The Annals of Probability
1990, Vol. 18, No. 4, 1483-1522

STRONG STATIONARY TIMES VIA A NEW FORM
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A strong stationary time for a Markov chain (X)) is a stopping time T'
for which X is stationary and independent of T'. Such times yield sharp
bounds on certain measures of nonstationarity for X at fixed finite times n.
We construct an absorbing dual Markov chain with absorption time a
strong stationary time for X. We relate our dual to a notion of duality used
in the study of interacting particle systems. For birth and death chains, our
dual is again birth and death and permits a stochastic interpretation of the
eigenvalues of the transition matrix for X. The duality approach unifies
and extends the analysis of previous constructions and provides several
new examples.

1. Overview.

1.1. Introduction. Strong stationary times give a probabilistic approach to
bounding speed of convergence to stationarity for Markov chains. They were
introduced (under the name strong uniform times) by Aldous and Diaconis
(1986), who give a number of examples demonstrating both sharp bounds and
successful analysis of problems not amenable to other techniques such as
eigenvalues and coupling. Diaconis [(1988), Chapter 4] and Matthews (1987,
1988) construct strong stationary times for various random walks on groups.
Aldous and Diaconis (1987) develop some basic theory, showing that an
optimal strong stationary time exists for any ergodic chain, i.e., one that is
irreducible, positive recurrent and aperiodic. Closely related constructions
appear in Brown (1975), Athreya and Ney (1978) and Nummelin (1986).
Thorisson (1988) discusses connections with coupling.

In this paper we extend the notion of strong stationary time to that of
strong stationary duality for discrete time, finite state Markov chains. Diaco-
nis and Fill (1990) treat problems with countably infinite state space. Fill
(1990a, b) treats continuous time chains and Fill (1990c) applies strong sta-
tionary duality to diffusions. We begin with a simple example.

ExampLE 1.1. Simple symmetric random walk on a d-point circle. Let Z,
be the integers modulo d, regarded as d labelled points arranged about a
circle. A random walk starts at 0 and with probability 1/3 each moves one step
in either direction along the circle or remains fixed. The stationary distribution
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X
0
15 1
14 2
13 3
[zl 4]
n 5
10 6
9 8 7
Fic. 1.

for this Markov chain is the uniform distribution U on Z,. Let 7, denote the
law of the process after n steps. We measure the nonstationarity of , by the
total variation distance

(1.2) lm, — Ull = incazrilvn(A) - U(A)l.

The following construction yields a stopping time T such that the state in
which the walk is stopped is uniformly distributed and is independent of T'.
Such times are called strong stationary times. They offer an upper bound to
variation distance through the inequality

(1.3) lm, = Ull<P{T >n}, n=0;

cf. (1.9) and (1.11).

For the construction, suppose first that d = 2%, e.g., d = 16 (see Figure 1).
The walk starts at 0. Let T'; be the first time the walk hits 4 or 12. At time T
the state of the walk is equally likely to be 4 or 12 and is independent of T,.
Let T, be the first time the walk hits a point at distance 2 from its position at
time T,. At time T, the state of the walk is uniformly distributed in {2, 6, 10, 14}
and is independent of (T, T,). Let Ty be the first time the walk hits a point at
distance 1 from its position at time T,. At time T the state of the walk is
uniform over the odd positions and is independent of (T, Ty, T).

To finish, let T, be the first time following T; that the process remains
fixed or moves counterclockwise. At time T, the state of the walk is uniform
over Z,¢ and is independent of (T, T,, T, T,) and, in particular, of T,. Thus
T = T, is a strong stationary time.

To bound the tails of T, recall (e.g., Feller (1968), Section 14.3) that a
random walk on Z starting at 0, that at each step changes by an amount —1,0
or +1 with respective probabilities 6/2, 1 — 6 and 6/2, has mean time to
hit +b equal to b2/6.

For d = 2% the random walk must successively travel amounts +2°72
+2273 ..., + 1. The final step (stay fixed or move counterclockwise) has mean
3/2. Thus the final stopping time T' = T, has (for a > 2) mean

392(27% 4+ 276 + ... 427%a7D 4 9 x 272%) < o2

Now Markov’s inequality and (1.3) yield the following result.
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ProposiTION 1.4. Let d = 2°. For the simple random walk on Z, de-
scribed above,

lm, — Ul < &d2/n.

REMARKS. (a) When n = cd?, the variation distance is smaller than 3 /(16¢).
An argument using the central limit theorem shows, conversely, that for d
large it takes at least n = cd® steps with ¢ large to make |7, — U]l small.
Indeed, it takes on the order of d? steps for the walk simply to have a
reasonable chance of reaching positions near the antipode d/2 of 0.

(b) It is not hard to extend our construction to general values of d and to
show again that cd? steps with ¢ large (and no fewer) make the variation
distance small. We sketch the extension for even d satisfying 2°~! < d < 2°.
As for d = 2°, start the walk at a given state and wait for it to move
successively +2°72,+2°73 . +2 +1. If the total (signed) distance traveled
is negative and greater than or equal to d — 2°~! in magnitude, repeat the
entire procedure from the terminal state; otherwise, stop. Then the stopping
time 7" is independent of X, which is uniformly distributed in {1, 3,5, ...,
d — 1}. Now finish building a strong stationary time T' as for d = 2°.

(c) For this process, Fourier analysis can be used to bound the variation
distance. See, e.g., Diaconis [(1988), Section 3-C].

(d) One can treat Brownian motion on the circle (or reflecting Brownian
motion on an interval) in a similar fashion. The resulting stopping time is
quite close to one developed by Dubins (1968) to study Skorohod embedding.

For present purposes, the point of the example is this: A strong stationary
time was found by identifying sets of states increasing in size and times at
which the process is uniform on each set. This transforms the original problem
of analyzing convergence to stationarity into a quite different probability
problem, viz., a study of first passage times. Strong stationary times serve in
general to transform problems. In applications, the transformed problems can
often be solved using classical techniques, such as results from the birthday
problem or coupon collector’s problem; see Diaconis [(1988), Chapter 4].

In this paper we give a general and often practical method for constructing
strong stationary times for ergodic Markov chains. Later (in Example 3.2) we
shall see how the general construction reduces to the above bisection method
in the case of Example 1.1.

1.2. The basic setup. Let P be an irreducible aperiodic transition matrix
on a discrete (finite or countably infinite) state space .. When we need to
restrict attention to finite state spaces we shall do so explicitly. Let =,
(regarded as a row vector) be a distribution on .. Let X = (X,),—0,1,.. bea
Markov chain on some probability space (2, &, P) with initial distribution ™
and one-step transition function P. We write P™ for the n-step transition
function (the nth power of the matrix P) and , = m,P" for the distribution
Z(X,) of X,. If P is positive recurrent (in particular, if .~ is finite), classical
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theory gives a unique stationary distribution 7 for P, with =(y) > 0 for all y
and

m,(y) > 7w(y) asn—>oforalye.”,
regardless of the choice of 7.

One measure of discrepancy between m, and = is the total variation
distance

(1.5) ll, — wll = max|m,(A) — w(A)l.
Ac”

An alternative measure, exploited by Aldous and Diaconis (1986, 1987), is the
separation

(1.6) s(n) = sep(m,,7) = sups(n,y),
y
where
(1.7) s(n,y) =1-m(y)/m(y), yeSs
Because
(1.8) I, —wll= X [7(y) - m)],

y:w(y) =, (y)
it follows that
(1.9) |, — mll < s(n).

Separation is closely allied with the stopping times of interest. A strong
stationary time is a randomized stopping time T for X such that X, has the
stationary distribution 7 and is independent of T'. More precisely, T takes
values in {0, 1,2,...,} and the law of X given T = & is m, for every finite &.
The following proposition was established by Aldous and Diaconis [(1987),
Proposition 3.2].

ProposiTiON 1.10. (a) If T is a strong stationary time, then
(1.11) s(n) < P{T > n}, n=0.

(b) Conversely, there exists a strong stationary time T such that equality
holds in (1.11) for each n = 0.

We call a minimal (stochastically fastest) strong stationary time as in (b) a
time to stationarity. The Aldous—-Diaconis construction of a time to stationarity
is a theoretical result requiring complete knowledge of each ,.

On the other hand, strong stationary times leading to quite useful bounds
on distance from stationarity have been constructed in an ad hoc manner for a
variety of interesting examples. A chief objective of this paper is to unify these
constructions by showing that each results from the building of what we shall
call a dual process. This dual is absorbing and has the property that the
waiting time to absorption is a strong stationary time for the given chain.
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Thus a problem about time to stationarity is transformed in each case to a
problem about time to absorption, and often the dual problem is tractable.

In many cases, such as Example 1.1 and the “top in at random” card
shuffle described in Aldous and Diaconis (1986), the state space for the dual
chain consists of subsets of the original state space. These two examples are
considered further in Examples 3.1 and 3.7. In coordinate checking examples
described in Diaconis [(1988), e.g., Example 2 of Chapter 4] or Matthews
(1987), the dual involves, as described in Example 3.2, the positions of checked
coordinates. In Section 4, birth and death chains are shown to have duals that
are birth and death chains.

Our main goal is to formalize and abstract the notion of duality. Section 2
does this and shows that any ergodic chain has a sharp dual, i.e., one that
yields a time to stationarity. Our development involves a careful study of an
intertwining AP"™ = P*"A. This may be of independent interest in connection
with recent work of Yor (1988). Section 2 shows how useful information not
available from a strong stationary time alone can be extracted from the
behavior of a dual chain prior to absorption. In Section 3 we investigate a
special class of duals taking values in a class of subsets of the original state
space and we treat a number of examples.

There is a particularly simple construction of a dual chain for a wide class of
Markov chains having a certain monotonicity property described in Section 4.
The dual of a birth and death chain from this class is an absorbing birth and
death chain. The distribution of time to absorption can be expressed in terms
of the eigenvalues of the dual chain. As it turns out, these are precisely the
eigenvalues of the original chain; these eigenvalues are thereby given a
stochastic interpretation. In Section 4.3 we show that if, for example, the
eigenvalues are all nonnegative, then the time to stationarity can be repre-
sented as a sum of independent geometric random variables with the eigenval-
ues as parameters. Here eigenvalues close to 1 yield slow convergence to
stationarity.

The dual chain construction of Section 4 is closely related to a notion of
duality developed by Siegmund (1976) and used in the study of particle
systems [e.g., Liggett (1985), Chapter 2]. In Section 5 we show that our dual is
a Doob A transform of the Siegmund dual of the time-reversed chain.

