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The one-dimensional nearest neighbor asymmetric simple exclusion
process has been used as a microscopic approximation for the Burgers
equation. This equation has travelling wave solutions. In this paper we
show that those solutions have a microscopic structure. More precisely, we
consider the simple exclusion process with rate p (respectively, ¢ = 1 — p)
for jumps to the right (left), 2 < p < 1, and we prove the following results:
There exists a measure u on the space of configurations approaching
asymptotically the product measure with densities p and A to the left and
right of the origin, respectively, p < A, and there exists a random position
X(t) € Z, such that, at time ¢, the system “as seen from X(¢),” remains
distributed according to u, for all ¢ > 0. The hydrodynamical limit for the
simple exclusion process with initial measure u converges to the travelling
wave solution of the inviscid Burgers equation. The random position
X(¢)/t converges strongly to the speed v = (1 — A — p)p — q) of the trav-
elling wave. Finally, in the weakly asymmetric hydrodynamical limit, the
stationary density profile converges to the travelling wave solution of the
Burgers equation.

1. Introduction. The inviscid Burgers equation is the first order quasi-
linear hyperbolic equation given by '
du Nu(l—u
A CCl)) N
at ar

where 6 > 0 is a fixed parameter. For p < A this equation admits travelling
" wave (weak) solutions %(r,t) = u(r — vt), where v = (1 — p — A)8 and

ifr<o0
1.2 =[P ur=y
(1.2) %o(7) {A it r> 0.

(1.1)

b

On the other hand, the asymmetric simple exclusion process is one of the
simplest infinite particle systems which can be informally described as follows:
Each site of Z can be occupied by one particle at most and each particle jumps
to its nearest right neighbor (respectively, left) with rate p (respectively,
g =1 —p) unless the site is occupied. The product Bernoulli measures v,
(0 < p < 1) of density p are invariant for this process. See [16] for a complete
description.

When p > 1, it has been proved by Benassi and Fouque [5] and Andjel and
Vares [3] that if the initial state is the product measure v, , with density p to
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the left and A to the right of the origin (with p < A), the hydrodynamical limit
is given by the travelling wave solution of the inviscid Burgers equation [where
in (1.1), 8 = p — q]. See the introduction of [2] or [8] for a description of the
hydrodynamical limit.

However, it was not clear whether the sharpness of the shock was due to
the scaling and, in particular, if by going to an intermediate scale, one would
not find a smooth profile. This question was considered important in order to
explain why the system chose by itself the entropic solution which can be
obtained as the limit of the Burgers equation. See [5] for a discussion on the
entropic solution. It was proven that the shock is sharp in various special cases
(all assuming p = 0) by Kesten (quoted in [17], and also [16]) and for related
models by Wick [18], in the case p = 1, and by De Masi, Kipnis, Presutti and
Saada [9] for any p > i. Boldrighini, Cosimi, Frigio and Grasso Nunes [6]
simulated the shock for p =1 and p > 0 and obtained evidence that it was
sharp.

One major problem for studying the microscopic structure at the shock is
that there is no obvious microscopic definition of the location of the shock. In
the case when p = 0 a natural candidate is the position of the leftmost
particle. This fact was used in the previously mentioned results combined with
the explicit knowledge of the invariant measures as seen from the leftmost
particle ([11]).

When the left density is not zero, one naturally tries a coupling between two
copies of the simple exclusion process: one with initial measure », and the
other with initial measure v, ,. The coupling, called the basic coupling [16], is
constructed in such a way that the first marginal is always »,. We call second
class particles, those particles of the second marginal that do not have a
correspondent in the first one. By analogy with the case p = 0, one would like
to look at the leftmost second class particle and see if there exists an invariant
measure p for the process as seen from its position. If the microscopic profile
is sharp, the asymptotic density of particles of the second marginal of u should
be A to the right and p to the left. One also would like to know enough about
the measure p to be able to prove laws of large numbers and central limit
theorems for the position of the leftmost second class particle properly rescaled.
Our attempts to find a more or less explicit form of this measure failed for
reasons that will appear later. However, a useful observation is that, provided
that we have all the needed ergodic theorems, the rigidity of the shock implies
that the speed of the leftmost second class particle is given by the speed of the
shock. This speed is explicitly known and coincides with the speed of a tagged
second class particle in a translation invariant and stationary system that
would couple v, and v,.

