The Annals of Probability
1990, Vol. 18, No. 4, 1563-1575

THE RUSSO-SEYMOUR-WELSH THEOREM AND THE EQUALITY
OF CRITICAL DENSITIES AND THE “DUAL” CRITICAL
DENSITIES FOR CONTINUUM PERCOLATION ON R2

By RanuL Roy

Indian Statistical Institute

A Russo-Seymour—Welsh (RSW) theorem is established for continuum
percolation on R2. The equality of various definitions of critical densities
for the continuum percolation on R? is deduced as an application of the
RSW theorem. It is also shown that various notions of the size of a cluster
yield the same notion of critical density.

1. Introduction. We consider a percolation model defined on R2 This
model should be viewed as a continuum analogue of the discrete site/bond
percolation model. Instead of sites/bonds being independently occupied or
vacant we have a Poisson process on R? with each Poisson point being the
centre of an “occupied’”’ disc of random radius. We shall assume that the
random variables describing the radii of the discs are i.i.d., strictly positive and
bounded above by a positive constant. The model is described in more detail in
the next section.

This model was introduced by Gilbert (1961) to model the transmission of
radio signals. Hartigan (1981) has also considered this model in a cluster
analysis setup. For this model Hall (1985) has shown that under certain
moment conditions on the radius random variable the critical densities for
phase transition exist. Zuev and Sidorenko (1985) and Men’shikov, Molchanov
and Sidorenko (1986) have shown that in any dimension and for the radius
random variable bounded above the critical densities arising from occupied
clusters are all equal.

In this article, besides considering critical densities defined through “oc-
cupied” clusters we also consider critical densities defined through ‘ vacant”
clusters, vacant clusters being the analogue of the ‘‘dual” in a discrete
percolation setup. We show that in R? all the critical densities arising from
occupied or vacant clusters are equal. In three or more dimensions one cannot
expect such a result because, as in discrete percolation, one expects a nonde-
generate interval of intensities where infinite occupied and infinite vacant
clusters coexist.

Our argument rests crucially on a version of the Russo-Seymour—Welsh
theorem for vacant crossings of suitable rectangles in the two-dimensional
continuum model. The idea of the proof of the RSW theorem is similar to the
idea of the original proof for the two-dimensional discrete model [Russo (1978)
and Seymour and Welsh (1978)], but we have to make suitable modifications to

Received December 1988; revised September 1989.

AMS 1980 subject classifications. Primary 60K35, 82A43; secondary 82A68, 60K10.

Key words and phrases. Poisson process, continuum percolation, critical densities, FKG
inequality, RSW theorem.

1563

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to @5%172?1$
The Annals of Probability. EIN®RN

Www.jstor.org



1564 R. ROY

take into account the dependent structure of the continuum model. In fact, it
is this dependent structure which would not allow us to mimic the proof of
“RSW for vacant crossings” to obtain “RSW for occupied crossings.”” Unfortu-
nately, we have not been able to obtain a RSW theorem for occupied crossings.
The RSW theorem apart from its intrinsic interest is also expected to yield
power estimates for the continuum model as in discrete percolation models.

All these results are motivated by corresponding results in site /bond perco-
lation. For the discrete model Kesten (1980) (for two dimensions), Aizenman
and Barsky (1987) and Men’shikov (1986) have shown the equality of various
definitions of critical parameters. The original proof of Kesten (1980) and the
subsequent modification by Russo (1981) rested on a RSW argument and
hence was restricted to two dimensions. We follow a similar line of argument.
In this context we remark that in discrete percolation the derivation of many
of the power laws and scaling laws are dependent on the RSW argument and '
as such restricted to two dimensions.

For many of the long technical arguments we sketch the main ideas and
refer the reader to Roy (1987) where the details of the proof are presented.

2. The model, definitions and statement of results. Consider a Pois-
son point process ¢;, £,, ... of intensity A on R2. Centred at &, &,, ... are discs
V(£),V(&,),... of radii pq,py, ..., respectively, where p,,p,,... are ii.d.
random variables and have the same distribution as that of a strictly positive
random variable p. We call this a Poisson system and denote it by (E, A, p).