2. Strong stationary duality.

2.1. Introduction. In Section 2 we describe how to build strong stationary
dual processes for a given Markov chain X. These duals are absorbing pro-
cesses whose time to absorption is a strong stationary time for X. The problem
is closely related to the following exercise in Markov chains. We are given the
marginal specification of two Markov chains X and X* having respective state
spaces . and ¥, along with a transition kernel, or link, A = (A(x*, x)). We
seek a bivariate chain (X*, X) with the specified marginals so that the law of
X, given X* = x* is A(x*,-), in a sense we shall make precise.
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Section 2.2 defines the appropriate notion of duality and establishes the
connection with strong stationary times. As an example we treat the theoreti-
cal construction of a fastest strong stationary time due to Aldous and Diaconis
(1987). Section 2.3 formulates and solves the bivariate Markov chain problem.
Section 2.4 shows how to build one sample path of X* from each sample path
of X. The resulting X* is dual to X as defined in Section 2.2. Section 2.5
shows how the dual process X* constructed in Section 2.4 can be used to
obtain bounds on total variation not available from strong stationary times
alone. Section 3 will specialize the general construction of X* to the case
where .#* is a collection of subsets of . and A(x*,-) is the stationary
distribution of X truncated to x*. It will also treat a number of specific
applications.

Throughout the paper we write X ~ (7, P) as shorthand for the statement
that X = (X,),, . o is a (time homogeneous) Markov chain with initial distribu-
tion m, and transition function P. The value y is said to be a possible value of
the random variable Y if P(Y =y} > 0.

2.2. Strong stationary times and duality. We begin forthwith with our
definition of a dual process. Throughout Section 2.2 let X ~ (7, P) with
stationary distribution 7 be a given ergodic Markov chain on a given probabil-
ity space (Q, 7, P). Write =, for £(X,) = w,P".

DeFINITION 2.1. Let X* = (X¥), ., be a stochastic process on (Q, ¥, P)
taking values in a discrete state space .#*. Suppose that for each n > 0,
(2.2a) X¥ and the chain X are conditionally independent given X,,..., X,,.

Suppose also that there exists at least one state in .~*, call it «, for which
(2.2b) AX |XgF=xg, XFr=xf,..., X¥ =x* ,X¥=w)=m

for each n >0 and each possible value of (Xg,...,X*) of the form
(xg,...,x* ;,). Finally, suppose that
(2.2¢) « is an absorbing state for X*,

i.e,, that if X* = o, then X* = o for all n > m. Then X* is called a strong
stationary dual for X.

REMARK 2.3. The reason for the terminology ‘‘dual’’ will be explained later,
in Section 5.

Theorem 2.4 shows how to use a strong stationary dual to build a strong
stationary time. It also shows conversely how, in principle, every strong
stationary time results from such a construction.

THEOREM 2.4. (a) Let X* be a given strong stationary dual of X. Let
T = T.* be the time to absorption in » for X*. Then T is a strong stationary
time for X.
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(b) Conversely, let T be a given strong stationary time for X. Let /* =
{0,1,...} U {«} and define

(2.5) X* =norwaccordingasT >norT <n.

Then X* is a strong stationary dual for X and T = T*.

Proor. (a) T = T.* is by (2.2a) clearly a randomized stopping time for X.
Moreover, for each n > 0,

(X T =n) = A(XX§ #0,..., X} #0,XF=w)=m,

as follows from (2.2b).

(b) The conditional independence condition (2.2a) is a consequence of the
fact that T is a strong stationary time. That « is an absorbing state for X* is a
trivial consequence of (2.5). The possible values of (X§, ..., X¥) are all of the
form (0,...,k — 1,,...,0) with0 <k <n+ 1.If0 <k < n, then

(X )XF=0,..., X} ,=k—1,Xf=o,..., X*=0cx) =/(Xn!T=k) =,

and (2.2b) is verified.
So we have shown that X* is a strong stationary dual for X. The identity
T = T.* follows immediately from (2.5). O

The proof of the converse builds a dual X* from a time T without regard to
the distributions A(X,|X¢ = x§, X =xf,..., X} | =xF , X} =x}) ex-
cept [as required by (2.2b)] for the case x* = . As will be made abundantly
clear later, our construction is by no means unique: There are many strong
stationary duals corresponding to a given strong stationary time. Indeed, the
advantage in using a dual is to exploit knowledge of (X, |X¢ = x§, Xi* =
xF, .., XX =xF |, X¥=1x¥) even when x} # . See Section 2.5 for illus-
tration.

ExampLE 2.6. A stochastically fastest strong stationary time via duality.
Aldous and Diaconis (1987) show that any ergodic Markov chain X has a time
to stationarity, i.e., a fastest strong stationary time; this is Proposition 1.10(b).
Their construction can be described in terms of a strong stationary dual. We
recall the notation s(n,y) = 1 — w,(y)/m(y), y € #, and s(n) = sup, s(n, y).

Having observed a (without loss of generality possible) value x, of X, set

(2.7a) X = o with probability (1 — s(0))m(x,) /mo(x,)

and X = 0 with the complementary probability (by using randomness inde-
pendent of the given chain X). Proceed inductively. Suppose that X, =
Xg,..-» X,_1 = %,_; have been observed and that X§ = x§,..., X* ; =xF
have been set. If X* | = o, set X ¥ = . Otherwise, observe X, = x, and set

(2.7b) X} = o with probability (s(n — 1) —s(n))/(s(n — 1) —s(n,x,))

and X* = n with the complementary probability. Then X* is, as Aldous and
Diaconis essentially show, a strong stationary dual for X. Moreover, they show
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that the corresponding strong stationary time T = T.* is a time to stationarity
for X.

Note that the above construction requires the separation function s as
input. Typically, the reason for building strong stationary times T is to bound
an intractable separation function s via Proposition 1.10 (s(n) < P{T > n}).
Thus the construction is only of theoretical interest. Section 3 gives a practical
construction of a dual process that covers a large number of cases.

REMARK 2.8. The strong stationary dual in Example 2.6 possesses a note-
worthy feature which serves as motivation for Section 2.3. Both the bivariate
process (X*, X) = (X¥, X,),, . , and the marginal dual process X* are Markov
chains. The initial distribution 7} and the transition matrix P* for X* are
given by

(2.9) 7§(0) = 5(0) =1 - 7§(e),

(2.10a) P*(n—-1,n) =s(n)/s(n—-1) =1—-P*(n - 1,»), ‘
n=12,...,

(2.10b) P*(0,0) = 1.

A link between the coordinate processes X and X* can be defined by

A(x*,x) =P{X, =xIX§ =g, X =xF,..., X* =2} |, X¥=x%},

which for Example 2.6 does not depend on x§,...,x} ; and is given by
(2.11a) A(n,") = [m,(:) = (L —s(n))=(-)]/s(n), n=0,1,...,
(2.11b) A(w,") = .

In Sections 2.3-2.4 we abstract the Markovian features of Example 2.6.
That is, for given X ~ (m,, P), we seek to build strong stationary duals X*
that are marginally Markov and make (X*, X) bivariate Markov. For conve-
nience we first discuss the simultaneous construction of X and X* and later
show how to build a realization of X* from a corresponding realization of X.
In our discussion, the link between the coordinate processes will play a cen-
tral role.

2.3. The bivariate chain and the intertwining AP™ = P*"A. Let 7, and
7§ be given distributions and P and P* be given stochastic matrices on
discrete sets . and .~*, respectively. Let A be a link, or transition kernel,
from /* to .. We seek a bivariate Markov chain (X*, X) = (X}, X,),,.,
with margins

(2.12) X* ~(m§, P*), X~ (m,P),

so that X is linked to X* by A, in the sense that (for possible conditioning
values)

(2.13) (XX =xg,..., Xx¥=xX)=Axzr,"),
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which of course implies
(2.14) (XX ¥ =x*) = A(x*,-).

This problem is motivated by the desire to construct a strong stationary dual
in the sense of Definition 2.1; see also Remark 2.8. Similar constructions have
recently been used by Yor (1988).

If X* is to be built from X,,..., X, and independent randomness—more
precisely, if (2.2a) is to hold—then we necessarily have

(2.15)  X* , and X, are conditionally independent given X, _;.
According to (2.13) we must also have
(2.16) X* , and X, are conditionally independent given X*.

The commutative diagram in Figure 2 helps to interpret (2.15) and (2.16)
and Theorem 2.17. For example, according to (2.15), the three-term sequence
(X 1, X,_;, X,) is a Markov chain. Likewise, (2.16) says that (X,*_;, X5, X,,)
is Markov. The commutativity of the diagram is the relation AP = P*A.

Theorem 2.17 shows that for an (X*, X) satisfying (2.12), (2.14), (2.15) and
(2.16) to exist, certain relations among 7, 7§, P, P* and A must be satisfied.
Granted these relations, the proof produces such a process. To avoid trivial
problems with null events, we suppose throughout that each x* € /* is
attainable, in the sense that P{X}* = x*} > 0 for some n > 0.

THEOREM 2.17. Let (mw,, P) on 7, (w§, P*) on /* and a transition
matrix A from * to .# be given. Then there exists a Markov chain (X*, X)
with margins X* ~ (w¥, P*) and X ~ (m,, P) that has the conditional distri-
butions (2.14) and satisfies the independence conditions (2.15) and (2.16) if
and only if (7§, P¥) is algebraically dual to (1, P) with respect to the link A,
in the sense that

(2.18) mo = TEA,
(2.19) AP = P*A.
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Proor. Suppose first that (X*, X) exists. To prove (2.18), condition on X
and use (2.14):

mo(x) = P{Xy = x} = 1 P(X§ = x*}P{X, = x|X§ = x*}

= Z* mE(x*)A(x*, x).

For (2.19), calculate P{X, = ylX* , = x*} by conditioning alternatively on
X, _, oron X*. Thus

P{X, =ylX} , =x*} = Z P{X,_ ,==xlX} ,=x*

XP{Xn =y|Xr:k—1 = x*’ Xn—l = x}
= )L P{X} =y*X} | = x%}

y*

XP{X, =ylX} | =x* X¥ =y*}.

Using (2.14) and (2.15) in the first sum gives the (x*, y) entry of AP. Using
(2.16) in the second sum gives the (x*, y) entry of P*A.

Conversely, if (2.18) and (2.19) are satisfied, a bivariate Markov chain can be
constructed on the state space .= {(x*, x): A(x*, x) > 0} having initial distri-
bution

(2.20) wo(x*, x) = 7w (x*)A(x*, x)
and transition function

P(x,y) P*(x*, y*)A(y*,y) /A(x*,y),
(2.21) P((x*,x),(y*y)) = if A(x*,y) >0,

0, otherwise.

Here A = P*A = AP, that is,
(2.22) A(x*,y) =X P*(x*,y*)A(y*,y) = X A(x*,x)P(x,5).
¥* x

Routine calculations show that (X*, X) ~ (,, P) satisfies the requirements.
O

REMARK 2.23. (a) Let the notations P*" and 7} = w§P*" for X* mimic
those for X. Then whenever (2.18) and (2.19) hold, we have the extensions

(2.24) AP™ = P*"A,
(2.25) m, = mFA.