In this paper we give a definition of what we call microscopic interface.
Actually, in order to define this interface it is necessary to couple three
processes: the two described previously and one with initial density A. In this
colipling, by identifying particles of types 1 and 2, we recover the process that
we want to study. The position of the interface is defined as a process
depending on the whole trajectory of the coupled process with three marginals.
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We do not want to enter into details here but we can say to those that are
familiar with couplings that the microscopic interface coincides with the
position of a tagged second class particle in the translation invariant two-par-
ticle system obtained when identifying particles of types 2 and 3.

We prove that there exists an invariant measure for the three-particle
coupled process, as seen from the interface, under which the distribution of
the second marginal approaches asymptotically », and v, at infinity. Under
that invariant measure, the distance between the leftmost particle and the
microscopic interface remains tight. Initially, the number of type 2 (respec-
tively, 3) particles to the left (right) of the interface is random but the
difference between the number of type 3 particles to the right and the number
of type 2 particles to the left of the interface is constant in time.

Our analysis gives no direct information about the speed at which the
measure relaxes to v, and v, at infinity. However, by looking at the weakly
asymmetric hydrodynamical limit [10, 12], the density profile of the measure
that we found converges to the travelling wave solution of the Burgers
equation (with viscosity 1).

It remains an open problem to prove that at the shock, the system goes to a
superposition of », and v, [14, 15]. This is proved by [1] when A + p = 1 and
[18] and [9] for p = 0 For the general case one should study the fluctuations of
the microscopic interface around its mean vt. The result of [1] when the
velocity of the shock is zero indicates that this fluctuation is not tight.

2. Results. Let 7, be the asymmetric simple exclusion process. This is the
Markov process on the state space X := {0,1}* with generator (applied to
cylindrical functions f) defined by
(21) Lf(n)= ¥ X a(x)(1-n)p(x)[f(n*) - f(n)],

xe€Z y=x+1
where p(x,x+ 1) =p, plx,x — 1D =1-p:=gq, plx,y) =0 if |x —yl > 1,
and

n(z) ifz+x,y,
(2.2) n*Y(2) ={n(x) ifz=y,
n(y) ifz=x.

We refer to Liggett [16] for the construction and the ergodic properties of this
process. Let v, be the product measure on X with density p. The family {v,:
0<p<1} contalns all the extremal translation invariant and invariant mea-
sures for the process [16]. Let »,, be the product measure on X with
marginals

ifx <0
=1 = p 1 - 4
==} 5250

From now on we assume p <A and p >gq. In what follows we use the
notation w f = [fdu. Define the configuration .n by (r,n)(2) = n(z + x), the
function 7, f by 7, f(n) = f(,n) and the measure (r,u) by (r,u) f := u(7, f).
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THEOREM 2.3. There exist a version of the asymmetric simple exclusion
process m, in a probability space (Q, ¥, P), an F~measurable stochastic pro-
cess X(t) € Z and a measure p. on X satisfying

(2.4) th T =V, limr,pu =v, weakly,

0 X —> 00
such that the process Ty, is distributed according to p, for all t > 0.

REMARK 2.5. Neither the process X(¢) nor 7y,m, are Markovian. More-
over, the asymptotic profile of the measure u is established in Theorem 2.14.

THEOREM 2.6 (Law of large numbers). The process X(t)/t converges P-
almost surely tov == (p — q)(1 — p — ).

In the next theorem we prove the hydrodynamical limit for the simple
exclusion process starting with the initial measure p of Theorem 2.3. The
Proof of Theorem 2.7 applies to a family of initial measures that includes the
product measure v, ,. In this case the Theorem was proved in [5] and [3]. In
the proof we use a different approach that exploits the existence of the
microscopic interface of Theorem 2.3. On the other hand, we believe that the
invariant measure u is absolutely continuous with respect to v, , but we do
not know how to prove it. In the case u < v, ,, Theorem 2.7 would be just a
corollary of [5] and [3].

