us.
o d

REMARK 2. In fact u! possesses the density VA - n(x)/[,p VA - n(x)o(dx),
where n is the unit outward normal to D at dD. See the remark following
Theorem 2.

REMARK 3. Let L be any strictly elliptic transient generator with coeffi-
cients bounded on compacts and let A(x) = P,(75, < ), where P, now corre-
sponds to the process generated by L. Then the process conditioned to exit D
at dD rather than at « is generated by L”, where L"f= (1/hR)L(fh). As
before, let u"(dy) = P*(X(r) € dy), where P" corresponds to L”. The proof
of Theorem 1 will reveal that as long as um(dy) = w-lim, p,x(dy) exists,
then in fact the theorem is also valid with A replaced by L. In fact, in [7] it
was proved that this condition on the harmomc measure is equivalent to the
condition that the Martin boundary at « for L, the adjoint of L, be one point.
It was pointed out that in the case that L generates a reversible diffusion, the
Martin boundaries of L and L coincide; thus, in the reversible case the above
condition on the harmonic measure is equivalent to the Martin boundary at «
for L consisting of one point. It was conjectured that the Martin boundary at
® of L is one point if and only if the Martin boundary at » of L is one point. If
this is indeed correct, then Theorem 1 holds for any such diffusion generator L
with a one-point Martin boundary at «, or equivalently, for any such diffusion
generator L possessing no nonconstant positive harmonic functions.

It is interesting that the solution u, in Theorem 1 also arises as the
mlmnuzer of a variational problem. Define the energy integral J(u) =
pIVul? dx and let

J= inf J(u),
ueWL.AD)
u=y ondD
u bdd

where ¢ and D are as in Theorem 1. By varying J(u) by a compactly
supported C®-function, one easily concludes that, if the minimum above is
indeed attained, say at #, then # must satisfy A2 = 0in D and &4 = ¢ on
dD. In fact then, & must satisfy (1.2) for some ¢. We will prove the following
theorem.
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THEOREM 2. Let D c R?, d > 3, be an exterior domain. Then

J = inf fIVuI2 dx
ueWiAD)’D
u= l/lOn aD
u bdd

is attained at u, where u is as in Theorem 1.

REMARK. From the previous paragraph, it follows that the minimum must
be of the form u = v + c¢(1 — h), where v satisfies 3Av = 0in D, v = ¢ on 4D
and lim, . v(x) = 0. Plugging this into J(«), minimizing over ¢ and inte-
grating by parts (it is easy to show that no contribution arises at « in the
integration by parts), we obtain

ot (£)Vh - n(x)o(dx)
VA n(x)o(dx)

where n is the unit outward normal to D at dD. Now it seems to be known
that u” possesses the density VA - n(x)/[,pVh - n(x)o(dx); however, we could
not find the result in the literature. Thus, we give an alternative proof to
Theorem 2 which, coupled with the above derivation, actually gives a proof
that the density of u” is VA - n(x)//[,pVh - n(x)o(dx).

We now sketch the proof of the facts that were stated in the first paragraph
of the paper. Existence of a solution to the exterior Dirichlet problem (1.1) for
€ > 0 can be given as follows. Let B c R? denote the open ball of radius
n centered at the origin. If n satisfies D° c B,, let u,, € C3(D N B,) N
C(D N B,) denote the solution to L.u, , =0in B, N D, u, , = ¢ on dD "and

= 0 on 9B,,. Such a solution exists by Theorem 6.13 and problem 6.3 in
[4] By the maximum principle and standard Schauder interior estimates ([4],
Theorem 6.2), it follows that u, =lim, u,, exists, is bounded, is in
C?%%D) and satisfies L.u, =0in D and u, = ¥ on aD. In the case £ > 0,
relying on the boundedness of u_ and the fact that 7 < © a.s. [ Pf], a standard
application of Itd’s formula gives u (x) = E:¢(X(7)). This gives uniqueness
and the maximum principle.

Theorem 1 is proved in the section that follows and Theorem 2 is proved in
the final section.