When (2.24) holds, one says that the transition functions (P"),., and
(P*"), .o are intertwined by A.

(b) The chain (1, P) constructed in (2.20)-(2.21) satisfies (2.13) and
(2.26) P{X§ = x51X, =%} = m(xF)A(xg, o) /mo(%0)
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and [provided A(x*_,, x,) > 0]
P{X} =x}¥IX¢ =28, Xo=x0;..; X =2},
(2.27) X, =2, 13X, =x,)
=P*(ay y, xX)A(x}, x,) /A(x3_ 1, 2,), nx=1
Furthermore, we have the extension
(2.28) P{X, =x,|X¢ =x§, Xo=205..; X =2}, X, 1 =x,_4)
=P(x,_1,x,)

of (2.15).
(c) If (2.19) holds and (2.14)-(2.16) are to be satisfied, then by Bayes
theorem we must have

(2‘29) P{Xn—l = xer:k 1= x*’ Xn =y} = A(x*,x)P(xyy)/A(x*’y)

and
(2.30) P{X}=y*X}, =x* X, =y} = P*(x*,y*)A(y*, ) /A(x*,y).

For each (x*,y), let p(x, y*|x*,y), x € ./ and y* € /*, be any distribution
on X #* having respective marginals (2.29) and (2.30). Then one can show
that the declaration

(2381) P{X, ,=x X} =y*X>, =x* X, =y} = p(x,5*lx*,y)

n

leads to a (ar, P) satisfying the requirements of Theorem 2.17 via the specifi-
cations (2.20) and [for A(x*, x) > 0]

(2.32)  P((x*,2),(y*y)) = A(x*, y)p(x, y*x*, y) /A(x*, x).

Our construction (2.21) simply takes the joint distribution (2.31) to be the
product of the marginals (2.29) and (2.30). In terms of Figure 2, our construc-
tion makes X, _; and X} conditionally independent given X* ; and X,.

The comments of Remark 2.23 (c) have established the following result.

THEOREM 2.33. Suppose m, = wFA and AP = P*A. Then the bivariate
chain (w,, P) constructed in (2.20)—(2.21) is the unique chain with marginals
(7o, P) and (w§, P*) satisfying (2.14), (2.15), (2.16) and

(2.34) X, _, and X ¥ are conditionally independent given X* ; and X, .

2.4. Sample path construction of dual X*. Let (m,, P) on /7, (7§, P*) on
#* and a link A from ”* to . be given as in Theorem 2.17. Suppose
mo = w§A and AP = P*A. In (2.20)-(2.21) we showed how to construct from
scratch a bivariate chain (X*, X) with margins X* ~ (7, P*) and X ~
(my, P) so that X is linked to X* by A in the sense of (2.13), which for
convenience we repeat here:

(2.35) (X Xg =x, X =xf,..., XF=x}) = A(x},).
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Now, however, we suppose that a realization of the chain X ~ (w7, P) is given.
Thus we are required to construct one sample path for X* out of each path for
X and, perhaps, independent randomness. We shall, in fact, require that the
construction of X* be contemporaneous with the evolution of X, more pre-
cisely, that (2.2a) hold. Then, provided X is ergodic with stationary distribu-
tion w and X* has an absorbing state « with A(ex, - ) = 7, we shall be able to
use the constructed process X* as a strong stationary dual of X. [If such a
state © does not already exist, one can adjoin it to .#* and set () =
0, P*(0,0) = 1 and P*(x*, o) = P*(c, x*) = 0 for x* # .] We shall call any
strong stationary dual satisfying (2.35) a A-linked dual.

Equations (2.26) and (2.27) light the way to a solution. Explicitly, when
X, = x, is observed, use independent randomness and set

(2.36a) X = x¢ with probability 7§ (xg)A(x§, xo) /7(%0).

Proceed inductively. Suppose that X, = x,,..., X,,_; = x,_; have been ob-
served and that X} =x¢,..., X*_ | = x¥_; have been chosen. When X, =x,
is observed, recall the notation A = P*A and set

(2.86b) X* = x* with probability P*(x*_,x¥)A(x¥,x,)/A(x}_{,x,).

Then (X*, X) ~ (wy, P) as in (2.20)-(2.21). Starting with algebraic duality
(my = m¥A and AP = P*A), we have built a sample dual X* ~ (7§, P*) to
which X is linked by A.

REMARK 2.37. Our construction (2.36) of a sample path dual uses a ‘“mix-
ture sifting” technique which one can regard as an algorithmic form of Bayes
theorem. To explain, write out 7, = wJA as

7o) = (=) A(xg,).

This exhibits 7, as a mixture of the distributions A(x§,- ). The usual opera-
tional form of this representation generates X, ~ m, by first observing the
values x§ of X§ ~ w¢ and then conditionally generating X, according to
A(x#,- ). We want to reverse the procedure. Given X, chosen from m, we seek
to generate X so that [recall (2.14)]

L(XolXg = x) = A(xg,-).
Of course, Bayes theorem provides the solution (2.36a). The subsequent
construction of X*, Xj,... via (2.36b) is interpreted similarly.

We call a dual sharp if its associated strong stationary time is optimal.

DEeFINITION 2.38. Let X* be a strong stationary dual for X. Let T = T.* be
the corresponding strong stationary time. If T is a time to stationarity, we say
that the dual X* is sharp.
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REMARK 2.39. When is the dual X* constructed in (2.36) sharp? Recall
from (2.25) that m, = m*A. From this and the definition of separation, it is
easy to see that s(n) = P{T.* > n} holds for a particular value of n if (and for
finite ., only if) there exists y € . having the property that for each y* # o
in #*, either 7*(y*) = 0 or else A(y*, y) = 0. Therefore if this condition
holds for every n > 0, then X* is sharp. We shall make use of this remark in
Section 3.

ExampLE 2.40. A sharp dual via the Aldous-Diaconis construction. Re-
turn to Example 2.6 and recall the specific definitions (2.9)-(2.11) for that
example. One checks easily that 7, = wA and that AP = P*A = A with
(2410) A= 1Y) = [m() ~ (L= s(n = D)w()]/s(n - 1),

n=12,...,
(2.41b) A(e,y) = 7(y).
Thus (7, P) and (7§, P*) are in algebraic duality with respect to the link A of
(2.11). The sample path construction (2.7) of X* is simply a special case of
(2.36). For finite ., Remark 2.39 ensures that the strong stationary dual X*,
so constructed, is sharp. The sharpness of X* is also easy to verify when ./ is
infinite.

Remark 2.37 provides insight into the Aldous—Diaconis construction. The
idea is to express one-dimensional laws of the given X as mixtures of 7 and

other distributions so as to make the mixing coefficient for 7 as large as
possible. To explain, first observe that =, is the mixture

(2.42) mo =8(0)Ag + (1 —s(0))7w
of the probability distributions
Ao(+) = A(0,") = [mo(+) — (1 = s(0))m(-)]/5(0)
and 7. To see that A, is indeed a probability, note that for each x € .-/
mo(x) = [1 —s(0,x)]m(x) = [1 — s(0)]7(x).
The infimum over x of 1 — s(0, x) is 1 — s(0), so the coefficient of 7 in (2.42)
is as large as possible. From (2.42) we conclude that 7, = w§A provided that
w§(0) = s(0) = 1 — w¥(»), which is (2.9).
We proceed in a similar fashion. Note that
77'1 - (1 - S(O))‘lT
s(1) s(1)
5(0) " ( 50) ™

where A, is the probability distribution
M) = A(L,) = [m(-) = (1= s(1))7(-)]/s(2).
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Thus the zeroth rows of A P and P*A agree provided that P*(0, 1) = s(1) /s(0) =
1 — P*(0, »), which is (2.10a) for n = 1. Continuing, we derive similar motiva-
tion for the definition of the remaining rows of P*.

2.5. Early stopping bounds on total variation via duality. One advantage
in building a linked dual rather than just a strong stationary time is that
useful information can be gleaned by stopping the process early, that is, before
absorption at «. For example, each of the hitting times T, %, x* € /%, is a
randomized stopping time for X. As the following simple lemma shows,
stopping times can yield useful bounds on total variation distance. Throughout
Section 2.5 we take X ~ (m,, P) to be a given ergodic Markov chain with
stationary distribution .

LEmMA 2.43. Let T be any randomized stopping time for X. Then

(2.44) ||, — |l < P{T > n} + ‘5 P{T = k}v,(n), nx0,
E=0

where
(2.45) vy(n) =IlA(X,|T=k)—ml, O<k<n.

Proor. If Ac ./ and n > 0, then

7 (A) —m(A) = ¥ P{T = k}[P{X, € AIT =k} — w(A)] —w(A)P(T >n}
k=0

n
> — [P{T >n}+ ), P(T= k}vk(n)].
£E=0
Applying the same inequality to the complement of A we deduce (2.44). O
Lemma 2.43 simplifies for random times satisfying the independence condi-

tion, but not necessarily the stationarity assumption, in the definition of a
strong stationary time.

THEOREM 2.46. Let T be a randomized stopping time for X such that T and
X are independent. Then

(2.47) lr, —7ll<v+ (1 -v)P{T>n}, n=0,
with
(2.48) v=I2(Xy) =7l

Proor. (2.47) follows simply from Lemma 2.43 and the observation
(2.49) v(n) < v, (k) =v, O0<k<n.
The inequality in (2.49) reflects the fact that total variation decreases mono-

tonically in time for any Markov chain. The equality is an immediate conse-
quence of the independence of T and X,. O
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COROLLARY 2.50. Let X* be a A-linked dual for X. Let T be the hitting time
of a given subset A* of #* for X*. Suppose that X} ~ o* is independent of T.
Then

(2.51) llr, —7ll<v + (1 = v)P{T > n}, n >0,
with
(2.52) v=|o*\ — =l

ReEMARK 2.53. The independence condition of Corollary 2.50 is always met
when A* is a singleton {x*}, in which case

(2.54) v =lA(x*,) = 7()Il.

A different application is given for random walk on a discrete cube in Example
3.2.

The following theorem drops the independence condition in Corollary 2.50
and so yields a cruder, though sometimes useful, bound. Its proof is transpar-
ent.

THEOREM 2.55. Let X* be a A-linked dual for X. Let T be the hitting time
of a given subset A* of /* for X*. Then

(2.56) lr, —wll<v+ (1 =v)P{T>n}, n=0,
with
(2.57) v= sup [A(y*,-) — .

y*EA*

REMARK 2.58. When A* = {} in Corollary 2.50 or Theorem 2.55, i.e.,
when T = T.* is the strong stationary time associated with X*, we have v = 0
and the conclusion of each theorem is |7, — 7|l < P{T > n}. This is otherwise
a consequence of (1.9) (|l7, — 7l < s(n)) and (1.11) (s(n) < P{T > n}). As
Example 3.2 shows, however, judicious choice of A* in Corollary 2.50 can yield
substantial improvement.

