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ON THE VOLUME OF THE WIENER SAUSAGE

By E. BOLTHAUSEN!

Technische Universitdt, Berlin

Let W(t, ¢) be the s-Wiener sausage, i.e., the e-neighborhood of the
trace of the Brownian motion up to time ¢. It is shown that the results of
Donsker and Varadhan on the behavior of E(exp(—v»|W(t,€)l), v > 0,
remain true if ¢ depends on ¢ and converges to 0 with a certain rate.

1. Introduction. Let B,, ¢t > 0, be a standard d-dimensional Brownian
motion starting in 0. If £ > 0, the e-Wiener sausage is the following subset of
R:

W(t,E) = U Ue(Bs)

s<t

Here U,(x) is the e-neighborhood of x. The Lebesgue measure of W(¢, ¢) is the
volume of the Wiener sausage V(t, ). Donsker and Varadhan proved in [4] that
for v > 0,

(1.1) lim¢~¢/@+D]og E(e V) = —k(d)v?/ @+,
t— oo

where k(d) is independent of ¢ and v:

k(d) =

d+ 2 2/\d d/(d+2)
7]
A, being the smallest eigenvalue of —A /2 on the unit ball in R? with Dirichlet
boundary conditions and w, is the volume of the unit ball. This gives informa-
tion about the probability that V(z, ¢) is untypically small.

If one could let v vary with ¢, say v ~ t%, then one would obtain broader
information on the behavior of V(t, ¢) in the tail. Such information is already
contained in [4]. In fact, an inspection of the proof reveals that if v, is a
positive function in ¢ with

2/2+d
W2/ @D,

limv,/t =0, liminf », > 0,
t—> oo t—>o
then
(1.2) lim ¢t ~¢/@+d)y,~2/@+d) Jog E(e V) = —k(d).

t—>

The case where v is constant is actually the border case where their proof
works. It is the aim of this article to show that a certain decay of », to 0 is
possible and still (1.2) is true.
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By using Brownian rescaling, one can reformulate this as a result on
E(exp(—vV(t, ¢,)) with fixed value v and shrinking &,. Such an extension
appears to be natural: Of course, for d = 1, one can take ¢ = 0 and (1.1)
remains true. For d > 2, V(¢,0) = 0 almost surely. In dimension two, Brown-
ian motion just fails to have local times, so one expects that not much
smoothing is needed and the natural conjecture is that (1.1) remains true for ¢,
decaying with an arbitrary polynomial rate. That is in fact what is proved here.

The problem becomes even more natural when one puts it in the appropri-
ate large deviation setting. By using Brownian rescaling, one obtains

E(exp(-vV(t,¢))) = E(exp(—vTV(T, eT~4))),

where T = t¢/(@+2)

If 6 > 0 then V(T, §) can be expressed in terms of the empirical measure

1 .7
Lr=7 [o 35, ds,
where §, is the one point measure at x. If 6 > 0 is fixed, we put °

Ly(x) = (Lp* x5)(x) = [x5(y = %) Ly (dy),

where x,(x) = 8 %w 15(x), B, ={y: lyl <8} and w, is the volume of the
d-dimensional unit ball. Obviously,

V(T,8) = Isupp(L%)l.

| | denotes Lebesgue measure. L, obeys a large deviation principle (LDP) in
the weak topology on the set of probability measures. However, this is not an
appropriate topology for discussing supports. Much better is the L,-topology,
on probability densities on which the support is a lower semicontinuous
functional. It is not difficult to show that for fixed § > 0, L} satisfies a LDP in
the L,-topology. What Donsker and Varadhan proved in [3] and [4] is that this
LDP remains true with less smoothing, more precisely, when & decays with
T~1/4, This then leads to (1.1). One may ask how much smoothing is really
needed for a LDP in the L,-topology. The answer is that 7-1/¢~? ig the
border case for 5 where the LDP starts to fail. We will prove such a result for
the Brownian motion on a d-dimensional torus in Section 2. As a consequence
of this, we will obtain the following theorem.

THEOREM 1. Let d > 2. For any v,&,y > 0, one has

lim T~ log E(e "TVT-eT™ VM) - _p(d)p2/@+D,
Too

REMARKS. 1. The theorem breaks down for v = 0 (d > 3). In fact

lim 77! log E(e_TV(T’ 8T—1/(d—2)))
T—oo

[\

- Tlim E(V(T,eT~Y/4-2))

— lim T-4/€@-DE(V(T4/@~? ¢)) = —c(e),

T—>o
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where c(¢) is the Newtonian capacity of the ball with radius ¢ in R¢ (see [5]).
c(e) goes to 0 for ¢ —> 0, so the statement of Theorem 1 is certainly false.
Probably, for d > 3,

. _ _ -1/(d-2
lim 77! log E(e *TVT:eT™V4™) — g,
T

but I have no proof.
2. The result may be translated into other statements by means of an
appropriate rescaling, e.g., for ¢ < 2/(d® — 4) and all v,& > 0,

lim ¢—¢/@+® log E(e—uV(t,st‘“)) _ —k(d)vz/(2+d),

t— o

or for a < 2/d and v, = vt~* one has (1.2).