2. Proof of Theorem 1. Let 7, = inf{¢t > 0: |X(¢)| = n}. We first note
the following simple facts:

(2.1) P(r=t)=PJ(r,=t)=0 forallt>0.
(2.2) 7 and 7, are P, a.s. continuous functionals on .

Since P, is Wiener measure, (2.1) is obvious. (2.2) is an easy consequence of
the law of the iterated logarithm. We will prove (2.2) for 7, the proof for 7,
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being identical. Let 7 = inf{t > 0: X(¢) € D°} be the first penetration time of
D¢. Then 7 is continuous at all paths X(:) € Q which satisfy = = 7. But, by
the law of the iterated logarithm and the assumption that 4D is Lipschitz, it
follows that P (r = 7) = 1.

Now fix x, € D. In fact (2.1) also holds for P;. This follows from the
existence of a transition probability density ([8], Chapter 9). Actually in [8], it is
assumed that b is bounded, but a localization argument shows that & bounded
on compacts is sufficient. By It6’s formula and (2.1) for P®, for any ¢ > 0, we
have

u(xg) = Ei(w(X(7));7 <7, At)+ Ef(u(X(7,));7, <7 AL)
(2.3) +E;(u (X(8);¢<7AT,)
=I(n,t,e) +I,(n,t,e) + I3(n,t,¢).
Pick n; = ny(x,) and ¢; = ¢5(x,) so large that
(2.4) P (r<w)—P(r<7,At) <8 ifn=n;and¢>t;..
From (2.4) we obtain
| E(#(X(1)); 7 <) = E,($(X(7)); 7 <7, A )] <pll3

for n > nsand t > ¢;.

(2.5)

If necessary, choose t; = t;(x,) even larger so that
(2.6) P (rA71, >t) <8 fort=t;.
Now P; converges weakly to P, ([8], Theorem 11.4). Thus, by (2.1) and (2.2)

along with the standard theorem which gives equivalent conditions for weak
convergence ([1], Theorem 2.1), it follows that, for each ¢# > 0 and each n,

(2.7 gi_)n'BP:O(T N1, >t) =P (1 AT,>1)

and
(28)  lmEL(W(X(1))i7 <7y A1) = B (W(X(D)i7 <7, A 2).

From (2.7) and the maximum principle, we conclude that
(2.9) limsup E; (u (X(2));t <7 A7,) <WIP (7 AT, >10).

>0

From (2.4)-(2.9), it follows that

(210) ;i_il}) ji_r)r(l)ll(nﬁ’tﬁ:e) = Exo(ll’(X(T)); T < oo)
and

2.11 lim lim I t = 0.

( ) 61_13})51_1)1}) a(ns,t5,6) =0

The solution to (1.2) may be represented stochastically as
uO(xO) = Exo('l’(X(T)); T < °°) + CPxO(T = ),
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Except for (1.5) (which is contained in Lemma 1 below), the theorem will
follow from (2.3), (2.10) and (2.11) if we prove that

(2.12) ;m}) llmlz(ns,t‘s,e) P, (7 =),

where c is as in (1.4).

We start with the following lemma concerning the harmonic measure on 3D
of the conditioned Brownian motion P». Henceforth, we will frequently
employ the notation x = (r, ¢), where r = |x| and ¢ € S¢~1. Analogously, we
will write X(2) = (r(2), $(2)).

LEemma 1. ul = w-hmr_”m /.L(, ) exists and the convergence is uniform over
¢ € S7L. Furthermore, u” satisfies (1.5).

Proor. Note that, by the definition of uf, ,, and by the strong Markov
property, it suffices to prove the lemma for some sequence {r,J:_
with lim, 7, = «. First consider the case in which dD is a sphere—
say dD = {x: |x| = y}. In this case h(x) =y 2/|x|*"% and A" =
(A - 2(d - 2)/rda/dr). In (r, ) coordinates, this becomes
1 1 ( 92 d—-—3 9 ) 1

where Ags-1 is the Laplace—Beltrami operator on S-1. The exit time is given
by = =inf{¢t > 0: |X(#)| = y}. It will be convenient to represent the process
X(8) = (r(2), ¢(2)) as a skew product in the following manner. On a probability
space (), &, P), for each r > vy, let r*(t) = r*(¢;r) = r*(¢;r, ») be a one-
dimensional diffusion generated by 3(d2/dr2? — (d — 3)/rd/dr) starting from
r, and define