3. Set-valued duals with truncated stationary distributions as link.

3.1. Introduction. Thus far the choice of #*, =¥, P* and A in our
construction (2.36) of a A-linked strong stationary dual chain has been left
open, subject only to the restrictions 7, = wA and AP = P*A. We shall often
find it useful to let .~* consist of subsets of the state space . and to take
A(x*,-) to be the stationary distribution 7 truncated to x*. This choice will be
particularly well suited to the Markov chains considered in Section 4. Further-
more, one finds that nearly all previous examples of strong stationary times in
the literature correspond naturally to such set-valued duals.

We consider three diverse applications in Section 3.2. In Section 3.3 we
point out a limitation of set-valued duals: There may be none whose associated
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strong stationary time is fastest among all strong stationary times. Neverthe-
less, a set-valued dual can be built for any (ergodic) chain, and in Section 3.4
we present a ‘“‘greedy’’ algorithm for finite-state chains that forms the basis of
the specialized dual construction in Section 4.

3.2. Setup and examples. Let X ~ (1, P) be, as usual, an ergodic Markov
chain with discrete state space . and stationary distribution =. Let ./*
denote a collection of nonempty subsets of .”; we assume .~ *. For each
x* € /*, let A(x*,- ) denote the truncation of the stationary distribution 7 to
the set x*:

(3.0) A(x*,2) =L (x)m(x) | Y w(y), =x€./.

yex*

In (8.0), I,. is the indicator of the set x*. Note that A(x*,- ) = = if and only if
x* = ., and so 7 will play the role of « in Definition 2.1. If x* is a singleton
{x}, then A(x*,-) is unit mass at x. If ./ is finite, then so is /*..

Our setup leaves free the particular choice of ./ *. Here are three examples.
More are given in Section 4.

ExampPLE 3.1. Random walk on the d-point circle, revisited. We return to
the setting of Example 1.1 and suppose again that d = 2¢, for simplicity that
d = 16, and that the walk starts at 2~ ! = 8 rather than 0. Here ./* =
Ay U --- U A, with Af = {{8}, {7, 9}, {6, 10}, {5, 11}}, AF = {{4, 12},
{3,5,11,13})}, A% = {{2,6, 10, 14}}, A% = {{odds}, {evens}} and A% = {#}. The
dual chain X* advances progressively from A¥ to A}, in each case entering
A¥ through its first listed element. According to Remark 2.39 the dual is not
sharp; the problem is that for n > 8 we have m*(y*) > 0 for every y* € /%,
while for any y € . we have either A({odds}, ) > 0 or A({evens}, y) > 0.

Suppose, however, that the holding probability at each step is changed from
1/3 to 1/2. In this case, once the dual X* has reached the set {odds} (which
happens at time T,_; = T in the terminology of Example 1.1), we need only
stop the walk after one more step. Thus {evens} can be removed from .#*, and
by Remark 2.39 with (say) y = 2* — 1 = 15, the resulting dual is sharp.

ExamMpLE 3.2. Simple symmetric random walk on d-dimensional cube.
Consider a random walk X on the discrete d-dimensional cube Z¢ that at each
step stays fixed or moves to a uniformly chosen nearest neighbor. For simplic-
ity we take the probability of staying fixed to be 1/2. The random walk starts
at a fixed point, say, 0 = (0, ..., 0).

It is known [see, e.g., Chapter 4 in Diaconis (1988)] that when d is large it
takes 1d log d + cd steps with c large to make variation distance small, but
dlogd + cd steps with ¢ large to make separation small. Thus the bound
ll7r, — 7l < s(n) is inadequate for asymptotic evaluation of total variation as
d — «. However, we show here how a construction of a strong stationary time
for this walk discovered by Mark Brown and Andrei Broder readily yields a
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strong stationary dual and we exploit this dual via Corollary 2.50 to recapture
the factor of ; in the leading d log d term for the number of steps.

The construction is simple to describe in terms of checked coordinates of the
vertices. Initially none of the d coordinates is checked. When the walk takes a
step along the cth coordinate, check that coordinate (if indeed it is not already
checked). When the walk stays fixed, select a coordinate at random (uniformly)
and, if unchecked, check it. Thus coordinates can be checked even when the
walk stays fixed. The claim is that the first time T that all coordinates are
checked is a time to stationarity for the walk.

To see this, let X* record the positions of the checked coordinates at time
n. If we identify x* = {cy,... ,cj} € /* with the set of all points in /= 74
with zeros in the unchecked positions, then X* is the strong stationary dual
(2.36) having (3.0) as link. The dual is sharp: Use Remark 2.39 with y =
1,1,...,1).

To apply the early stopping Corollary 2.50, fix j, 0 <j <d, and let A*
consist of all j-element members of #*. Thus T is the first time j coordi-
nates have been checked. Clearly T' and X are independent and o* = £ (X})
is uniform probability on A*. We need to calculate v = [lc*A — ||

Since the respective sizes of A* and any x* € A* are (f) and 2/, it follows
that

(8.3) (o*A)(x) = [(?)21]—1 X #{x*: x* € A* and x, = 0 for all ¢ & x*}

for x = (x4,...,x,) € /. Let |x| = k be the number of ones in a given x. If
(o*AXx) > 0, then k <j. Conversely, if 2 <j, then x* € /* belongs to the

set in (38.3) if and only if it consists of the k& positions of ones in x along with

d—-Fk

any other j — k positions. There are ( ) such x*. Hence

-k
(3.4) (o*A)(x) = [(f) (J_ ||:|| |x| /(lfl), if x| <j,

0, otherwise.

Now a straightforward computation shows that v = |lc*A — 7|l equals the
total variation distance between the binomial (j, ) and binomial (d, 3) distri-
butions. This result is not surprising, as the number of ones in X, has the
binomial (j, ;) distribution, while the number of ones for the chain in station-
arity has the binomial (d, 3) distribution.

To proceed we turn to asymptotics in the dimension d. A simple central
limit argument shows that, for large d, v is small when j is chosen to be
d — bd'/? with b small. More precisely, let b > 0 be fixed and let j = j(d) be
the smallest integer at least d — bd'/2. Then v = v(d) converges as d — » to
the variation distance between unit normals with means differing by b,
namely, P{|Z| <b/2} with Z a standard normal. Furthermore (recall the
coupon collector’s problem), T = T(d) then has mean dX!~! and variance
d?L 12 — d¥X 1!, where the sums are over bd'/2 <l < d. Fix ¢ > 0 and let
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n = n(d) equal 3d log d + cd (rounded to an integer). Straightforward calcu-
lations involving Chebychev’s inequality then show that if ¢ > log(1/b), then
P(T > n} - 0 as d — «. Hence from (2.51) it follows that

(3.5) limsupllw, — 7l < P{IZ| < e™°/2}.

d—>»

That the left side of (3.5) tends to 0 as ¢ — « is precisely what is meant by
saying that 1d log d + cd steps with c large are sufficient to make total varia-
tion small for the walk. For this example Corollary 2.50 is remarkably sharp:
Diaconis, Graham and Morrison (1988) show

(}im lm, — =l = P{IZ| <e™¢/2}.

REMARK 3.6. The factor ; differentiating the respective numbers of steps
needed to make total variation and separation small in the previous example is
typical of many problems. For random walks on finite groups Aldous and
Diaconis (1987) showed that .¢(s(2n)) < ||7, — 7|l < s(n) for a universal con-
tinuous function ¢ satisfying ¢(x) ~ x2/32 as x — 0. Thus if separation is
small, then variation is small and if variation is small, then separation is small
in at most twice as many steps.

ExampLE 3.7. Top in at random card shuffle. Let X, record the order of a
deck of d cards started in a given order, say, d(on top), ..., 1(on bottom), after
n “top in at random” shuffles as described in Aldous and Diaconis (1986). Let
x*(ay,...,a;), 0 <! <d — 2, denote the set of permutations of the deck that
begin with the cards (in order from top to bottom) a,,...,a;,2, where a; # 1
for every i. Let .#* consist of all these x*(ay,...,a;) and .. Then, for
suitable w§ and P*, the (7, P) governing X and (7§, P*) are in algebraic
duality with respect to the link (3.0). Moreover, the strong stationary dual
constructed by (2.36) is sharp, as follows from Remark 2.39, and the associated
strong stationary time T has the simple description ‘‘wait until the card
labelled 2 rises to the top and is shuffled in at random.” This T has a simple
analysis in terms of the standard coupon collector’s problem; see Diaconis
(1988) for details.

For this problem, sharp asymptotics for total variation can be derived. If
n =dlogd + cd, with ¢ > 0, then

Jim |, = rll = -1 +e)e ]

3.3. A sharp set-valued dual need not exist. In Example 2.40 we showed
how to construct a sharp dual for any ergodic Markov chain, but the dual is
not in general set-valued. On the other hand, in each of Examples 3.1 (with
holding probability 1/2), 3.2 and 3.7 we constructed a sharp set-valued dual.



STRONG STATIONARY TIMES AND DUALITY 1501

The following question therefore arises naturally. Can a sharp dual always be
built using the truncated stationary distributions as link? The answer is no.

ExamriE 3.8. Let #={0,1,2}, =, = (1,0,0) and

0 1 2
0(0 09 0.1
P=1(01 0 09].
2109 01 0

This chain is irreducible and aperiodic with stationary distribution = =
(3,3, 3). Also,

m, =(0,0.9,0.1),

my, = (0.18,0.01,0.81),

my = (0.73,0.243,0.027).

Clearly w¢ must put unit mass at {0}, while, for some 0 <a <1, wf =
P*({0},- ) puts masses 0.8 + 0.1a, 0.1a and 0.2(1 — a) at {1}, {2} and (1,2},
respectively. But P*({1}, /) = 0 = P*({2}, /) and P*({1,2}, ) < 0.15, so
m¥ puts mass < 0.03(1 — a) at 7. If (w§, P*) is sharp, then 73(”) =1 —
s(2) = m(1)/m(1) = 0.03, and so a« =0 and P*({1,2}, ) = 0.15. Then
P*({1, 2},{0,2}) < 0.8, whence

7$({0,2}) = m#({1}) P*({1},(0,2}) + =#({1,2}) P*({1,2},{0,2})
< (0.8)(0.2) + (0.2)(0.8) = 0.32.
But then
7m3() =75({0,2}) P*({0,2}, /) + w§(F) P*(A, /)
< (0.32)(0.15) + (0.03)(1) = 0.078,

while if (7§, P*) is sharp, then 73(.#) = 1 — 5(3) = m4(2)/7(2) = 0.081. Thus
no sharp set-valued dual exists.