THEOREM 2.7. Let u be the measure introduced in Theorem 2.3, S(t) be
the semigroup corresponding to the simple exclusion process, t > 0, and r be
real numbers. Then

v, ifr<ut

2. -1 -1 °
(2.8) hmT uS(e™t) = {V)\ ifr> ot

weakly.

Our next result is a weak law of large numbers for the density profile of the
measure u of Theorem 2.3, in the “ weakly asymmetric” [10, 12] hydrodynami-
cal limit. Let u, be the measure introduced in Theorem 2.3 when p =1/2 +
£(6/2), where 6 > 0 is the parameter of (1.1). Let Y, be the density field, given
by

(2.9) Y(é,m) =¢ ) ¢(ex)n(x),

xe”Z
where ¢ is a test function, ¢ € /(IR) the Schwartz space of rapidly decaying
functions on R. Let

Ed

(2.10)  YU¢) = [d(r)u(r)dr, Y°($):= [¢(r)uy(r)dr,
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where
A=p

14e G0’ uo(r) =pl{r < 0} + Al{r > 0}.

(2.11) u(r)=p+

ReMARK 2.12. The function u defined in (2.11) is the travelling wave
solution with asymptotic densities A and p of the Burgers equation with
viscosity 1,

(2.13) at ar 2 9r?’

That means that u#(r, ) == u(r — vt) is the stationary solution of (2.13), where
v=>0-A-ph.

du Nu(l-—u 1 9%u
o oful-w)

THEOREM 2.14. For all ¢ € ~(R) the following hold:
(2.15) lim [u(dn)IY,(¢,7) = Y°(8)] =0,

(2.16) lim [u.(dn)Y.(¢,7) = Y}($)l = 0.

In particular, under p (respectively, n.), as € — 0, Y, converges in probability
to the deterministic profile u , (respectively, u). Moreover, for r € R,

(2.17) lim 7 -1,p, = v,

e—0

weakly.

A related result is given by [7]. In that paper the invariant measures in
boxes of length ¢! are studied for a fixed total density and the analogue of
(2.17) is found.

THEOREM 2.18 (Weakly asymmetric hydrodynamics). Let u be the travelling
wave solution (2.11) of the Burgers equation, (2.13). Let u, be the measure of
Theorem 2.3, when p = 1/2 + (8/2)c. Then

(2.19) liII%)TE-lr[.LES(E_zt) = Vyr—ur)
weakly.
3. Microscopic interface. Define the process (0}, v,,{;) € X3 N {o(x) +

y(x) + {(x) < 1, x € 7} == X; with generator
Lyf(o,v,8) =Y X (o(x)(1-0o(y)p(x,y)

x y=x+1
X[ fla™?,y=?, (%) = f(o,7,{)]
(3.1) +y(2)(1 - a(y) —v(¥))p(x,y)
X[ f(o,y"?,{%?) = f(o,7,)]
+{(x)(1 —a(y) —v(y) — &) p(=,y)
X[ f(e,v,¢%?) = f(o,7,0)]).
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In words, the generator Lj describes the behavior of particles of three differ-
ent types, with priorities. In the language of Andjel and Kipnis [2], the first
coordinate has priority over the second, which has priority over the third.

Let (Q, %, P) be the canonical probability space associated with this pro-
cess. Let E be the expectation with respect to P. All the processes defined
later are realized in (Q, %, P). We use the notations P, and E, for the
probability and expectation with respect to the process with initial measure u.

The relation of the process (o, v,, {;) with the simple exclusion process is
given in the following lemma. Call S,(¢) the Markov semigroup generated by
L,. Denote by o + y € X the configuration defined by (o + y)x) = o(x) +

v(x).

LeEmMA 3.2. The processes o,, o, + v, and o, + v, + {, are, in distribution,
the asymmetric simple exclusion process.