Given two disjoint regions A and B in R2, we say that a continuous curve y
is an occupied/vacant connection of A and B in a region S if y N A # &,
yNB+@ ycSandyc UT V() [y n V() =D for all i > 1]. We denote
by A ~, B in S (A ~, B in S) the existence of an occupied /vacant connec-
tion of A and B in the region S. In particular, if S =[0,7,] X [0,7,] and
A = {0} x[0,l,] and B = {l;} X [0, ,), the left and right edge, respectively, of
S, then any occupied /vacant connection of A and B in S is called a left-right
(L-R) occupied/vacant crossing of the rectangle S. The top-bottom (T-B)
occupied /vacant crossing of the rectangle S is defined similarly. Finally, if
A = {a} and B = {b} we write a ~», b and a ~, b to denote, respectively,
occupied and vacant connections.

Now we define two regions in R2, W(0) := {x: x ~, 0 in R?} and W*(0) =
{x: x ~, 0 in R?, i.e., the occupied and vacant cluster of the origin, respec-
tively. The crossing probabilities are defined as follows:

o((1,15),1,1) = P{3 a L-R occupied crossing of [0, [,] X [0,1,]},
o*((1,,13),1,A) == P,{3 a L-R vacant crossing of [0, /,] X [0, 1,]},

o((1,15),2,1) = P,{3 a T-B occupied crossing of [0,7,] X [0, 1,]},
a*((1,,15),2, ) = P{3 a T-B vacant crossing of [0, /,] X [0, ,]}.

The critical densities defined by the Lebesgue measure |W(0)| of the occupied
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cluster W(0) in R? are as follows:

(2.1) Ay = inf{A: P,{{W(0)| = «} > 0},
(2.2) Ap = inf{A: E,[|[W(0)| = =]},
(2.3) Ag = inf{A: limsupo((n,3n),1,A) > 0}.

Hall (1985) has shown that if Elpl6 < o and Elpl8 = o then A, =0 and
Ay > 0. More generally, in d-dimensions, if El|p|*®**™ " <  and E|p|**? = «
then A, =0 and Ay > 0. Clearly, we always have Ay < Ay.

The critical densities defined by the Lebesgue measure |W *(0)| of the vacant
cluster W*(0) in R? are

(2.4) A% = sup{A: P\{IW*(0)| = =} > 0},
(2.5) X = sup(A: E,[[W*(0)]] = =},
(2.6) g = sup{)u limsupo*((n,3n),1,1) > 0}.

These critical densities correspond, in a sense, to the ‘“dual” parameters of the
Poisson system.

Another notion of the size of the cluster is #W/(0), the number of Poisson
points comprising the occupied cluster W(0). This leads to the following
definitions of critical densities:

(2.7 Ay = Inf{A: P{#W(0) = =} > 0},
(2.8) Ay =inf{A: E,[#W(0)] = }.
Clearly, no definition of the dual parameters can be made with this notion.

Men’shikov, Molchanov and Sidorenko (1986) have shown the following for
arbitrary dimensions.

THEOREM 2.1 (Men’shnikov, Molchanov and Sidorenko). In a Poisson sys-
tem (E, p, A) with

(2.9) 0<p<R a.s. forsomeR >0,
A# = )\N = As.

The proof of this theorem is by approximation with percolation models on
nonplanar, multiparametric periodic graphs where the equality of the corre-
sponding critical parameters hold.

In addition, if we use diameter as the measure of the size of a cluster, i.e.,
d(W(0)) = sup{d(x, y): x,y € W(0)}, where d(-,- ) represents the Euclidean
distance, then we have

(2.10) Ag = inf{A: P{d(W(0)) = =} > 0},
(2.11) Ap =inf{A: E,[d(W(0))] = =},
(2.12) A% = sup{A: P{d(W*(0)) =} > 0},
(2.13) X% == sup{A: E,[d(W*(0))] = }.
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These various notions of size arise naturally [see Kesten (1987)]. We shall
show that the critical densities remain unaltered regardless of the definition of
size we adopt. In particular, we prove the following theorem.

THEOREM 2.2. In a Poisson system (E, p,A) on R® where (2.9) holds, we

Although we prove the above theorem for two dimensions, the proof extends
to any dimensions.

Next we prove the equality of all the critical densities in R2. To this end we
first obtain the RSW theorem for the Poisson system on R2.