3.4. Greedy construction of a set-valued dual. Although no sharp set-val-
ued dual need exist (consult the previous subsection), there is for finite-state
chains a natural “greedy”’ construction of a set-valued dual which we describe
here. As evidence that such a dual might generally work well, we note that the
greedy dual of any chain in the class considered in Section 4—which includes
most finite-state birth and death chains—is sharp.

Let X ~ (mr,, P) be a given ergodic Markov chain with finite state space .
and stationary distribution 7. We show how to find an algebraic dual (7§, P*)
on the full space /* = {x* # J: x* c .} with link A. Then a strong station-
ary dual chain X* ~ (7§, P*) can be built using the general construction
(2.36).

First we construct w¥. Although the details (3.9)—(3.13) look complicated,
the idea is simple. To establish the algebraic duality =, = w§A, we need to
express m, as a mixture of truncated stationary distributions A(x*,-); the
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mixing coefficients will be the numbers 7§(x*). Adopting a greedy demeanor,
we seek to make m§(.#) as large as possible; after all, this is the probability
that the strong stationary time associated with the dual we are going to
construct stops at time 0. It is clear that the largest possible value for 7§ ()
is min{w(2) /m(2): 2 € #} = 1 — s(0). Now, going beyond the dual construc-
tion in Example 2.40, we need to resolve further the remainder subprobability
distribution o = 7, — (1 — s(0))m, specifically as a mixture of truncated sta-
tionary distributions. The largest possible set z* which can appear with
positive coefficient in such a mixture (remember, we’re greedy) is clearly the
collection of z € . with o(z) > 0, and the largest possible coefficient for this
A(z*,) is min{o(2)/m(2): z € -/} =c (say). The remainder o —cm is a
subprobability on z* which we resolve, etc., continuing until 7, is completely
expressed as a mixture of truncated stationary distributions.

We now proceed to a formal description. We shall show recursively how to

define a strictly decreasing sequence 2z} Dzf D -+ Dz*(1 <v <) of
nonempty subsets of . and strictly positive numbers ¢, ..., ¢, such that
(3'9) To = Z crH(z;k)A(z;k" ’

r=1

where here H(z*) := L ,.,.m(2). One may then define
(3.10) m§(2}) =c,H(z¥), r=1,...,v,

and 7 ¥(z*) := 0, otherwise, in order to satisfy the duality condition 7, = m§A
for initial distributions. In performing the recursion we shall produce auxiliary
subprobability measures 7{’ on z*. We begin the recursion by defining
2§ =/ and 7 = 7.

Suppose that z* ; and 7§~ have been constructed. Set

77~ (2)

(311) C, = mm{——w

rze€zk,mi(2) > 0}.

If the set on the right is empty, i.e., if 7~ is the zero measure on z*_;, stop
and set v = r — 1. Otherwise, ¢, > 0 and we continue by setting

,n_(r—l) P
(3.12) 2k = {z €Ez¥ : ——O-—L) > c,} * O,
7(2)
(3.13) 7V =7y"D —¢c,m onz¥.

Upon completion of the algorithm, (3.9) clearly holds.

In just the same way that m§ is constructed from m,, so each P*(x*,-),
x* C ., is constructed from the x* row of AP. Note that if x* = 7, then
v=1,¢ =1and z} = /: P¥, ) = 1. Thus the greedy algorithm makes
# an absorbing state for P*, in accordance with (2.2¢) in the definition
(Definition 2.1) of a strong stationary dual.
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REMARK 3.14. Application of the greedy algorithm to the (7, P) of Exam-
ple 3.8 leads to 7# = w#P*3 putting masses 0.512, 0.024, 0.384, 0.002 and
0.078, respectively, at {0}, {1}, {0, 1}, {1,2} and .= {0, 1, 2}. Since 1 — s(3) =
0.081 > 0.078, we see directly that the greedy (7§, P*) is not sharp.

4. Chains with monotone likelihood ratio.

4.1. Introduction. The construction and analysis of dual chains simplifies
considerably if the observed chain has a certain monotonicity property. To be
specific, suppose (throughout Section 4) that X ~ (7, P) is an ergodic Markov
chain on the finite, linearly ordered state space .= {0, ..., d} with stationary
distribution 7. Suppose that 7,(x)/m(x) is monotone (say, decreasing) in x.
Then the initial distribution 7§ for the set-valued dual constructed according
to the greedy algorithm of Section 3.4 is concentrated on intervals of . of the
form {0,...,2*}. We obtain an analogous result for the dual transitions P*
under a suitable monotonicity assumption for P. Then, by identifying initial
segments of . with their right endpoints, the dual chain can be taken to have
values on the original state space ..

Section 4.2 identifies exactly when such a construction is possible and
carries out the construction in that case. It shows that the resulting dual is
sharp. Section 4.3 tailors the results to birth and death chains. This gives the
promised stochastic interpretation of the eigenvalues of P. Section 4.4 works
through some examples, including the two-state chain, the Ehrenfest chain,
simple (asymmetric) random walk on {0, ..., d} and simple symmetric random
walk on a finite tree.

4.2. Duality for chains with monotone likelihood ratio. In this section we
derive a necessary and sufficient condition for the given (m,, P) to possess,
with respect to the link A, an algebraic dual (=¥, P*) whose state space ./*
consists of precisely those subsets of . of the form {0,..., x*} with x* € /.
Then .#* can be identified with . in an obvious fashion. Here we take the
link A to be the family

(4.1)  A(x*,x) =1y (x)m(x)/H(x*), x*e€S, xS,

.....

of truncated stationary distributions, where

(4.2) H(x*) = Yy m(x), x* € R,

xe S x<x*

is the cumulative distribution function for the stationary distribution .
Once we have an algebraic dual, we shall use the general sample-path

construction of Section 2.4 to produce a A-linked strong stationary dual X*

for X. We shall show that this dual is sharp (in the sense of Definition 2.38).
To construct an algebraic dual, 7§ and P* must be found to satisfy

mo=mdA and AP = P*A.
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The first of these relations says

mo(x) = X m§(x*)m(x)/H(x*), zx€.7,

x*>x
or, equivalently,

mo(x*) B mo(x* + 1)
m(x*) m(x*+1) |

(4.3) i (x¥) = H(x*)[ x* e s,

with the convention 7y(d + 1)/7(d + 1) = 0. The solution (4.3) to my = w§A
is nonnegative if and only if the likelihood ratio ,/m is decreasing (here and
elsewhere we use decreasing for nonincreasing). This solution sums to unity.
Note that if 7, = 8, then 7§ = §, also.

The relation AP = P*A says

> w(x)P(x,y)/w(y)] /H(x*) = ¥ Pra*,y0)/H(yY), xtyte s
x<x* y*>y

To interpret this, let the time reversal of P be denoted

(4.4) P(y,x) =m(x)P(x,9) /m(y), x,9€.7

Let X =(X,),., be a Markov chain with transition function P. When X is
started deterministically in state y, write P, for the probability measure P.
The relation AP = P*A then says

P(X, <x*}/H(x*) = ¥ P*(x*,y*)/H(y*), x*,y<.”,
y*=y

or, equivalently,

H(y* - -
(4.5) P*(x*,y*) = () [Pu{X, <a*) — P X, <x*)], x*,y*e.

In (4.5) we have set P, (X, <x*} = 0 for all x* € ..

The upshot is that AP = P*A has a nonnegative solution if and only if
P,{X, < x*} decreases in y* for each fixed x*, in which case the unique P* is
given by (4.5). From AP = P*A it is clear that each row of P* sums to unity.

The condition that Py{X 1 < x} be decreasing in y for each x has been called
(stochastic) monotonicity by Daley (1968). We discuss this and its relation to
Siegmund duality in Section 5.

These observations are summarized in the following theorem.

THEOREM 4.6. Let X be an irreducible aperiodic Markov chain on =
{0,. .., d} with initial distribution m, and transition function P. Let = denote
the stationary distribution and H the cumulative of . Let the time reversal of
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P be denoted P(x,y) = w(y)P(y, x)/m(x). The (,, P) has an algebraic dual

(m¥, P*¥) on /* = 7 with respect to the link A(x*,x) =1, (x)m(x)/
H(x*) if and only if
x
(4.7) 1;0((x)) decreases in x
and
(4.8) P is monotone.
In this case, the dual (w§, P¥*) is uniquely determined as
x* x*+1
(49)  wi(xr) = H(zry| 7D ol ) e

m(x*)  w(x*+1) |’

H *
PH(x*,y*) = Hg)

(4.10) [Py*{Xl <x*} = PayofX; < x*}]«a

x* y* e S

REMARK 4.11. The monotonicity conditions (4.7)-(4.8) can be expressed
another way. Say that (7, P) is MLR(n) [has monotone (decreasing) likeli-
hood ratio at time n]if m,(y)/7(y) decreases as y increases. Call the transition
matrix P MLR preserving if (7, P) is MLR(1) whenever (7, P) is MLR(0). If
(my, P) is MLR(0) and P is MLR preserving, say that (7, P) is MLR. Of
course, an MLR chain is MLR(n) for every n. We have not investigated the
converse.

The connection with duality comes from the following obvious fact: A
distribution o on {0,1,...,d} has monotone decreasing likelihood ratio rela-
tive to the stationary distribution 7 if and only if o is a mixture of the
truncated stationary distributions A(x*,-) of (4.1). Thus an algebraic dual as
in Theorem 4.6 exists if and only if X is MLR. For example, we can argue that
AP = P*A has a stochastic solution P* if and only if P preserves MLR.
Indeed, if P preserves MLR, fix x* € /. Since (A(x*,-), P) is MLR(0), it
must be that (A(x*,- ), P) is MLR(1), i.e., that ¥ ,A(x*, x) P(x,- ) is a mixture
of truncated stationary distributions. So AP = P*A for some P*. Conversely,
if AP = P*A, then (A(x*,- ), P)is MLR(1) for every x* € .; taking mixtures,
one concludes that P preserves MLR.

REMARK 4.12. If (7, P) is an MLR chain, then the greedy construction of
an algebraic dual described in Section 3.4 produces the (7§, P*) of Theorem
4.6.

We now use (2.36) in Section 2.4 to build, pathwise, a A-linked strong
stationary dual X* for an MLR chain X ~ (m,, P). First, consider the induc-
tive step (2.36b). Using the respective definitions (4.10) and (4.1) for P* and A,
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we calculate
P*(xr’tk—ls x:)A(x:’ xn)

m(x,) 5
H(x ) [ {Xl <xp ) = PoofX, < x,’f—l}]
XIo, . xx(%,)

for the numerator in (2.36b) and hence

m(%,)

A(x;tk—lixn) H(x 1)

{Xl <xy¥_4)
for the denominator. Thus the construction sets X,* = x* with probability
P{X¥=x¥X¥* =x*,, X, =x,}

(4.13) [P (X, <xr 4} - Px*+1{X1 erf—1}]
P (X, <x}

Notice that the cumulative H appears nowhere in (4.13). This is important
because in many examples the only quantity difficult to compute is H.
A similar calculation shows that

P{X§ = x§1Xy = xo}

(4.14) _ [mo(x8) /m(x§) — mo(xg + 1) /m(x5 + 1)]I(o ..... xaq(xo)
mo(%0) /7(%0) ’

which is again free of H.