Proor. Follows from the definition of L; by taking functions depending
only on o, o + y and o + y + £, respectively. O

It is convenient to consider the process (o,, £,) on X, == X% N {(a, £): o(x) +
&(x) < 1, x € 7}, where &, =y, + {,, obtained by making particles y and ¢
indistinguishable. We call L, and S,(¢) the generator and the corresponding
semigroup of this process. We say that sites such that o(x) = 1 are occupied
by a first class particle, while sites such that £(x) = 1 are occupied by a second
class particle. This is a way to look at the basic coupling (n7, n7*¢), where the
upper index indicates the initial configuration [16]. At time ¢, the configuration
o, is the set of sites where the two marginals coincide and ¢, is the set of sites
where they do not.

LEMMA 3.3. There exists an unique invariant and translation invariant
measure w, on X, for the process (o, ¢,) such that the first marginal of u, is
v, and [du, f(o + &) =, f.

Proor. We couple initially v, and », in the following natural way: To
each site x € Z associate a random variable U, uniformly distributed on [0, 1],
{U,} mutually independent. Given a realization {«,} of those random variables,
o(x)=11if u, <plo(x) =0 otherwise] and &(x) =1if p <u, <A[&(x) =0
otherwise]. Call v, the resulting distribution of (o, ¢£). Let u, be any weak
limit point of (1/T)(Jv,S4(¢) dt. By Proposition 2.14 of Chapter 8 of [16], u,
is invariant for S,(¢) and by Lemma 3.2, the marginals satisfy the required
property.

To prove uniqueness, consider two measures satlsfylng the conditions of
Lemma 3.3. Now couple these two measures in such a way that their first
marginals coincide. Construct a basic coupling between the four processes. The
first marginals are always the same. The second marginals will converge in
measure to the same distribution, as follows from Lemma 3.2 of Chapter 8

of [16]. O
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DEeFINITION 3.4 (The process as seen from a second class particle). Let
(a/, &) on X4 == X, N {(0, £): £(0) = 1} be the process with generator

Lyf(o,6) = X X (a(x)A-a(y)p(x,)[f(e™?,27) = f(0,§)]

20 y=22140
+€(x)(1 —o(y) — €(¥))p(x,y)
(3.5) X[ f(o,&57) = f(o,8)])
+ ¥ (o()p(3,0)] f(7,0%%,7,6%7) = f(o,£)]

y=z1

+(1=a(y) — )P0, f(r,0,7,£%7) - f(a,8)]).

Let X(#) be the algebraic number of shifts of (o, £!) in the time interval
[0, ¢].

LeEMMA 3.6. The measure p, = uy(-1£(0) = 1) is invariant for the process
with generator Lj.

Proor. Here we use the argument of Section 2 of [11]. Call Si(¢) the
semigroup generated by L, and recall that Sy(¢) is the semigroup of the
process (o;, £,). Then, we have that

(3.7) wpS3(2) = maS,y(2){-1€(0) = 1}.

Indeed, for every continuous function f on X,, an easy computation shows
that

(3.8)  [duy(0,€)E(0)Lyf(0,¢) = [dua(a, £) Ly[£(0) f(o, 6],

which is the main step in the proof of (the analogue of) (3.7) in Theorem 2.3 of
[11]. Therefore, the invariance of w, and (3.7) imply that u!, is invariant. O

DEFINITION 3.9. Let A, B,C C Z be finite and disjoint sets. Define
fA,B,C(U',%() = l_[ o(x) I—LY(D’) l_[cf(z)-
yeE ze

x€A

Let w3 be the measure on X} := X3 N {y(0) + £(0) = 1} given by

(p/q)"?
1+ (p/9)"®

wofame= [ dus(o,¢) TTo(x) [T&()
X5 x€A yeB

(3.10)

(p/q) "=
O e
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where
Y ) x>0,
(3.11) (e =0 if x =0,
—fg(j) if x < 0.