THEOREM 2.3 (RSW). Consider a Poisson system (E,p,A) on R2, where
(2.9) holds. If for some constants 8, > 0 and 8, > 0 and for some l,,l, > 4R
and 2R <13 <31,/2,

a*((14,15),1,A) = 8, and 0*((13,13),2,A) = §,,
then for any integer k > 1,
0'*((kl17 l2)1 17 )‘) 2 Kk()‘7 R) fk(‘sl) 62):

where K,(A, R) > 0 is independent of 8,8, and f,(8,, 85) is independent of A
and R.

The importance of the above theorem is in constructing vacant circuits
around the origin [see Chapter 6 of Kesten (1982)]. Unfortunately, we have not
been able to obtain the RSW theorem for occupied paths. Nonetheless, the
above theorem allows us to prove the following theorem.

THEOREM 2.4. In a Poisson system (E,p,A) on R? where (2.9) holds the
critical densities defined in (2.1)-(2.8) and (2.10)-(2.13) are all equal.

In view of Theorems 2.1 and 2.2 to prove Theorem 2.4 it suffices to show
A. H = A”;I'

REMARK. An alternate proof of Theorem 2.1 for two dimensions using
Russo’s pivotal point argument and the above RSW Theorem 2.3 can be
obtained in Roy (1987).

3. Proof of Theorem 2.2. First we state two preliminary results. The
first lemma, a version of the FKG inequality, needs some groundwork.

Consider the space .= {—1, 1}R"%R+ where R, = (0,), and let . denote
the Borel o-field on .. On (., ) we assign the probability measure
corresponding to the Poisson system (E, p, A), i.e., for any set A C R? X R,
the number of points (z,7) € A (z € R, r € R,) with w(z,r) = 1, for some
configuration w € ./, has a Poisson distribution with mean (I, X u)A), I,
being the Lebesgue measure on R¢ which assigns mass A to the unit cube in
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R? and u is the probability distribution of the radius random variable p.
Intuitively, w(z, r) = 1 means that there is a Poisson point of radius r centred
at z.

Let w and o’ be two configurations in .. We say that o < o' if for any
z€R%and r € R,, 0'(z,r) = 1 whenever w(z, ) = 1. A function f: /- Ris
said to be increasing (decreasing) if f(w) < f(o") [f(w) = f(w)] for every
o <. An event A € ¥ is said to be increasing (decreasing) if the indicator
function 1, is an increasing (decreasing) function.

Lemma 3.1 (FKG inequality). If A and B are both increasing or both
decreasing events in &, then P(A N B) > P(A)P(B).

The proof of this lemma follows from a lattice approximation together with
the martingale convergence theorem and the standard FKG inequality on a
partially ordered lattice [see Kemperman (1977)]. For more details see Roy
(1987).

For any bounded region S in R? an easy application of the FKG inequality
yields E,(d(W*(S))) < C(A, S)E,(d(W*(0))), where C(A, S) is some positive
constant and W*(S) = U, . sW*(0).

The next lemma is a version of Theorem 5.1 of Kesten (1982) for continuum
percolation. Its proof follows, after minor adjustments, from the proof of the
original site percolation version. This lemma provides exponential bounds on
the probabilities of the growth of occupied (vacant) clusters at the origin when
the probability of occupied (vacant) crossing of a suitable rectangle is small.
Although the lemma holds for arbitrary dimension, we state here only for two
dimensions.

LemMma 3.2.  Consider a Poisson system (E, p, A) and suppose (2.9) holds. If
for some (N, N,) with N,, N, > R and for some k < (25¢)~ 1274 we have

(3.1) o((Ny,3N,),1,A) <« and o((3N,, N,),2,1) <«,

then there exist positive constants C,, Cy,, C3, C, depending on A such that the
following hold:

(3.2) P{IW(0)| > a} < C,exp(—Cya) foralla >0,

(3.3) P{d(W(0)) = b) < Cyexp(—C,b) forallb> 0.

Also, if for some (M,, M,) with M,, M, > R and for some k* < (25¢)~121/4
(34)  o*((M,3M,),1,2) <«* and o*((3M,, M,),2, 1) < «*,

then there exist positive constants Cy, Cq, C,, Cy depending on A such that the
following hold:

(3.5) P{IW*(0)| > a} < C5exp(—Cga) foralla >0,
(3.6) P{d(W*(0)) >b} < C,exp(—Cgb) forallb> 0.
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Fic. 1. The segments my, g, ..., g, and the region R;.