ds
Sl Aoy

[Actually, r”(¢) is only defined until it hits 0 which it will do with probability 1,
so we ought to specify that the process is killed at 0. However, in the sequel we
will only be considering r’(t) up to the time it hits y.] Let 6(¢; ¢) = 6(¢, w; ¢),
also defined on (Q), &, #), be a standard Brownian motion on S9!, starting
from ¢ € S9!, generated by 3Ag«-1 and independent of r*(z). Now define
o"(t) = ¢M(t; ¢, 1) = 0(p(t; r); ¢) and 7" = 7%(r) = inf{t > 0: r(t) = y}.
Then, by the skew product decomposition [5], P! restricted to % [where
F = 0(X(s), 0 < s < t)] is the measure induced by the measure & under the
map » - {(r*(s),$"(s)), 0 <s < 7-"}) We will work with (r%(-), "(-)) on
0, &7, 2). Note that the exit time, 7%, is independent of 6(-). The harmonic
measure p,(,, #) 18 given by

/’L?r, ¢)( dy)

13
(2.13) = P(¢"(+"(r); ¢,7) € dy) = 2(6(p(7"(r); 7); ¢) € dy).
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Since r*(-) and 7" are independent of 6(:), it follows that, conditioned on
r®(-), the distribution of 8(p(7"(r); r); ¢) is equal to that of 6(5; d)|s= pzr(ry: ry-
But 6(¢; ¢) is ergodic on S¢~! and Z(0(¢; $) € dy) converges weakly as ¢ > =
to normalized Lebesgue measure on S?~!. By symmetry, it is clear that this
convergence is uniform in ¢. Thus, if we show that for some sequence {r,};_,
converging to o,

h ds
2.14) lim p(7*(r,),r,) = lim [7 m____ 7 o a.s. [Z],
(219 lim p(r*(r), ) = Jim [T

then it will follow from (2.13) and the first sentence in the proof of this lemma
that y,,. 4 converges weakly to normalized Lebesgue measure, uniformly over
¢ €89

To prove (2.14), we will utilize scaling. Define 7%(¢;r) = (1/k)r*(k>t; kr).
From the homogeneity of the generator +(d%/dr% — (d — 3)/rd/dr),
one can check readily that 7*(-;r) =, rh(-; r). For a <r, define o] =
inf{t > 0: r*(¢;r) = a} and 6] = inf{t > 0: #*(¢;r) = a}. Then we have

ol ds 7 ds
f 3 2 ~d f = 2
o (r*(s;r)) o (F*(s;r))
s k2 ds
(2.15) L i
0 (r (k%s; kr))
_ fk%’L
0o (ri(t;kr))”
However,
1
k26T = k2 inf{t >0: Zrh(kzt; kr) = a} = inf{t > 0: r*(¢t; kr) = ka} = of!.
Thus, from (2.15), we conclude that

ol ds _ ok ds
(2.16) '/;) (r"(s;r))2 d'[o (h(s;kr))z.

Now, if 2"y < r < 2"*1y, define
=inf{t > 0: r"(¢;r) = 2"y},
1nf{t>o-+1 ri(t;r) =2/ } forj=n-1,n-2,...0.
Thus 7" = 0,,. We have

ds o, ds n—1
(r"(s; r)) j;) (rh(.s;r))2 " Jgofa,._j (rh(s;r))z‘

Op—j—1 ds

(2.17) f
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From (2.16), (2.17) and the strong Markov property, we conclude that

ds n
(2.18) f*h———z =Y+ Y X

o (Mn) i

where the X’s are positive i.i.d. random variables and Y is nonnegative and
independent of the X;’s. Since, by Borel-Cantelli, the sum of n positive i.i.d.
random variables converges to « almost surely as n — », we obtain from
(2.18) that

. +h ds
hm[ 3 =
r—ow’g (rh(s; r))

in probability and (2.14) follows. This proves the lemma in the special case
that dD is a sphere.