Sznitman has recently developed a method for proving extensions of results
like (1.1) without relying on large deviation techniques [6].

2. Large deviations in L,. We give an improvement on the result of
Donsker and Varadhan in [3] and [4]. Let B, be the Brownian motion on the
d-dimensional flat torus T with circumference R. We identify T, with
[0, R)? and put

B! =pB! mod R,
where B, = (BL,...,B8%). L? denotes now the mollified empirical density of B,.
We drop the upper index R in T, for notational convenience.

THEOREM 2. Assume d>2. If 0<a< 1/(d — 2), then for any ¢ >0
Lt™" satisfies a large deviation principle in L, with rate function

IVFI®
I(f) = é/—?—dx,

i.e., if A is a measurable subset of L (T,), then

1 e 1 i
—I(int A) < liminf —log P(L#" € A) < limsup ~log P(Le ™" € A)
t—o t— o
< —I(cl A).

Here, I(B) = inf{I(f): f € A). int A and cl A refer to the L,-topology.

The result is proved in [3] and [4] for @ = 1/d. We extend the argument
slightly and prove the following result.

ProprosITION. Let 0 <a <a' <1/(d —2), da’ — 2a < 1. Then for any
6>0,

1
tlim ?log P(IIL, * x;~e — L, * x;-ally = 8) = —oo.
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It is obvious that the proposition leads to Theorem 2: If a < 1/d, the
theorem is proved in [4]. If 1/d < a < 1/(d — 2), we pick a sequence

l/d=ay<a,;< - <a, =a,

satisfying da,,, — 2a, < 1 and apply the proposition.

REMARK. In [3], results on the L, large deviation principle for mollified
empirical processes of much more general processes have been derived. The
entropy condition used there can be relaxed using the extension of the method
derived here.

ProorF oF THE PROPOSITION. The proof closely follows the arguments of
Donsker and Varadhan:

P(IL, * x,_q — L, * x;-ally = 8) = P( sup [(L,, g *(xs-a — xp-a))| = 6).
llgllo=<1

Here (u, ) denotes the integral [fdu. Let

® = {g* (X2 — x,-=): llgll < 1}.
One chooses a finite subset &, of the set of bounded measurable functions
such that

(2.1) sup inf ||f— hll, < 6/4.

fe® he@®;
Such a set exists having less than N,(¢) = exp(c(6)t9%) elements, where ¢(8)
depends on & but not on ¢. The argument for this fact is essentially contained
in Donsker and Varadhan [4]. It runs as follow: We can choose ¢ > 0 such that
for |x — x'| < et™® we have

sup [8(x) —&(x") <8/8,
gl <1

where
8(x) = g* xp-o(x) — g * x,-a(x).

We then divide T, into congruent squares with sidelength ((Vd /£)t%] + 1)~ 1.
Here [x] denotes the integer part of a number. The number of such squares is
bounded by ¢,(8)t*¢. @, is then the set of functions T, — [—2,2] which are
constant on each of the above defined squares and which take values in some
fixed finite subset A of [—2, 2], where each point in A is at distance less than
or equal to §/8 from its nearest neighbors. It is then obvious that (2.1) holds.

For each h € &, we choose a g with ||gll. < 1 satisfying [|h — gl < /4 if
any such g exists. Collecting all these functions g, we obtain a finite subset

Dsc{f:lIfll-<1}
with the property

sup inf ||f - &ll. < 6/2.
Iflle<1 8€9s
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95 contains at most Nj(¢) elements. We now obtain
P(IL, * xp-o(%) = Ly * Xp-e(2)l1 = 8)

(2.2) < Ny(t) sup P((L,,8) = 6/2),
llglle<1

P(L, )= 5/2) - P(['2(B) ds = 372
(2.3) 0

< exp( —zt6/2)E(exp(z/0t§(Bs) dS)),

for an arbitrary z > 0, which will depend on ¢ later on. It is important that for
any bounded measurable function A,

(2.4) E(exp(fth(Bs) ds)) < Celitlkeg? sup,(Cps ) = 161D
0

where C does not depend on A and ¢ and I(u) is the entropy function of the
process, in our case I(u) equals I(f) from Theorem 2 when u is absolutely
continuous with density f and I(u) = » otherwise.