Now we proceed to prove Theorem 2.2. Although the proof presented below
is for two dimensions it can easily be extended to any dimension.

First we prove (iii), i.e., A¥; = A%. For any integer m > 1 let S,, denote the
square {|x| < m, |yl < m} and let D,, = {{W*(0) N S& | = R?).

We show that for any A > 0 and some constant C(A) > 0,

(3.7 P{D,, occurs} > C(A)P{d(W*(0)) = oo}.

Indeed, let 7, 7,,. .., 7, be disjoint segments of length R on the perime-
ter of S, (see Figure 1). For 1 <j < 8m, let R; ={(x,y): |x — al < 3R,
ly — bl < 3R for some (a, b) € 7;} and define the random variable I := min{;:
3 a continuous curve y in S,, with one endpoint at the origin and the other
endpoint on 7; and such that for any Poisson point ¢ situated in S; g,
v N V(¢) = @), 1 is well-defined on both {d(W*(0)) = »} and on {|{W*(0)| = o).
We note here that the continuous curve y in the definition of I may intersect
an occupied disc centred outside the square S,, 5.

The events {I =i},i = 1,2,...,8m, being mutually disjoint, we have

8m
P{D,, occurs} > Y. P,{ R, has no Poisson point|] = i} P{I = i}
i=1
> C(A)P{d(W*(0)) = =}

Here the first inequality follows because the event {I = i} depends only on the
Poisson points centred in S, ;, while the event {R; has no Poisson point}
depends on Poisson points situated in R; which is disjoint from S,, ;. Thus
(3.7) is true.

Similarly, for any A > 0, we can show

(3.8) P{D,, occurs} > C(A) P{IW*(0)| = =}
for some constant C(A) > 0. (3.7) and (3.8) easily imply (iii) of Theorem 2.2.
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The above proof can be modified to yield
(3.9) AH = A’d‘

Now we prove (iv), i.e., A% = A%,.

Let S,r(i) = Sy + (0,i4R) = {(x,y): (x,y — i4R) € S,;} and
W*(8S2()) = U, cs,,:W*(x). By translation invariance we have, for any
k=1,

P,{3 a vacant L-R crossing of [0, 3*] x [0, 3¥*1]}

< P(U{d(W*(Sz5(i))) = 3%)

< X P{d(W*(S3r(2))) = 3%}

< 3*7IP{d(W*(S2r(0))) = 3%)/4R,
where the union and the sum are over all integers i between 0 and 3**!/4R.

If A > A%, then ¥, ,3**1P{d(W*(0)) > 3%} < = and also, by the applica-

tion of the FKG inequality mentioned earlier, ¥, ,3*"'P{d(W*(Syzq) =
3%} < . Thus, ¥, . ;P{3 a vacant L-R crossing of [0, 3*] X [0, 3* ']} < o, and
so we can find an integer %, > 0, such that for all ¢ > k,, P,(3 a vacant L-R
crossing of [0,3%] x [0,3%*1]} < 25e~121/4, An application of Lemma 3.2 now
yields A > A%. This shows A% < A%,.

Similarly we can show A% > A%. This completes the proof of (iv).
Again, the proof above can be easily modified to yield

(3.10) AT = )\D .
Thus in view of (3.9) and (3.10), to prove (i) and (ii), it remains to show

Clearly, d(W(0)) < 2R(#W(0)), i.e., A, < A,.
Conversely, suppose A, < A < A,. Then, for some § > 0,

(3.12) P{#W(0) = ©} =5 > 0.
Thus, for any m > 0, P{#(W(0) N Sg) = «} = §. In particular, for any m,
(3.13) P{W(0) NS # @&} =6 > 0.

But this contradicts the fact that A < A,. Hence A; < A,. This completes the
proof of the first part of (3.11).

To prove Ay = A, we first observe that |W(0)| < V(R)#W(0), where V(a) =
ma?, the area of a disc of radius a. So, Ay < Aj.

The reverse inequality is proved in the following two cases.