We now turn to the general case. We abandon ({), %, %) and return to our
original notation. Pick y so that the y-ball B, encloses dD. Recall that 7, =
inf{t > 0: |X(#)| = y}. Assume X(0) =x = (r, ¢) with r > y. Then, by the
strong Markov property, for any g € C(3D),

[ gwidy) = Eg(X(r)) = BB} 8(X(7) = EXH(X(7,)),

where H(y) = E;‘g(X(r)). Since X(¢) is Feller under P” it follows from (2.2)
that H(y) is continuous. [Alternatively, one could appeal to elliptic regularity
theory since H(y) is harmonic for A* and A* has C*-coefficients.] Thus, to
prove the lemma in the genera.l case, it suffices to show that as r — « the
measures Ph(X('T )€dy) =P, ¢)(X(T ) € dy) converge weakly, uniformly in
¢, to h(y)l(dy)/faB h(2)l(d2).

Let fe C(B,) and recall that h(y) = P, (1 < ®). Of course, h is continu-
ous for the same reason H is. Now P” is, up to normalization, nothing but P
restricted to those paths which eventually reach dD. Since 7, < 7 on {r, < =}
a.s. P,, we have, by the strong Markov property,

E T <o E(f(X(r))I, o, o
El(X(r,)) = (F(X () <a) _ (F(X(z )T, <)

P(7 <) P, (1<)

_E[F(X())], By, )l <)
- P.(7 <)

2.19

B F(XE)MEE)L, ) Pr, < =)
h P(r, < ) P(r < )
_E(f(X(s))h(X(z,)); 7, < @) [ E(h(X(,); 7, < =) |
a Px(fry < o) Px(‘ry < )

But the distribution of X(-) under P,(+;7, < »)/P,(7, < ) is that of Brown-
ian motion conditioned to reach 4B, . By the first part of the proof, we know
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that for Brownian motion conditioned to reach dB,, the distribution of X ('Ty)
converges weakly as r — o, uniformly in ¢, to normalized Lebesgue measure
on 4B, . Thus, as r - », the rightmost expression in (2.19) converges, uni-
formly in ¢, to

f, f(¥)h(y)i(dy)
s F(1(dy)
and the same is therefore true of the left-hand side of (2.19). This completes

the proof of the lemma.
We now prove (2.12). Recall that

I,(n,t,e) = E;o uE(X(Tn)); T, <TA t)
= B (B W(X(7)); 7, <7 AL).

From Lemma 1, we know that for large r, uniformly in ¢, the distribution of
X(7) under P!, x = (r, ¢), is close to u”. The main step in the proof of (2.12) is
to show that for small ¢, the above statement is also true with P/ replacing
Pl Let ny=nsxy) and t; = t;(x,) be as defined in (2.4) and (2.6). Pick
mg > ng so large that

(2.20)

P(r, <T1<®) - )
P(r<w) " 4yl
for all x with |x| = ng, if m > m;. This is clearly possible since P. is Feller.

[Note that m; = m4(x,) since ng; = n (x,).] Now increase ¢; = t;(x,) if neces-
sary so that

P(r, ANty <7 <o) 5
P(r<w%) " 2yl

Increase t; = t;(x,) again if necessary so that

Pi(ts<7<7p,,)

)
2.22 su < for all small &.
(222) |x|=55 Pi(r<7,,) 2[lyll ¢

A proof of the existence of such a ¢; can be given as follows. Since one can
certainly guarantee (2.22) for P in place of P¥, it suffices to show that

lir% Pi(r<r7,,)=P(r< Tmy)s

(2.21) for all x with |x| = n; and m > m.

lin% Pi(ts <t <1,) =Pt <7 <1,).
E—

But Pi(r <1,,) =Pi(r <7, AT)+PIT <7<r,) and, by weak conver-
gence along with (2.1) and (2.2), the limit of the first term is P(7 < Tmy N T)
which converges to P.(r < 7, ) as T — «. This and a similar calculation for
Pi(t; <7 <r1,) reveal that it suffices to show that for some ¢, > 0,

(2.23) lim sup sup P(r A7, >T)=0.