=

When p =1 we interpret (p/q)"/(1 + (p/q)"*) as 1 if n >0, as ; if n =0
and as 0 if n < 0. In this way u% is well defined for all p. The same
interpretation is used in Remark 3.12.

REMARK 3.12. An equivalent way to define u/; is to introduce a family of
independent Bernoulli random variables {k(x)}, ., with distribution a such
that a(k(x) = 1) =1 + (p/q)~*)~! and write

wafase= [ dwexa)(o,&x) T1o(x)

(3.13)
x T1 é(y)x(n(5,6)) [T E(2)x(~n(z,€)).
yEB zeC
This means that in order to construct the three-particle measure u’; one can
put a configuration with two types of particles distributed according to u} and
then decide which ¢ particles will be y particles independently according to
the random variables «.

The fact that % would be invariant for the process was suggested to the
authors by the ‘“blocking” invariant measures of Liggett (Example 2.8 of
Chapter 8 in [16]). The Liggett measures are product and reversible for the
" process 7, in the state space {n: £, _on(x) + X . (1 — n(x)) < »}. The reader
can check that when p = 0 and A = 1 the y marginal of u’; coincides with one
of those. Let’s call it ». When 7 is initially distributed according to », the
rescaled density is an exact stationary solution of the microscopic approxima-
tion of the Burgers equation for all p and all . We just realized that in the
macroscopic limit ¢ — 0, the marginal o + y of u% has the same property.

ProprosITION 3.14. The measure W, is invariant for the process
M3 b

(0}', Vi ft') = (TX(t)U'n TxyYe> TX(t)ft)~

ReEMARK 3.15. Even if X(#) is not explicitly defined in terms of the process
(o), v}, ¢}, it is measurable w.r.t. the o-fields generated by {(a/,v/,{!): 0 <
s < t}. Actually, X(#) is the position of a tagged second class particle in the
(a,, £,)-process. Hence, X(¢) is measurable w.r.t. the o-fields generated by
{(a;y! + £): 0 <s <t}). This means that, in the three-particle representa-
tion, interchanges of particles y and ¢ do not contribute to the motion of X(#).
As a consequence of that, ¥, _,y/(x) — £ ({/(x) is constant in time.
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Proor. The generator of the process (o, v/, {/) is given by Ly = L% + L},
where

Lyf(o,v,¢)
=Y Y (e(x)(1-0()p(x,y)

x%0 y=x+1#0
X[ f(a™?,y5?,¢{%7) = f(o,v,)]
+(v(x) +4(2))(1 —a(y) —v(y) — {(¥))p(x,5)
(3.16) X[ (0, y"7,847) = (0,7, 0)])
+ X (o()p, 0] f(r,0%7,7,9%7,7,L%7) = f(o,7,0)]

y=1%1

+(1-a(y) —v(y) = ¢(y))p(0,y)
x[f(ryo, my*?,7,8%%) = f(0,7,0)])

and
Lsf(o,v,$)
(3.17) =L L v@@p@n[ o767 = (o7, 0]
X y=x*t

Notice that L%, when applied to functions depending only on (o, y + ¢), is the
generator of (3.5). Moreover, defining

_ - (p/q)"*?
fA,B,c(‘T, ¢) = xga(x)ng(x) 1+ (p/q)n(x’g)

(p/q)"*?
O e

(3.18)

" we have that

(3.19) WsLy fa g = maLs f-A,B,C =0,

where, since f is cylindrical, the second identity follows from Lemma 3.6.
On the other hand,

j;(,dl-l'l:.’»(0-3 Y {)p(x7y)7(x){(y) fA,B,C(O'y Y g)

(p/q)"*?
- : j k
'/;Kédﬂz(g, f)jle_‘l‘lo.(‘])kegl(x)g( ) 1+ (p/Q)n(k’g)

-n(l, &)
(3.20) x TI (p/a) ™ -
N 1+(p/q) ™"
(p/2)"™°  (p/q)"*?
1+ (p/@)""? 1+ (p/q) ¥

- fx dus(e,v,6)p(y, 2)v(9)6(x) fa, B,c(o,v™?,¢%7),

’
3

XE(x)éE(y)p(x,y)
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where the last identity follows from