(2.4) is proved in [3], Lemma 2.2. Applying this to h = 2§ gives

B exp( 2 [2(B,) s | < Ce*exp(t sup (=1, £) ~ 101

sup(z(u,8) —I(n)) < sup 2z{(u,8)= sup 2{(g,M*X;e— L*Xsa)
n w: I(w=<z p: I(u)<z

<z sup |lu*x,-a — p* x,-ally,
p:I(p)<z

where || ||y denotes the variation norm. We are going to estimate the right-hand
side of this inequality and we estimate [l|u — u * x,-ollv and [lp — pu* x,~<llv
separately.

Let ¢, be the transition density of the Brownian motion on T, i.e.,

¢,(x) = X &,(x +EkR),

keZ
where

dy(x) = (2ms) "2 exp(—|x|2/28).
We put s = ¢ 22 where k > 0 will be chosen later on. We estimate
e = p* xpmallv <l — p @lly + I * xpma — o * xp=a * Dallv
by — pxdg* xp-a* dllv.

We assume I(u) < z. From the convexity of I it follows also that I(u * x,-a)
and I(u * ¢,) < z. Applying now Lemmas 3.1 and 4.1 of [2] to the Brownian
motion on T, we obtain

(2.5)

lw — = odglly < ®(s2),
e * xp-a — p* Xp-a * Do lly < P(252),
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where

- (x+a—1log(l+a) x+a%/2
<I>(x)=21nf(; a s2infT= 8x .
a> a>0

We now estimate the third summand on the right-hand side of (2.5). Obvi-
ously, there exists a constant ¢ (depending on d only) such that

(Xt“’* ¢s)(x) = (1 - Ct_K)¢s(x),
for all x € T,;. Denoting by @ the transition kernel corresponding to convolu-
tion with the density ¢, and by @' that corresponding to x,-.* ¢, [ie.,
Qf(x) = (f*p Nx) and Q'(x) = (f * ¢, * x;-«Xx)], then by Lemma 4.1 of [2],
we have

”/’L * ¢s —M¥ ¢s * Xt-e * ¢s”V < CI)(IQ’(”‘ * d)s)),
where

. Q'u
Io(pn) = —1nfflog—u—-d,u,;

the infimum is over bounded measurable positive functions which are bounded
away from 0. Then

Q'u (1 -ct™)Qu
j log——dp > / log——————du

> log(l —ct™™) + flog-%t—d,u

> —2ct™ — Ig(p).
Therefore
Ig(p) <Ig(p) + 2ct7
and
Ig(u*¢y) <2ct™ + Ig(n*d,) < 2ct™ + sz.

This, of course, works for a’' as well as for a and, as we assume a’' > a, the
bound for [|u — u * x,-«llv is even better. Therefore, we obtain

(2.6) lw * x;-a — p * x;-<llv < const - (m)
Collecting now all the estimates obtained so far [(2.2)-(2.4) and (2.6)], we get
P(IIL, * x,-o(2) = Ly * x,-o(2) Il = 8)
<c exp{c(&)td“' —2t8/2 + czzt(\/zt_z“Tt"‘)}.
We choose now z = z(¢) = ¢t° with a'd — 1 < b < 2a, 0 < b, and then « satis-
fying 0 < k < 2a — b. Then we get
limsupt~*~%log P(IIL, * x;-« — L, * x,~«ll; = 8) <0,

t—> o

which is much more than what is required. O
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Proor oF THEOREM 1. The theorem is an immediate consequence of Theo-
rem 2 and the results in [4]. The lower bound

liminfT~! log E(e *TV@eT™ V™M) 5 _k(d)p2/@+d)
Toowx

follows from the results in [4]. In fact, for y > 2, this is the result proved
there.

The left-hand side of the above inequality is trivially increasing in y. For the
other inequality, i.e.,

limsupT ! log E(e "TVT-eT™V ™) o _p(d)p?/@*D),
To»

one argues as in [4]: The corresponding quantity for the Brownian motion on
the torus is an upper bound and then the fact that [{f: f> 0}/ is lower
semicontinuous in the L;-topology leads, together with Theorem 1, to an
upper bound on the torus:

IVFI?
f

If R (the circumference of the torus) goes to infinity, then the right-hand side
converges to —k(d)v?/@*D, See [1], Chapter 4.3. O

dx

limsup T~ ! log E(e VT “*™) < — inf |v|{f:f > 0}] + %f
feL,

T—>o

Note added in proof. Sznitman recently derived similar refinements by his
method [7]. His approach does not seem to give information on a functional
level, like Theorem 2 here. On the other hand, it is more precise as to the
speed of the shrinking.
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