T—w 0<e<egq x|=ng



PERTURBED EXTERIOR DIRICHLET PROBLEM 1611

To this end, pick N > m;, let ¢,, chosen to be positive, denote the lead
eigenfunction of — ;A on By, the ball of radius N centered at the origin, with
the Dirichlet boundary condition on 4B, and let A > 0 denote the correspond-
ing eigenvalue. Then

sup L,¢, ~ sup 1Apy + b - Vo, < _a+eM,
lxl<ms Po lxl<ms bo
where M = sup,,, 16 - Véol/¢o. Thus, for £ < gy = A/2M, we have
Lo, —A
|x?225 b0 = T

Now define ¢ € C%(R?) such that ¢(x) = ¢(x) for x| < m, inf, . ga P(x) > 0
and

L.¢
(2.24) inf —(x) > — fore <e¢g,.
xeR? &
(For example, let ¢ = ¢ > 0 for large |x|.) We have
2.25 Lo A
. —— < —_
(2.25) |le<155 4 (x) = —
The Feynman-Kac formula and (2.24) yield
tLed)
(2.26) E:exp —f s (X(s))ds|p(X(t)) = ¢(x) forlx| <my.
0
Using (2.25) and (2.26), we obtain for ¢ < ¢, the Chebyshev estimate
L L
Pi(rAT,,>T)< exp(T sup —E(é)Ej exp(—[T (;d) (X(s)) ds)
lyl<mg 0
e—/\T/2 TL d)
< —— E:(exp| - “—(X(s))ds|o(X(T
gy B [T (o)) i Jox(1)

- d)(x) e—)\T/Z‘
lnfye Re d)(y)

This proves (2.23) and consequently justifies (2.22).

The weak convergence of Pf to P, is in fact uniform over {|x| = ns}. To
prove this, assume to the contrary that there exists a continuous bounded
function f: Q@ > R, an a > 0, a sequence {¢,),_, € S?" ! and a sequence
€, L0 such that |[fdP;~, — [fdP, , |> a for all m. We may assume that
¢, converges to some ¢, € S¢~!. But by the Feller property, P, , =, P, 4
as m — « and by [8], Theorem 11.4, P;~, =, P, , as m — . This contra-
dicts the above inequality and proves the claim. From (2.1) and (2.2) along
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with the uniform weak convergence of P} to P,, we obtain

Ef(‘/f(X("')); T< Ty, A ta)
Pi(r < Ty A t5)

lim sup
e—0 |x|=n,

(2.27)
B Ex(l/l(X(T)); T < Ty, A ta)

Px(T < Ty A ts) =0

From (2.21) and the fact that P} is P, conditioned on 7 < », we obtain

Ex(llf(X(T)); T < Ty, A ta)
Px(T < Ty A ta)

E(¢(X(1);7<®)  E(#(X(1));7 <7, At5)
P.(1 < ) P(r <1, Ats)

EM(X(7)) —

B Ex(t//(X(T)); Ty N b5 <T < OO)Px(T < Ty A ts)

(2.28)
P(r<®)P(7r< Ty N t5)

Px(‘rma ANty <1< OO)Ex(l/l(X(T)); T< T, A ta)
P(r<®)P(7< Ty N ts)

2||¢I|Px(7m5 Aty <71 <o)
<
- P.(7 < x)

<é iflx| =n,.

Similarly, by (2.22), we have

E;(l/j( X(T))’ T< Tms A t3) _ Ej(d’( X(T)), T < Tms)
Pi(r <tm, A1) Pi(r < 1)

(2.29) <.

Now the key observation is this. There exists a probability measure u(dy) =
w(dy; e, mg,ng, x) on 0B, such that, for |x| = n,,

E:(v(X(7));7<7p,)
Pi(r < Tms)

(2.30) E:y(X(7)) = faB p(dy; e, my,ny, x).

ns

This follows from the strong Markov property and the fact that P? is
recurrent.