(p/q)"®  (p/q) ""*H?
1+ (p/@)""? 1+ (p/q) "7

(p/q) " (p/9)""""®
1+ (p/q) "™ 1+ (p/g)"**"?
for y=x + 1 and similarly for y=x — 1. For y # x + 1, p(x,y) = 0 and

(3.20) is automatic.
Equation (8.20) implies that u’ is reversible for the generator L% and, in

particular, that
(3.22) wsL5fa B,c=0.
Finally, (3.22) and (3.19) imply the proposition. O

E(x)é(x+1)p
(3.21)

=¢£(x)é(x + 1)g

LemMa 3.23. Let v, be a measure on X, such that the first marginal of v,
is v, and, for f€ CX), [dvy(o,&) flo+¢) =v,f. Let n(x, £) be the signed
number of ¢ particles between 0 and x, as defined in (3.11). Then

(3.24) lim n(x,€)

x— too X

=A—p vy-a.S.

ProoF. Since, under v,, o is distributed according to », and o + ¢ is
distributed according to v,, we have that

_ n(x,0)
lim =p vy-a.s.,
(3.25) Foxm ¥
_ n(x,0+¢)
lim —— =4 vy-a.s.
x— o X

Calling E = {lim n(x, £)/x = A — p}, (3.25) implies v,(E) = 1. O

LEMMA 3.26. Let v, be a measure on X, such that the first marginal of v,
is v, and, for f€ CX), [dvy(o, &) flo + €) = v, f. Let f, and gp be cylindri-
cal functwns on X, = {(0, £)} depending on the finite sets of coordinates A and
B, respectively, such that f, depends only on o, while gz depends only on
o+ & Then,

(3.27) xljivrilw”z(“'—x fA“'ygB) =v,faV\85-

Proor. Fix x and consider a subsequence {y )} such that the limit on the
left-hand side of (3.27) exists and 7 (l)B N 7yq+1B = @. Calls this limit a,
The Cesaro limit in [ converges also to a,

(3 28) = lim — Z Vz(T—x far (l)gB) =vyo(7_, fa)V\EB>

n—w

where the second 1dent1ty follows from the following: (a) under v,, o + £ is
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distributed according to »,; (b) g5 depends only on (o + £); (c) the law of large
numbers for v,. This implies that the limit in y exists and equals the
right-hand side of (8.28), uniformly in x. The same argument for the limit in x
shows the lemma. O

COROLLARY 3.29. Lemmas 3.23 and 3.26 hold for any measure absolutely
continuous w.r.t. vy. :

Proor. The proofs of Lemmas 3.23 and 3.26 use only a law of large
numbers, that also holds for the measures of the corollary. O

ProoF oF THEOREM 2.3. Define the measure u on X by
(3.30) Jdu(n) f(n) = [ dus(e,v,0) f(o+ 7).
X X

By Proposition 3.14, if (0g, v, {,) has distribution uj, then 7y, m, = o/ + v/
has distribution u for all ¢ > 0.

Now we only need to prove (2.4). Assume f,(n) =TI, n(y), for finite
A c Z. Use Remark 3.12 to compute

[du(n) farin) = [ dus(o,v,0) TT (o(y +2) + (5 +x))
X X3 yEA

= [, 2 X ) (o, £,0)
Xyg(v(y +x) +E(y +x)x(y +x,8)),

which as x — « converges to v,f, by Corollary 3.29, the fact that
< lim, _,, k(x,¢) = 1 a-a.s. and dominated convergence. The same proof works

for negative x because lim , _, «(x,¢) = 0 a-a.s. O

In the following lemma we prove that the distance between the interface
and the leftmost y-particle has finite expectation. This implies that the process
as seen from the leftmost second class particle admits an invariant measure
with the asymptotic properties of u’.

LEmMa 3.31. Let Z(o,y, {) [respectively, G(o,v, {)] be the position of the
rightmost (leftmost) { particle (y particle) in the configuration (o,vy, ). Then
wy(Z) = py(=G) < .