REMARK 4.15. According to Remark 2.39 the dual X* constructed by
(4.13)-(4.14) is sharp. Indeed, the only dual state as large as y =d € . is
y* = d [which, since A(x*,-) = = if and only if x* = d, plays the role of « in
the general definition of a strong stationary duall.

4.3. Birth and death chains. Let X be an irreducible birth and death
chain on /= {0,...,d} with initial distribution 7, and transition matrix P.
Write g, for P(x,x — 1), r, for P(x, x) and p, for P(x,x + 1). Irreducibility
is the requirement that g, > 0 for x > 0 and p, > 0 for x < d. By natural
convention g, = 0 = p,. The stationary distribution is given by

w(x)—cl_[py :
y=

with ¢ = 7(0) a normalizing constant.
As is well known, X is time reversible; that is, P = P. Thus if P is
aperiodic, then (,, P) has an .#valued dual (7§, P*) as in Theorem 4.6 if and
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only if

mo(x) . . .
(4.16a) =(2) decreases in x,i.e., g, ,mo(x+ 1) <pm,(x) forx <d;
(4.16b) P is monotone,ie., p,+q,.;<1, x<d.

The equivalence in (4.16b) has been pointed out by Cox and Résler (1983) and
is immediate from the definition. Observe that if (4.16b) holds, then P is
automatically aperiodic; e.g., ro =1 —py, > 1 —(p, + q;) = 0.

Suppose that (4.16) holds. Then Theorem 4.6 and the sample path construc-
tion (4.13)-(4.14) yield a strong stationary dual X* that is also a birth and
death chain on {0, ..., d}. It has initial distribution

H(x*

;(x%; ([Pemo(@) = qepimo(x* + 1)), 2% <d,
@ID i = ) «

) #t-d

and transition parameters
H(x* - 1)
gk = TH P rh=1—(Per + Quri1)s

(4.18)
H(x*+ 1)
PA = =1,
H(x*)

x* e A,

Here H is the cumulative of the stationary distribution 7. For a reversible
process, the sample path construction sets X* = x}* with probability

(4.19) a[Px,’f{Xl <xx_ g} - Px;{‘+1{X1 < x;’f—l}]l(o ..... x,’f)(xn)

given X* ; =x* ; and X, = x,; a is a normalizing constant. In the present
birth and death context the right side simplifies. If x* , > x, + 1, then (4.19)
8 Py 1= (Dux , + Qux_ 1), 9.x_,+1 or 0, according as x* =
X1~ L xF=ak g, x¥=x¥  +1or lxf—x¥ (| >1 If x* | =x,, then
(419) is [1 - (px;;_l + qx:_lﬂ)]/[l —px;‘_l], qx:_1+1/[1 _px;f_l] or 07 ac-
cording as x = x¥_;, x¥ = x¥_; + 1 or neither. If x*_, = x, — 1, then (4.19)
is 1 or 0, according as x* = x*_, + 1 or not.

For the remainder of Section 4.3 suppose for simplicity that m, = 8y, SO
that also 7§ = &,. By Theorem 2.4(a), the first time T that the dual chain
X* hits d is a strong stationary time for X. In fact, since X* is sharp (Remark
4.15), T;* is a time to stationarity. In continuous time Keilson (1979) shows
that the hitting time of state d for a birth and death chain on {0, . . . ,d} can be
represented as a sum of independent exponential random variables with
parameters related to the eigenvalues of the chain. An analogous result holds
in discrete time and will lead to a stochastic interpretation of the eigenvalues.
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THEOREM 4.20. Let X be an irreducible monotone birth and death chain on
=10, ...,d} with transition matrix P, started in state 0. Then P has d + 1
distinct eigenvalues 1,0, ...,0,, with —1<6,<1 forj=1,...,d. The time
to stationarity has probability generating function

(4.21) u - I][(lﬁ'e)u}.

j=1 1-6.u

REMARK 4.22. (a) If 6,,...,6, are all nonnegative, then the time T;* to
stationarity is distributed as the sum of independent geometric random vari-
ables with success probabilities 1 — 6,,...,1 — 6,. These geometrics will tend
to be large if the 6,’s are close to 1. Since

s(n) = P{T} > n},

Theorem 4.20 establishes a nonasymptotic stochastic relationship between
approach to stationarity and spectral gap.

(b) It need not be that every 6, is nonnegative: see Example 4.38 [random
walk on the d-cube, with holding probability r €[1/(d + 1),1/2)] for a

counterexample.
(c) Suppose some of the eigenvalues, say 0,,,...,0;, are negative. Then
Theorem 4.20 yields the curious distributional identity
l
(4.23) Ty — Z B; Z
Jj=i+1 j=
wherein on the left the time to stationarity T,* and B,,,..., B, are indepen-
dent random variables with B; ~ Bernoulli (1/(1 + [6;))) and on the right
G,,...,G, are independent geometrlc (1 — 6,) variables as before.
@ Tn any case, the tlme to statlonarlty has mean L¢_,(1-6,)7!
variance T ¢ 119(1—49)2 4.0 -6)7%- 1(1—0)‘

(¢) To make use of Theorem 4.20, one needs to compute or at least bound
the eigenvalues. Of course, with these at hand, techniques like Fourier analy-
sis can also be used to bound total variation or separation.

REMARK 4.24. Arguing as at (1.2) of Brown and Shao (1987), the tails of
T;* have the explicit form

d 1-6,
(4.25) s(n) =P{T} >n} =Y, (]_[ )0}‘.

j=1\k#j Oj - ok

Because of monotonicity, the separation is achieved at the state d. The right
side of (4.25) is thus 1 — P{X,, = d}/=(d).

ProoF OF THEOREM 4.20. Let Pj, be the d X d matrix obtained by
deleting the final row and column from P*. Arguing as in Brown and Shao
(1987), the eigenvalues 0,,...,0, of Pj, satisfy |6;| < 1 for every j, and the
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first time T;* that X* hits d has generating function I1¢_,[(1 — ,)u/(1 -
0.u)].

! Because d is an absorbing state for X*, it is a simple matter to relate the
eigenstructures of P* and Pj,. In particular, the eigenvalues of P* are
precisely 1,60,,...,6,. Finally, because AP = P*A and A is invertible (it is
lower triangular with strictly positive diagonal entries), P* and P are similar
matrices and so have the same eigenvalues. P — I is the generator matrix of a
continuous-time birth and death chain, and its eigenvalues are 0,6, — 1,...,
6, — 1. From Keilson [(1979), Sections 3.2 and 5.1], these d + 1 numbers are
real and distinct.

REMARK 4.26. We consider early stopping to obtain bounds on total varia-
tion that improve |7, — =l < s(n).

(a) In general, if in Theorem 2.55 we take A to be the link of truncated
stationary distributions and A* to be {y* € ./*: y* D x*} for a fixed x* € /%,
then v of (2.57) equals [[A(x*,-) — 7l = L, , ,»7(x).

(b) Specializing (a) for X an MLR chain on /= {0, ..., d}, we have

(4.27) lm, — wll < (1 — H(x*)) + H(x*)P{T > n},
where T is the hitting time of {x*, x* + 1,...,d} for X*. If X is a birth and
death chain and (say) 7, = 8,, then T is the hitting time of state x* for X*.

4.4. Examples. In this section we present the detailed analysis of four
birth and death chains.

ExampPLE 4.28. Two-state Markov chains. Let d =1 and introduce the
abbreviations

(4.29) P=p>0, gqg=gq;>0.
Here
q b
4.30 7(0) = , w(1) = .
(4.30) 0 =0 w0 =
According to (4.16)-(4.18), our dual construction will apply precisely when
(4.31a) m, < 7 stochastically [i.e., m5(0) > 7(0) = > 3_ 7
and
(4.31b) p+g=<l,
in which case X* is a two-state Markov chain with
(1 +
(4.32) r8(1) =1 - mg(0) = DB _PT )
(1)
and

(4.33) p*=p+gq, qg*=0.
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It is particularly simple to describe the sample path construction of X*
from X for this example. If X, = 1, then (with certainty) set X = 1. If
X, =0, then set Xg =1 with probability (m(1)/m7(0))/(7w(1)/m(0)) =
(q/p) X (my(1)/mx(0)) and X = 0 with the complementary probability. Let
n>1If X¥* =1, orif X* =0 and X, = 1, then (with certainty) set

% =1.If X* , =0and X, = 0, then set X* = 1 with probability ¢ /(1 — p)
and X* = 0 with the complementary probability.

From (4.32)-(4.33) we see that the time T* to stationarity for X has
probability mass function

mo(1) _ptgq
p 770(1),

(4.30) P{Ty* =0} =7=(1) = )

P(T¥ =n} =m3(0[1-(p+)]" ' (p+q), n=1
That is, -£(T*) is the (w§(0), 7§(1)) mixture of the geometric (p + ¢) distri-
bution on {1, 2, ...} and point mass at 0. Thus )
(4.35) s(n) =P{T# >n}) =7w§(0)[1-(p+q)]"==*0), n=0.

When m, = §,, these results agree with Theorem 4.20 and Remark 4.22(a).
For comparison, the total variation distance is

(4.36) lm, — all = —2 Zs(n),  nz0.

REMARK 4.37. As the preceding example demonstrates, the mapping P —
P* is many-to-one: Every two-state P with p > 0, ¢ > 0 and the same value
of p + ¢ < 1 has by (4.33) the same dual transitions P*.

ExampLE 4.38. Simple symmetric random walk on d-dimensional cube,
revisited: Ehrenfest chain. Example 3.2 presented an analysis of simple
symmetric random walk on the d-cube ZZ. However, holding probability of
1/2 was used in a rather special way and the construction of a dual required
the clever coordinate checking argument of Broder. We return to this example
here, showing how the dual construction of Section 4.3 effortlessly yields an
analyzable time to stationarity whenever the holding probability at each vertex
is a constant r € [1/(d + 1),1).