Cast 1. Suppose there exists n > 0 such that p > n a.s. We partition R?2
by the integer lattice Z2 and let C be a cell of this lattice. Let E(C) be the
Poisson process E restricted to the region outside C. Let W;(0) denote the
maximal connected, occupied region in R? containing 0 and formed by
the Poisson process E(C) with the radius random variable p. Let 8(x) denote
the Euclidean distance of W;(0) from the point x in R% For all cells C at a
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distance of at least R from the origin we have
E(#(W(0) n C)IE(C))

< Y. kP,{3 k Poisson points in C with at least one of them having
k=1

an associated disc which intersects W (0)|E(C)}

< Elke‘*Ak{l - [([Cp(p < 6(x1))dx1)... ([CP(p < 6(xk))dxk)]}/k!
< kglke-w{k - (fcp(p <8(x)) dx)}/k!
< k([CP(p > 8(x)) dx)

for some constant 2 > 0.
W.lo.g. assume n < 1/2. Let v = min(V(n), 1), where V(1) = 712 We have

E,(W(0) n CI[E(C)) = ve"\)\(fCP(p > 8(x) dx) ).

This is because if a disc is centred in a cell at least V(n) of its volume area be
inside the cell. Thus, from the above two inequalities, for some constant
c(A) > 0,

(3.14)  E,(#[W(0) N C]|E(C)) < c(A)E,(IW(0) N CI|E(C)).

Also, for any cell C at a distance less than R from the origin we have the
trivial bound E(#[W(0) N C] < E(#[C] = A. So taking expectations on both
sides of (3.14) and summing over all C, we have E,(#W(0) <AR? +
c¢(M)E,(JW(0)]). This shows that Ap < Ay.

Case 2. Now suppose that there does not exist any n > 0 such that p >
a.s. Then, for any A < Ay, setting B = (Ap — A)/Ap, there exists 0 <a <p
and r, > 0 with P(p <r,) = a. Let A > A be such that @ = (A — A)/A. Since

0 <a < B, we have A <A < Ay. Thus if we set 4 = A — A, then
P(p<ry) =p/(A+p).

Now let p, and p, be two random variables whose probability distributions
are as follows:

P(py=2r)=P(p=rlp=ry),
P(py=r)=P(p=rlp <ry).

Let (B4, A, p;) and (E,, u, p,) be two Poisson systems of intensities A and u
and radius random variables p, and p,, respectively. The superposition of
the above two Poisson systems is a Poisson system (E/, A, p) of intensity A
and radius random variable p. This is because P{¢ € B lé € B, U By} =
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A/(A + w). If W(0) and W'(0) denote the occupied clusters of 0 in the systems
(Ey, A, py) and (', 4, p), respectively, then we have W,(0) ¢ W'(0).

Let (B3, A, p) be a Poisson system independent of all other Poisson systems.
Then, since A < Ap, for the occupied cluster W3(0) in (Eg, A, p), we have
E(IW4(0)]) < «. But (B, A, p) and (E/, A, p) are equivalent in law, so we have
E,(IW'(0)]) < . Thus, E,(IW(0)]) < E,(IW'(0)]) < ». But p; > r, a.s. and W,(0)
is the occupied cluster in (B, A, p,), so we have from case 1, E,(#W,(0)) < o,
Again P(p, >r) > P(p > r) for any r > 0, so if W(0) is the occupied cluster
of 0 in the Poisson system (&, A, p) then we must have E,(#W(0)) < E (#W,0).
This shows that E,(#W(0)) < «, thereby proving A < A. This completes the
proof of Theorem 2.2. O

4. Proof of the RSW theorem (Theorem 2.3). The proof of the RSW
theorem is quite technical. Here we present the main steps of the proof.

Consider a lattice L, =a,Z X a,Z, for some a, > 0. We first prove a
“discrete version” of the RSW theorem for /; and [, which are positive
integer multiplies of 4a,. Since we eventually let a, — 0, by the monotonicity
property of the crossing probabilities [i.e., c*((a, b),1, A) = ¢*((c, b), 1, A) and
oc*{(a,b),2,A) = c*(a,d),2,\)for 0 <a <c<xand 0 < b < d < «] this re-
striction on /, and I, will not affect the proof of the RSW theorem.