Proor. The distributions of Z and —G coincide as a consequence of the
translation invariance of u, and Remark 3.12. Let K be the label of the
rightmost ¢ particle that is chosen to be a { particle. Then, from Remark 3.12,

1 1
1+ (p/@)* 5k 1+ (p/q) ™"

ws(K =k) =
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from where ;3K < «. On the other hand, letting A; be the distance between
the (i — 1)-th and the i-th ¢ particles to the right of the origin,

K 1
phZ =y ), A; = wsKpsAy = pyK—F,
i=1 (A =p)
where the second equality follows from the independence between A; and K
and the third one from the translation invariance of w,. O

4. Law of large numbers. First we prove a law of large numbers for the
flux of particles through the origin. In this section we work in the space
X, = {(o, £)}. It is convenient to use a notation for the holes (the sites where
there are no particles): Let 8(x) := 1 — £&(x) — o(x). Notice that the & parti-
cles evolve according to a simple exclusion process with rate g to jump to the
right and p to jump to the left. Define now the total flux of holes, first class
particles and second class particles:

F.° :=algebraic number of 5-particles that crossed 3 in the interval [0, ¢];
(4.1) F}:=algebraic number of o-particles that crossed 3 in the interval [0, ¢];

F2:=algebraic number of ¢-particles that crossed 3 in the interval [0, ¢].

LEMMA 4.2. Let v, be a measure on X, such that the first marginal of v,
is v, and, for f € CX), [dvy(a, &) f(o + &) = v, f. Then,

. F
tll_l)roloT =-A1-2)(p—9),
Fl
(4.3) thﬂ—;— =p(1-p)(p-9),

th2
lim —— = (A=p)A=2-p)(p—q),

t— oo

P, -almost surely.

ProoF. Since the total flux must be null, we have that
(4.4) FP+F!+F2=0.

Hence, the third line in (4.3) follows from the first two lines in the same
equation. Notice that the limit in the second line of (4.3) depends on the first
marginal of the process that has distribution P, . The.law of large numbers for
F! /¢t can be proven using the ergodic theorem because v, is extremal invariant
(see Theorem 4 of [13] or [9]). For the first line, it suffices to observe that the
initial distribution of the holes is vq_, and they evolve as an asymmetric
exclusion process constructed with ¢ and p instead of p and q. The conclu-
sion follows from the same argument. O
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THEOREM 4.5. Weak law of large numbers. Let v, be a measure on X, such
that the first marginal of v, is v, and, for f € C(X), [dvy(o, &) f(o + &) = v, f.
Let X(t) be the position at time t of a second class particle that at time t = 0 is
at the origin. Then,

im X&) _

tow

v
in P,,-probability, where v} = vy(-1£(0) = 1) and v = (1 — p — A)p — q).

Proor. Since particles cannot be overcome, we have the identity
(4.6) Ft2 = n(X(t)7 §t)’

where F? is the flux of ¢ particles, while n(X(¢),£,) is the number of ¢
particles between 0 and X(¢), as defined in (4.1) and (3.11), respectively. Now,
by Lemma 4.2, F?/¢ converges a.s. to (p — g)(A — p)(1 — A — p). Since the
laws of o, and 3, do not depend on ¢, we have for any positive c,

n(xy gt) - n(b7 ‘ft)
x—b

-(A-p)

(4.7) lim P,,z( sup > c) =0,

a—e x:lx—bl=a

uniformly on & and ¢.
Hence, if A, := {|X(¢)/¢t — v| > ¢}, we also have

Ez - n(vt’ f) _ n(X(t)7§t) - n(vt7 gt)
t t

)

so that the left-hand side converges in probability to zero whereas by Lemmas
3.23 and 4.2 on A, the right-hand side is larger than c¢(A — p). So,

lim P,( A,) = 0 = lim P,,(A,),
t—o o t—ow 2

where the second identity follows by absolute continuity. This proves the
theorem. O

In order to prove Theorem 2.6, we let u), = [;u;m(dB), where I is a set of
labels, m is a measure on I and the u); are the extremal invariant measures
for the process with generator L/. Next, we prove a strong law for each
extremal invariant measure.