Now, using (2.30), (2.29), (2.27), (2.28) and Lemma 1 in that order, we
obtain for x = (n;, ¢),

(2.31) lim lim sup
8-0e-0 peS¢1

Ef,, o¥(X()) - [.,Dsa(y)uiz(dy){ —o.
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From (2.4) and (2.1), P, (v > 7, A ¢;) — P, (7 = ) <8 and thus P, (7 >, ) —
P, (1 = ») < 3. Hence, by picking ¢; larger if necessary, we may assume that
|P, (7 Aty >7,)— P, (7 =0o)| <25 This fact, and weak convergence along
with (2.1) and (2.2) give

(2.32) lim lim | P&(7 A £, > 7,,) = Py (7 = =)| = 0.

Using (2.31) and (2.32) in (2.20), we conclude that

. . — — h
lim, lim o(n5, 25, €) = Po(7 =) [ w(y)ut(dy).

This completes the proof of Theorem 1. O

3. Proof of Theorem 2. We introduce the following notation. Let

JM = inf [|Vu|2dx for M > |lyll.
ueWL2D)’D
u=y on dD
lul<M

Also, if D¢ c B,, where B, is the ball of radius n centered at the origin, let

J, = inf f |Vul® dx.
uewlA(DnB,)"DNB,
u=y on dD

Since, for all n, J, < [p|Vi|? dx, for any function & € W,.2(D) satisfying
i = ¢ on 4D, it follows that limsup, ., < . As is well known, J, is
attained at u,, where u, solves Au,=0in DNB,, u,=¢ on dD and
Vu, v =0 on dB,, where v is the outward unit normal on dB,. By the
maximum principle, ||z ,|l. = ll¢|l.. To prove Theorem 2, we utilize the follow-
ing lemmas.

LemMA 2. To prove Theorem 2, it suffices to show that J™ is attained at u,,
for every M > |||l

Proor. Assume that Theorem 2 does not hold. Then there exists a bounded
i@ # u, satisfying & = ¢ on 4D and such that [,|Vil® dx < [p|Vu,l® dx. With
M = ||it|l., this contradicts the assumption that J¥ is attained at u,. O

LEmMA 8. JM > limsup, _,.J,, for all M > [l

Proor. For ¢ > 0, pick @, € WL.2(D) with &, = ¢ on 4D, || ll. < M and
such that J¥ > [,|Vi,|? dx — . Then for any n satisfying D¢ c B,,,

JM > [Dlvaf dx — ¢ > [D i Vi, 2dx — e >d, —¢.
ﬁ n

Thus limsup, _,.J, < JM + ¢ and the lemma follows since ¢ is arbitrary. O
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LEmMMA 4. lim, ,,u, = u,, where u, is as in Theorem 1.

As the proof of Lemma 4 is a bit involved, we postpone it until after the
completion of the proof of Theorem 2, which goes as follows: Fix m such that
D¢ c B,, and let n > m. Then

(3.1) Jo=[ Vuldcz [ Vu,fds, n>m.
" Jpns, DnB,

Since limsup,, ., <~ and since |lu,ll. = ll¢ll. for all n, it follows that
{u,);_, is weakly compact in W»2(D N B,,). On the other hand, by Lemma 4,
u, converges pointwise to u,. Thus, in fact, u, converges weakly to u«, in
W'2(D N B,,) as n — ». Since the norm cannot increase in the limit under
weak convergence, we obtain from (3.1)

(3.2) f |Vuol? dx < liminfdJ,.

DNB,, n—o
[Of course, one could use Schauder estimates to conclude that u, — u,
strongly in W2(D N B,,) but we do not need this.] Since m is arbitrary, we
conclude that

(3.3) fD|Vuo|2 dx < liminfd,,.

n—w

From Lemma 3 and (3.3) we conclude that in fact

(3.4) JM = fDIVuOIde for M > [|[l.

Theorem 2, except for the uniqueness, now follows from (3.4) and Lemma 2.
The proof of uniqueness is standard. Any minimizer # must satisfy

(3.5) ]Dva Vgdx =0

for all bounded ¢ € W;,2(D) which satisfy ¢ = 0 on dD. Thus, if u, and, say,
& are both minimizers, then [,(Va — Vu)Vgdx = 0 for all ¢ as in (8.5). In
particular picking ¢ = & — u,, we obtain [p|Vi — Vu,l® dx = 0. Since
it =uy= ¢ on dD, we conclude that & = u, a.s. This completes the proof of
Theorem 2. O

We now give the proof of Lemma 4.