To draw the connection with birth and death chains, let Y, = (Y,,,,...,Y, ;) €
Z¢ record the position of the walk at time n > 0. Consider the number

d
Xn = |Yn| = Z Ynj
Jj=1

of ones among Y,,,,...,Y, ;. Then (X)), . o, an aperiodic version of the Ehren-
fest chain, is a birth and death chain on .#={0,...,d} with transition



STRONG STATIONARY TIMES AND DUALITY 1511

parameters

4.39 1-r)2 1_md®
(' ) Qx_( _r)'g, ry=r, px_( —T‘) d

for x € /. Observe that p, +q,,; = (1 —rXd + 1)/d < 1 by the assump-
tion that r > 1/(d + 1); thus X is irreducible (since r < 1), aperiodic and
monotone. The stationary distribution 7 is binomial (d, 3):

(4.40) w(x) = z-d(z), xe ..

If X is started in a distribution m, satisfying (4.16a), then Section 4.3
shows how to build a strong stationary dual X*. Moreover, if Y|, is condition-
ally uniform given X,, i.e., if for each y = (y,,...,y,) € 73,

(4.41) P(Y, = 5) = mal) [ )

(yl =9 1¥;), then it is easy to see that X* is a set-valued dual for Y with
respect to the link

(442) A(x*7y) = Ix*(y)/#(x*)7 x* C Zgy y € Zga

of truncated stationary distributions. Here #(x*) is the size of the set x* and
we have identified x* € {0,..., d} with {x € 7¢: |x| < x*}.

For simplicity suppose for the remainder of this example that 7, = §,, that
is, that the random walk Y begins at the vertex (0, ..., 0). Theorem 4.20 then
applies to X. Following Kac (1947) we find for the unmodified Ehrenfest chain
with transition probabilities ¢, = x/d, r, = 0, p, = (d — x)/d, x € .7, that
the eigenvalues are 1 —2j/d, j=0,...,d. Hence our P has the d + 1
distinct eigenvalues 6, =r + (1 —rX1 - 2j/d)=1- Q1 - r)2j/d, j=
0,...,d. According to Theorem 4.20, the time to stationarity has generating
function IT5_,[(1 — 0)u/(1 — 6,u)]. From (4.25),

(4.43) s(n) = Xd) (—1)1"1(3?)0;, n>0.
j=1

Standard asymptotics shows that it takes 2(1 — )~'d log d + cd steps with ¢
large to make separation small. It takes half as long to make total variation
small.

It is worthwhile to consider two special values of the holding probability r.
First suppose r = 3, as in our earlier treatment of the walk (Example 3.2).
Then the eigenvalues 6, =1 —j/d, j =0,...,d, are all nonnegative, and so
by Remark 4.22(a) the time to stationarity is distributed as the independent
sum of geometric (j/d) random variables, j = 1,...,d. Example 3.2 gave a
direct interpretation to each geometric term: The time required to advance
from j to j — 1 unchecked coordinates is geometric (j/d).

Now suppose r = 1/(d + 1), so that at each step the walk moves at random
to a vertex within distance 1 of the current vertex. Then the eigenvalues are
0;=1-2j/(d+1),j=0,...,d, about half of which are negative. However,
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rather than employ Remark 4.22(c), we note that the eigenvalues occur in +
pairs. For definiteness, suppose d is even. Then the time to stationarity has
generating function TT¢/3[(1 — 69)u®/(1 — 67u®)] and so is distributed as
twice the sum of independent geometric (1 — 0} =4 Xj/(d+ 1) X
(1 -j/(d + 1)) random variables, j=1,...,d/2. The exact expression
(4.43) for the separation simplifies in this case, too. For example, if n is
odd, then

(4.44) s(n)=j‘ézl(—1)f‘1(d;f1)(1— d2+j1)"’ n>0.

REMARK 4.45. A very similar analysis can be carried out for nearest
neighbor random walk on any distance regular graph. These graphs include
the Bernoulli-Laplace model of diffusion discussed by Diaconis and Shahsha-
hani (1987), who give further references. For these graphs, all of the eigenval-
ues are available in closed form. Bannai and Itd (1987) give references to
extensive lists of distance regular graphs and the active attempts at the
classification of all such graphs.

EXAMPLE 4.46. Simple random walk on {0,...,d}. Consider random walk
X on #={0,...,d)} with probability 0 < A < 1 of moving rightand u =1 — A
of moving left from each interior state and with complete reflection at the
endpoints. In order to avoid periodicity we shall put holding probability
[1 + (max(A, u))"!]"! < r < 1 at each point in . leading to the parameters
(4.47a) q,=(1-r)p, r,=r, p,=(1-r)A, 0<x<d;
(4.47b) 90 =0, ro=r, Po=1-r;

(4.47¢) qu=1-r, ry=r, pg=0.

Observethatp, +¢q,,;=1-r<1,0<x <d,andpy+¢q; =1 —rX1 +p)<
land p;_; +q;=(1 —r)X1+ 1) <1. Thus X is irreducible, aperiodic and
monotone. The stationary distribution is

v, if x =0,
1/A x—1
yX —|— , if0<x<d,
(4.48) m(x) = MK
A d-1
v X (— , ifx=d,
M .

where the normalizing constant

(2 1)/[(“ 1] frw
—{=- —| -1f, ifa=_,
(4.49) y={ 2\# p 2
1 o !
2d’ =g
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Arguing as in Chapter 10 of Karlin and Taylor (1981) we find that the
eigenvalues of the transition matrix are the d + 1 distinct values

L, 6,=r+1-r)2p)"?cos(jm/d), j=1,...,d-1;

4.50
( ) 0d= _1+2r.

Suppose from now on that the walk starts in state 0. The time to stationarity
then has mean

(451) ETy=(1- r)‘l{dz_‘,1 [1-2(an)'? cos(jar/d)]_l + %}
j=1

j=

and variance

(4.52) VarTj = (1 - r)_2{dil [1 - 2(Aw) 2 cos(jm/d)] " + i} - ETp.
Jj=1 .

(a) Consider first the asymmetric case A # % Then as d — o,

(4.53) ET} = ayd + O(1),
(4.54) Var T = a2d + O(1),
where

a;=(1-r)"" j;)l[l - 2(Ap)'? cos(ﬂ-u)] _lidu
(4.55)

A_l

=(1-r) w1 —
I

and
(4.56) a2=(1-r)"?2 fl[l - 2(Ap)"? cos('rru)]_zdu —a;>0
0

can also be calculated explicitly. Moreover, one can show that 7} is asymptoti-
cally normal. Thus for any real ¢, as d — o« the separation after a;d + ca,d/?
steps converges to P{Z > ¢}, where Z is standard normal.

If A > 1, then from the inequality

(4.57) s(n) 2 llm, — wll = lm(d) — w(d)l = w(d)s(n),

it follows that a,d + ca,d’/? steps, with ¢ large, are required to make total
variation small. If A < }, then from the early stopping bound (4.27) with
x* > o as d - « it follows that ¢ steps, with ¢ large, are enough to make
total variation small.

Results asymptotic in A are also available. For example, if d is held fixed
and u — 0 and we assume for definiteness that r > i, then the time to
stationarity converges in distribution to the independent sum of negative
binomial (d — 1,1 — r) and geometric (2(1 — r)) random variables. This result
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is easy to interpret. If we set 4 = 0 in our definition of the random walk, then
the chain moves from 0 to d — 1 in negative binomial (d — 1,1 — r) steps and
thereafter behaves like a two-state chain with p=qg=1—r.

(b) Now consider the symmetric case A = 3, for which $<r <1 is re-
quired. In this case the separation has the simple form

r+(1- r)cos(%r)]n.

(4.58) s(n)=2zd', (—l)j—lcos(j—w)
' 2o , 2d

It takes cd? steps with ¢ large to make separation small.

There is a simple connection between the present symmetric random walk
on {0, ..., d} and symmetric random walk Y on the discrete circle of 2d points
(cf. Examples 1.1 and 3.1). Indeed, if the holding probability at each point on
the circle is r, let

X, =min(Y,,d - Y,)

record the distance of the circle-walk from its initial position of 0. Then X is
our segment-random walk. Moreover, X * is (with the obvious identifications) a
set-valued dual for Y with respect to the link of uniform distributions on the
respective sets {0}, {d} and {j,d +j}, j=1,...,d — 1. Thus both separation
and total variation are the same for the two walks. This has two interesting
consequences.

First, one can argue by use of the central limit theorem that, as d — =, the
total variation after cd? steps converges to the total variation distance be-
tween the fractional part of a normal (0,(1 — r)2%) random variable and a
uniform (0, 1) random variable. Second, suppose r = 3 and d = 2%~1. Then by
the analysis of Examples 1.1 and 3.1, the time to stationarity has mean equal
to 2(X9Z1{u; + 1), where p ; is the mean duration of the game for a gambler’s
ruin chain on {0, .. .,(2d)/2’} started at the middle point (2d)/27*1. As is well
known, u; = ((2d)/2/*')%. Hence ET; = (2d® + 1)/3 and (4.51) gives the
curious identity

(4.59) i [1 - cos(jm/d)] ™' = (2d2 + 1) /6,

Jj=1

where d is a power of 2.

ExAMPLE 4.60. Random walk on a finite tree. Consider a rooted m-ary tree
of depth d. For example, Figure 3 is a rooted 4-ary tree of depth 2. Suppose we
start a random walk Y at the root. Thereafter, with probability r the walk
remains at its present state and with probability 1 — r one of the nearest
neighbors of the present node is chosen at random as the next node. Let X,
denote the level of Y,, where the root is on level 0, its offspring are on level
1,... and the leaves are on level d. Then X is a simple random walk on
{0,...,d} with transition probabilities as in Example 4.46 [recall (4.47)] with
A=m/(m+1). If m=1, then Y=X was treated in Example 4.46(b);
otherwise, as we henceforth assume, Example 4.46(a) applies. The stationary
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Fia. 3.

distribution for Y puts mass vy at the root, y(1 + 1/m) at each internal node
and y/m at each leaf, where y = 1(m — 1)/(m? — 1). With m fixed, it takes
a,d + cayd'/? steps, with c large, to make either separation or total variation
small, where a; and «a, are given by (4.55) and (4.56), respectively, with
A=m/(m + 1) =1 — u. The result of Example 4.46 for d fixed and u — 0
likewise applies to the case m — « for Y.

Now suppose instead that Y is started at a random leaf. Again let X,
denote the level of Y,, but now assign level 0 to the leaves, 1 to their parents,

. and d to the root. Then X is as in Example 4.46 with A = 1/(m + 1).
The time to stationarity has the same distribution as in the root-started walk.
However, as d — » now it takes only c steps, with ¢ large, to make total
variation small.

REMARK 4.61. The argument works for variations of the tree with the same
conclusion. First, the number of offspring of the root can be changed to any
finite number. Second, there can be an arbitrary (constant) number of termi-
nal leaves at depth d. The distribution of the level-walk, and hence the
separation and total variation for the tree-walk, remain unchanged. In particu-
lar, the analyses of Example 4.60 apply without change to the symmetric tree.
For example, the symmetric 4-ary tree of depth 2 can be drawn as shown in
Figure 4.