By a cell in the lattice L, we will mean the closed cell, i.e., we include the
perimeter of the cell. Two cells in this lattice are said to be adjacent if they
have an edge in common. A cell C in L, will be called vacant (occupied) if
CNU;. V) =TICNU,;., V(D) # D] A (vacant/occupied) L ,-path is a
sequence of (vacant/occupied) adjacent cells. A (vacant/occupied) L-R L -
crossing r of the rectangle [0, /,] X [0, /,] is a (vacant /occupied) L ,-path lying
in the rectangle [0, /,] X [0,1,] with one end-cell of r having an edge on
{0} x [0, 7,] and the other end-cell of r having an edge on {l,} X [0, ,]. The
T-B L,-crossings of the rectangle [0, /,] X [0, [,] can be defined similarly. We
denote the L ,-crossing probabilities as follows:

0,%((14,15),1, 1) == P{3 avacant L-R L ,-crossing of the rectangle

[0’ ll] X [0’ l2]}1

0,%((14,13),2, 1) = P,{3 avacant T-B L ,-crossing of the rectangle

[0’ ll] X [0’ lz]} N

Let r be a L-R L,-crossing of the rectangle [0, ;] X [0,/,]. Let 7 denote
the piece of r in [I,/4,1,] X [0, [,] after its “last intersection” with the line
{l,/4} x[0,1,] and let m(7) denote the reflection of 7 on {l;} X [0,,]. Also
define J(r) == {(x,, x,) € [1,/4,71,/4] X [0, ,]: (x, x,) can be connected by a
continuous curve y to [I,/4,7l,/4] X {l,} such that y c [I,/4,71,/4] X [0, l,]
and y N (FU m(F)) = &}). Let Y(r):=sup{x, (I;/4,x,) €7 {l} xI[0,1,]}
(see Figure 2).
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Fi1G. 2. The L-R crossing r of [0,1,] X [0, l,]). The segment i of r after the last intersection with
the line {1, /4} X [0, 1,]) is depicted by the thick line. The reflection of ¥ on {l1} X [0, 1, is m(F). The
region J(r) is the region above i U m(F) in the rectangle [1,/4,7l,/4] X [0, 1,].

LEmMa 4.1.  P,{3 a vacant L-R L ,-crossing r of the rectangle [0, 1,] X [0, ,]
with Y(r) <l,/2 and a vacant L, -path s with s N7+ &, s CJ(r) and
sN([1,/4,7,/4]1 X {l,}) # @} > K(A, R,n)a,*((11,15),1, Mo, *((15,15),2,1) /4,
where K(A, R,n) = exp(—ABR +a,)2R + a,) and l;, i = 1,2,3, are as in
Theorem 2.3.

This lemma does not follow from the RSW lemma for bond /site percolation
on the lattice because the events {r is a vacant L ,-crossing of the rectangle
[0,7,]1 X [0,7,]} and {3 a vacant L,-path s with sN7# &, s CJ(r) and
s N ([1,/4,7,/4] X {l,}) # O} are not independent. This dependence is han-
dled by the construction of a suitable L-R vacant L ,-crossing of the rectangle
[l, — 2R, 1,] X [0,1,] which starts on {/; — 2R} X [0, [,] at the end of the
“lowest” L-R vacant L ,-crossing of the rectangle [0, !, — 2R] X [0, [,]. Taking
this vacant L ,-path as the L-R vacant L ,-crossing r of the rectangle [0, /,] X
[0, ,], we can decompose the event {r is the lowest vacant L ,-crossing of the
rectangle [0, /,] X [0, /,]} into two events A and B (say), such that the event
E := {3 avacant L,,-path s with s "7+ &, s cJ(r) and s N ([I,/4,7],/4] X
{1,}) # O} is positively correlated (in the FKG sense) with one of the events A
(say), while conditioned on A the events E and B are independent. The
details of the proof of this lemma being rather tedious and technical we refer
the reader to Roy (1987).