Proor oF LEMMA 4. Let Q, X(-) = (r(-), ¢(:)) and 7 be as defined in the
paragraph following (1.2) of Section 1. Also let 7, = inf{t > 0: X(¢) €9B,},
where B, = {lx| <vy}. Let P! be the measure induced by d-dimensional
Brownian motion in B, starting from x € B, and reflected at 4B, and let P,
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denote d-dimensional Wiener measure. Then u, is given by u,(x)=
E¢(X(7)). By the strong Markov property, we have

(3.6) u,(x) =Er(¢(X(7));7<7,) +EMNER, w(X(1)); 7, <7).
Clearly,

BD M EIW(X(0)i 7 <7,) = B(H(X(1); 7 < )
and
(3.8) li_l)I:on"(r <7,) =P(r<») =h(x),

where h(x) is in the notation of the first two sections. In light of the formula
for u, which appears between formulas (2.11) and (2.12), the proof of Lemma
4 will follow from (3.6)—(3.8) if we show that

(3.9) w-lim P} ,(X(7) € dy) = u2(dy), uniformly over ¢ € S¢~1.
Assume that (3.9) holds in the case that 4D is a sphere, that is, D = {|x| > y}.
Recall that if 9D =4B,, then wi(dy) = p(dr,d¢) = & ,(dr)i(d¢), where
8,(dr) is the atomic probablhty measure at y and I(de)is normahzed Lebesgue
measure on 8971, Under this assumption, we will prove (8.9) for general D;

then we will return to prove (8.9) in the case that 4D is a sphere.
We introduce some notation. Fix y such that D° c B,. Let

ur 4(dy) = P} ,(X(7) €dy) fory<r=<n.
For n >y, let u}, ;. (d¢) = P, ,(¢(7,) € 3¢). Now (3.9) reads
(3.9) w-lim pf, , (d¢) = pt(d¢), uniformly over ¢, € S¢1.

The assumption that (3.9) holds in the case that D is a ball reads
(3.10) w-lim B g0y (dP) = I(d$), uniformly over ¢, € S¢1.

Let h,(y,$) = P! (7 <7,) and let &} ,(d¢) =P, (X(r) € dp|r < ,). Then,
as in (3.7) and (3.8),

(3.11) wlim, o (de) = b, (d6)
and

(312) lim h,(7,8) = A7, ).
Finally, let

v, ¢o(a¢) P(';,dao)((f’(Tn) eddolr, < 7')-
Let f e C(@3D). By the strong Markov property,

(313) [ F(S)5 5 (d8) = [ phoyr(d9) [ F(8)15.(d9).



1616 R. G. PINSKY

But, again by the strong Markov property,

| £, (de) = ho(v,8) [ F($)E%,.(d)
(3.14) oD oD
A=k [ [ (@) (dd)7 (db).
Substituting (3.14) into (3.13) gives

[ (@5,6(d8) = [ o (d5)hnl(7,8) | SO, (d9)

(3.15) 4] s () (L = By(,9))

X[ o) F(@)ws (de)5 (dt)
= A, +R..

Now 4 ,(y, ¢) is increasing in n and h(y, ¢) is continuous. Thus, by Dini’s
theorem, the convergence in (3.12) is uniform over ¢ € S¢~ . The convergence
in (3.11) is also uniform over ¢ € S¢~1. Indeed, a straightforward calculation
reveals that the convergence in (3.11) will be uniform as long as P, ,(r, < 7 <
®) converges to 0 as n — « uniformly in ¢. But, by the strong Markov
property,

P, (1, <7<0o)< sup P, (7<) < sup P, (1, <),
sesd-1 sesd-1
for any r satisfying D° c B, € B,,. But P, (7, <) = r¢=2/n?=2 The uni-
form convergence in (3.11) and 3. 12) along with (3.10) give

(316) A= lmAl = [ F($)u} (dd)h(y,s)I(ds).
n—oow §d-1 ’
Now R satisfies

RA < UAN[ (1= Ry, 9))ih, g0 (ds).