)

root

Fic. 4.
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Passing to the limit in this example as the number of levels tends to « we
recapture the infinite d-ary tree of Sawyer (1978). We hope to explore the
relation between the eigenanalysis above and the spherical functions of
Sawyer’s paper.

5. Duality.

5.1. Strong stationary duality and Siegmund duality. The purpose of
Section 5 is to relate the strong stationary duality of Section 4.2 to other
notions of duality. General work on duality began with the paper of Siegmund
(1976). To describe this work in the context of the present paper, let Y and Z
be Markov chains on the state space {0, 1,2,...}. Call Z the dual of Y if

(5.1) P{Y, <z} =P{y<Z,}forall yand zand n > 0.

Siegmund noted that any random walk reflecting at 0 is the dual of the
negative of the same walk absorbed at 0. This relation had allowed Lindley
(1952) to transform solutions to problems for the absorbing walk into solu-
tions to problems for the reflecting walk. Lévy (1948) had used the analogue
for Brownian motion to prove theorems about reflecting Brownian motion.

The term “dual’’ was perhaps first employed in this context by Karlin and
McGregor [(1957), Section 6], who discussed the notion for birth and death
processes. Siegmund’s work shows that Y has a dual Z if and only if Y has an
absorbing barrier at 0 and for n = 1, P{Y, <2} is decreasing in y for each
fixed z, in which case the same is true for every n. This condition on Y has
been termed (stochastic) monotonicity by Daley (1968). Siegmund gave neces-
sary and sufficient conditions for the existence of a dual in a much broader
context and exhibited several pairs of processes in duality. Van Doorn (1980),
Cox and Rosler (1983) and Clifford and Sudbury (1985) contain further
development.

Our aim is to show how Siegmund duality can facilitate the construction of
a strong stationary dual. To set the stage, let X ~ (w,, P) be an ergodic
Markov chain on .= {0, ..., d} with stationary distribution . Let P(x,y) =
m(y)P(y, x)/m(x) denote the time reversal of P and write X for any chain
with transition matrix P. B

The construction of a Siegmund dual to X clearly requires that X have
an absorbing barrier at its smallest state. Accordingly, append an absorbing
state —1 to the X state space and define P(x,—1) =0 for x=0,...,d.

Then a Siegmund dual, call it X, exists if and only if Xv(orlginal or extended)
is monotone, in which case the transition function for X is given by

(52) P(x y)_ {X1<x} Py+1{Xlsx}, x’ye{_l’o,“-’d}'

Note that — 1 is an absorbing state for P but that P(x,— 1) is strictly positive '
for some values of x > 0. Note too that d is an absorbing state for P.
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In Section 4.2 (cf. Theorem 4.6) it was shown that P* satisfying AP = P*A
exists if and only if P is monotone, in which case

H(y*) x
(53) Pty = g By, ety s,
where H is the cumulative of 7. Observe that
(5.4) H is a harmonic function for ﬁ on{-1,0,...,d},
ie.,

15( * y*)H(y*) = Ig(x*,y*)H(y*)

||Mg_
[tae

y*=-1 y
_ {H(x*)Ed*=OP*(x*,y*), if x* € {0,...,d},}
0’ lf x* = —l,
= H(x*).

Recall that if @ is a transition function and A is harmonic for @, i.e., h is
nonnegative and Qh = h, then Q,(x,y) = Q(x,y)h(y)/h(x) defines a transi-
tion function on {x: h(x) > 0}. @, is called the Doob h transform of Q. See,
e.g., Kemeny, Snell and Knapp (1976). Thus P* is the Doob H transform of
the Siegmund dual of the time reversal of P. We record these results formally.

THEOREM 5.5. Let X be an irreducible aperiodic Markov chain on /=
{0,...,d} with transition function P, initial distribution m, and stationary
dzstrzbutzon . Let H be the cumulative of . Let P(x,y) = n(y)P(y, x)/m(x)
be the time reversal of P. Suppose that 'rro(x)/'rr(x) decreases in x and P is
monotone, so that a dual P* for P exists as in Theorem 4.6. Then P* can be
computed from P in three steps: '

(i) Calculate the time reversal P of P.
(i) Calculate the Siegmund dual P of P.
(iii) Calculate the Doob H transform P* = (P)H of P.

Using results from Cox and Roésler (1983) and similar results, one can argue
that the entrance law (7,),, o, With 7, = 7, P", for P is in a certain natural
sense transformed by the successive steps (1)-(3) of Theorem 5.5 first to
the exit law (7, (-)/7(- ), . o for P, then to the entrance law (m, () /m(-) —
(- + D/m(- + 1)), ., for P and finally to the entrance law (7}*), . , for P*.
We omit the details. (Our use of exit law is slightly nonstandard; we have
negated the time index.) Likewise, the harmonicity of H for P is a natural
reflection of the fact that = is stationary, i.e., a constant nonnegative entrance
law, for P.

Turning to the sample path construction of a strong stationary dual X*, we
note that Siegmund duality helps us to interpret the probabilities (4.13)-(4.14).
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Indeed, the inductive construction sets X,* = x} with probability
P{X} =xXIXF  =x¥ 1, X, =x,)}

(5.6) =P{Xv"n =x:|)f',,_1 =x,’,“_1,)%n an}.

At the start the construction sets X = x§ with probability

(5.7) P(X§ = 21X, = xo) = P{X, = 281X, = x,),

where on the right )f'o has the (unconditional) distribution

w(0) [Wo(xﬁk) _ mo(xg + 1)
mo(0) | m(x5) m(xg + 1)

(58) P(Xp=ux) - ] % =0,....d,

with the convention 7y(d + 1)/7(d + 1) := 0. [Note m4(0) > 0.]

To complete Section 5.1 we specialize to birth and death chains. Let P be
the transition matrix of a monotone birth and death chain. Recall that P is
reversible. Once (5.2) is used to obtain the Siegmund dual birth and death
chain transition probabilities

(59) qvx=px7 i(x= 1 - (px+Qx+1)’ ﬁx=Qx+17

it is clear that the definition (4.18) of g, rX, pX is just a special case of
Theorem 5.5.

5.2. Strong stationary duality as duality with respect to a function. A
definition of duality generalizing Siegmund’s was used by Holley and Stroock
(1979) in studying interacting particle systems. Accessible treatments are in
Cox and Résler [(1983), Section 1] and Liggett [(1985), Definition 2.3.1]. A
related reference is Vervaat (1987).

DeFniTION 5.10. If Y and Z are Markov chains with countable state
spaces .y and ./, and f is a bounded nonnegative function on .4 X .4,
then Z is said to be a dual of Y with respect to f if

(6.11)  E,f(Y,,2) =E.f(y,Z,), y€fy,2€5,n20.

In this generality, duality is a nearly symmetric notion: Z is a dual of Y
with respect to f if and only if Y is a dual of Z with respect to the transpose
fT(z,5) =f(y,2)

of f. Siegmund duality is recaptured by taking f(y,z) = 1 or 0 according as
y<zory>z.
Adopt the setup of Theorem 5.5 and recall

A(x*,x) =1y, (x)7(x)/H(x*).

We present two reasons why the term dual deserves to be applied to P*. The
first reason is Theorem 5.12.

.....
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THEOREM 5.12. The reversed chain P and the strong stationary dual P* are
dual with respect to the function

(5.13) fu(y,2) = {I/H(z), ify<z,
0, otherwise,
on SX 7.
PRrOOF.

Efo(Xn’x*) Elsn(x7y)fH(y7x*)

1
H(x*) Z Pn(x y) = ‘—Z A(x*,y)P"(y,x)

y<x* (
1 xn * *
- 77 PG
P*n *, *
_ yzz_—é(xy*)y ) = E,.fy(x, X5). o

An alternative proof of Theorem 5.12 can be based on the observations
P{X <x}=PfX, >y} and P**(x*,y*) = (H(y*)/H(x*))P”(x ¥). Yet an-
other proof can be built by modifying the following lemma to account for the

fact that the harmonic function H for P vanishes at —1. Lemma 5.14
. describes how the Doob % transform affects duality.

LemMA 5.14. If Y and Z are Markov chains dual with respect to some
function f and h is an everywhere strictly positive harmonic function for Z,
then Y and the Doob h transform Z" of Z are dual with respect to

(5.15) fw(3,2) = f(y,2)/h(2).

ProoF. Let Z and Z" have respective transition functions @ and Q.
Then

Eyfh(Yn’z)= h( ) yf( )
=h( ) f(y,Z) ZQn(zz)f(y’z)
- T @ f(f’z)) E.fi(y. Z}). 0

Our other reason for calling P* dual to P is explained by Theorem 5.19.
First we extend the definition of duality (Definition 5.10). As we shall see, the
extended definition unites the various notions of duality we have discussed.



1520 P. DIACONIS AND J. A. FILL

DEeFiNITION 5.16. Let @, and @, be transition matrices on countable state
spaces .y and .#%. Let u be a distribution on /5, X ./ and f a bounded
nonnegative function on .4}, X /4. Let Y and Z be Markov chains defined on
a common probability space (£, %, P) having transition functions @y and @,
respectively. We suppose that (Y,, Z,) ~ u, that the process Y and Z, are
conditionally independent given Y, and that the process Z and Y, are
conditionally independent given Z,. If

(5.17) Ef(Y,,Z,) = Ef(Y,, Z,), n >0,
we say that Y and Z are dual with respect to (f, u).

REMARK 5.18. (a) Since the left side of (5.17) equals £, ,,u(y, 2)E, f(Y,, 2)
and the right side equals T, , u(y, 2)E, f(y, Z,), duality is in reality an
assertion about transition functions.

(b) Chains Y and Z are dual in the sense of Definition 5.10 if and only if
they are dual with respect to the given f and every point-mass distribution w
on ./ X /%, in which case they are also dual with respect to (f, u) for every
distribution wu.

(¢c) The more general Definition 5.16 makes time reversal a form of duality.
Let

o _ [m(x), ifx=4%,
w(x, %) {0, otherwise.
Then Q is the time reversal P of P if and only if P and @ are dual with
respect to every point-mass f and our specified u, in which case P and @ = P
are dual with respect to (f, u) for every bounded nonnegative f on /X 7.

THEOREM 5.19. With assumptions as in Theorem 5.5, P* and P are dual
with respect to A and every u of the form

(5.20) p(x*, x) = mg(x*)A(x*, x),

with 7§ a distribution on . [compare (2.20)].

Proor. If u is of the form (5.20), then

EA(X}, X,) = X X wg(xa*)A(x*,y) X P**(x*, y*)A(y*, 5)
=y ¥*

=2 X mg(x®)A(x*,y) X A(x*, 2) P*(x,y)
x* y x
= EA(XF, X,). O
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