Now let {a,}, ., be a sequence decreasing to 0 and such that /,/4, [, and I
are all integer multiplies of a, for all n > 1. As n — «, ¢,*((I,1,),1,A) =
a*((14,15),1,A) and 0,*((I,1,),2,7) = 0*((3, 1), 2, A). Thus from Lemma 4.1
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we have
P\{3 a vacant L-R crossing v of the rectangle [0, 7,] X [0, I,]
with Y(y) <1,/2 and there is a vacant path y’ with
YNy +3,y cd(y)and y' N ([1,/4,7,/4] X {I,}) = @)
> exp(—6R?)o*((1y,1,),1,A)0*((13,1,),2, 1) /4.

Here for any L-R crossing y of [0, ;] X [0, ,], 7, Y(y), m(%) and J(y) are
defined as before.

An iteration argument as in Lemma 6.1, Kesten (1982) completes the proof
of the theorem. O

5. Proof of Theorem 2.4. We shall show
(5.1) Ap A< AH <Ay <Ay

This together with Theorem 2.1 will establish Theorem 2.4.
First we clearly have

(5.2) A < A%
Moreover, (3.6) of Lemma 3.2 directly implies
(5.3) M <%
To show

(5.4) Ap < A%,

we observe that as in the proof of (iv) of Theorem 2.3 in Section 3, if A < Ap,
we obtain

(5.5) Y. P,{3 an occupied L-R crossing of [0,3*] x [0,3%*1]} < c,

k>1
Since there exists an occupied L-R crossing of [0, 3*] X [0, 3**] if and only if
there does not exist a vacant T-B crossing of [0, 3%] X [0, 3**1], from (5.5) and
on an application of the Borel-Cantelli lemma we have

P,{3 avacant L-R crossing [, of [0,3**'] x [0, 8*] for all large &} = 1,
P,{3 a vacant T-B crossing ¢, of [0,3**+1] x [0, 3%*2] for all large k} = 1.

A horizontal crossing I, of [0,3%*!] X [0,3%] and a vertical crossing T, of
[0,3%*1] x [0, 8**2] must intersect. Also, ¢, and I,,, must intersect. So the
vacant crossings {l,},., and {t,},.; combine to yield P,{3 an unbounded
connected vacant region in the first quadrant} = 1, i.e., P{d(W*(x)) = » for
some x = (x,, ,), £, x, both rational} = 1. This along with translation invari-
ance implies P,{d(W *(0)) = «} > 0, which establishes (5.4).
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We remark here that the above proof is essentially two dimensional and fails
in more dimensions.

Finally, we use the RSW theorem to show A% < Ay.

First we establish the following proposition.

PROPOSITION 5.1. If A < A%, then there is a sequence of integers 0 < n; <
ny < -+ with n, t®as k t® such that for every k > 1 and for some & > 0 the
following hold: (a) (Bny,_1/4) > nyy, (b) 0*(ng,_1,n4;),1,A) 28 and (o)
o*(Bng,_1/4,n49.),2,A) = 8.

Proor. We begin with a lemma whose proof is simple and can be obtained
in Roy (1987), Lemma 4.8.1.

LeEMMA 5.1. Letn,k > 0 and { > 0 be such that o*((n,(1 + 2k)n),1,A) >
{. Then for any t > 0 and for some f(t, k,{) > 0, o*((n,(1 + 2t)n),1,A) >
f(t1 k’ {)'

Since A < A%, there is an increasing sequence {m,}, .; of positive reals with
m, T as k 1o and some &; > 0 such that for all & > 1, 0*((m,, 3m;), 1, A) >
8,. Now taking n,;,_, = 5m,,/6 and n,, = m, and applying the monotonicity
property of the crossing probabilities and Lemma 5.1, we have for some
0 < & < &,, both (b) and (c) of Proposition 5.1 hold. This proves Proposition
51. O

Suppose A < A% and {n,},.; and 8 > 0 as in Proposition 5.1. Let j, = ny,_;
and [, = ny,_, + ny, for all k > 1. W.lo.g. assume j,,, > 3j, for all £ > 1.
By the RSW theorem and the FKG lemma, for every k£ > 1, P{3 a vacant
circuit surrounding the origin and lying in the annuli S;, \ S;} > C(A)g(3),
where C(A) > 0 is independent of £ and & and g(8) > 0 is independent of A.

An application of the Borel-Cantelli lemma yields P{3 infinitely many
vacant circuits surrounding the origin} = 1. Thus P{|W(0)| = «} = 0, i.e,
A < Ag. This completes the proof of Theorem 2.4.
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