Since A ,(y, s) is increasing and A ,(y, s) > 0 for all n > v, it follows that there
exists a § > 0 such that

(3.17) IRLI <IIfl(1-8) ifn>y+1.

Now, returning to (3.15), note that R} contains the term [, f(oIur, (dd)
which is equal to the left-hand side of (3 15) with ¢, replaced by ¢ and thus is
in fact equal to the entire right-hand side of (3.15) with ¢, replaced by ¢ and ¢
replaced by another dummy variable. Substituting this for [, f(#)u], (d¢) in
the expression for R} gives

(3.18) R = A2 + R2,
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where

(319)  lm AL = [ (1-h(y,9)i(ds) A=(1-p)a4,
with p = [ga-1h(y, s)I(ds) and

(3.20) R2<(1-8)’fll forn=y+1.

Iterating this procedure, we conclude from (3.15)-(3.20) that

Jsa-1f(®)n)) (dd) (v, 5)I(ds)
[sa-1h(y, s)I(ds) '

From the representation of u(dy) given in (1.5), it follows that (3.9) holds.
This completes the proof of the lemma under the assumption that the lemma
is true when 4D is a sphere.

We now return to prove the lemma in the case that D = {|x| = y}. It will be
convenient to represent the reflected Brownian motion corresponding to the
measure P" in skew product form as follows: On a probability space (), F#, &),
let r(¢) = r,(¢, o) be a one-dimensional diffusion on [0, ] starting from n,
with reflection at n and generated by 3;d?/dr? + ((d — 1)/2r) d/dr. Define
p.(t) = [t ds/rs). Let 6(¢; ¢) = 6(t, w; $) be a Brownian motion on S%-1
starting from ¢ € S¢~! and independent of r,(¢) and define ¢,(¢) = ¢,(¢; $) =
6(p,(t); #). Then, by the skew product decomposition, the measure P}, , is
the measure induced by the measure & under the map o — {(r,(2), ¢,(2)),
0 <t < ). Let 7)) = inf{¢ > 0: r,(¢) = y}. Then, almost exactly as in the proof
of Lemma 1, (3.9) will follow if we show that p,(7.') converges in probability to
® as n — », [We say “almost” exactly because in Lemma 1 we proved almost
sure convergence; however, it is clear that convergence in probability is enough
to guarantee (3.9).] The scaling argument used in the proof of Lemma 1 does
not work here; because of the reflection, we do not end up with identically
distributed random variables. We mention in passing that, on the other hand,
the type of argument we give here could also be used in Lemma 1. It is enough
to show that lim, _, £e~"»"») = 0, where & denotes expectation with respect
to the measure &. By the Feynman-Kac formula, &e """ = y (n), where
u,(r), y <r <n,solves

(ld2 d-14d 1

1
lim [ F(9)uh,0(d) = —A =

—_—— + —_———— — ——

2 dr? 2r dr r?
y<r<n,u,(y)=1and u/(n) = 0. We must show that limsup,, _,, u,(n) =
0. We have (r? 'u'(r)) = 2r? 3u,(r) and, upon integrating and using
u/(n) =0, we obtain r¢ u)(r) = —["2s% 3u (s)ds. Integrating again
and using u ,(y) = 1 gives

)unm ~ o,

(3.21) u,(r) =1 - [[s07¢ ["227%0 () da.
1 s

We now assume that lim sup, _,,, »,(n) > 0 and will arrive at a contradiction.
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Without loss of generality, assume that lim, _,,, u ,(n) > 0. By the probabilistic
representation of u,(x) and the strong Markov property, u,(x) is decreasing
for x € [y,n]. Thus, our assumption implies that there exists a 6 > 0 such
that u ,(x) > 8 for all y <x <n and n > y. Thus, from (3.21),

(3.22) u,(n)<1- 6fn¢.issl‘d fnsz‘3dz.
1 s

A simple calculation reveals that the right-hand side of (3.22) converges to —«
as n — o, which contradicts the positivity of u,(n). This completes the proof
of Lemma 4. O
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