PROPOSITION 4.8. The process X(t)/t converges P#‘,ﬁ-a.s. to a constant vg.

‘PROOF. Write
X(t) = Nt(a" - 1) + M(O’, 1) + Nt(g’ 1) + M(f, - 1)7
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where N,(, - ) are measurable with respect to the natural sigma fields associ-
ated to the process with generator L/ and defined by

N,(o, j) == number of o particles that jumped from j to 0in [0, ¢],
N,(¢, j) == number of jumps of the tagged particle from 0 to j in [0, ¢].

The fact that u; is extremal leads to the (P, ) strong law of large numbers for
N,(-, j) (see [13] or [9]). O

Proor oF THEOREM 2.6. Let A, = {B: lv; — v| > 2/n} and write

X 1 X 1
P‘L,z(ﬂ—v >; Z/A"P‘Lb(ﬁ—v >—)m(dB)

and, taking ¢ — o, Theorem 4.5 implies that m(A,) = 0 for all n. Hence,
m{B: vg # v} = 0. Finally,
) / P, (llm
t—>o

P“,z( lim
=m{B:vg # v} =0,

— - ———v

* O)m(dB)

t— oo

which concludes the proof. O
5. Hydrodynamics.

Proor oF THEOREM 2.7. Let A CZ be a finite set and let fu(n) =
anAn(x)‘

fxd/*"(n)EnTs‘lr fa(n.-1,)

= / d/.L%(O', ng)E(o-,y,{)Ts_lr fA(Us_lt + %s'lt)

X

3

(5.1)

= .[X,d/-L'S(O', Y, g)E(O',‘Y,{)Tt:_lr—X(g—lt) fA(O.sl_lt + ‘)’,.;'—lt)
3

= fx,dl'l‘/?;(o-, Y {)E(a','y,{)z Te_lr—x fA(O.sl_lt + ‘Ysl_lt)l{X(S_lt) = x}’
3 X

where E, is the expected value of the process with initial configuration 7, etec.
Now, con81der a number a such that |r — v¢| > a, and decompose the sum in
the last line of (5.1) in three parts: {x: l¢"'r — x| <& la}, {x: e7'r —x > ¢ "a}
ahd {x: e r — x < —¢ 'a}. The integral of the first of those three sums goes
to zero by Theorem 4.5 and dominated convergence. As in the proof of
Theorem 2.3, by Corollary 3.29 and the fact that as x — o, «(x, ¢) — 1, the
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second part converges to v, f, if r > vt and to zero otherwise. In the same
way, using the fact that as x — —o, «(x, £) — 0, the third part converges to
v, fa if r < vt and to zero otherwise. O

REMARK 5.2. The proof of Theorem 2.7 also works for initial measures
other than u. In fact, the proof is based on Theorem 4.5 and Corollary 3.29,
which only use the marginal distributions of o and o + ¢ for the system of
two particles and the asymptotic behavior of «(x, £). The initial measure for
the three-particle process can be any measure v; on X 3 defined from a
measure vy, on X, with the good marginals [ie., [dv,(o, ¢)f(o) = v,f and
[dvy(o,£)f(o + &) = v, f] by the same transformation that constructed u’
from u), (see Remark 3.12). Given a configuration (o, £), the distribution of
the y and ¢ particles is reversible with respect to the generator Ly of (3.17).
This implies that this distribution is independent of time. This fact allows us
to consider as initial measure v any measure that comes from a v, as p comes
from 5. In particular, let v, be the product measure on X, defined as in the
proof of Lemma 3.3, v} == vy(-1£(0) = 1), let v} on X, be obtained from v} as
in Remark 3.12 and let v be the measure defined from v} as u is defined from
. It is easy to see that v is equivalent to v, , v, , <vandv <v, ). Inthis
way we can recover the hydrodynamics proven by [5] for the case p < A.

6. Weakly asymmetric asymptotic profile. The measures considered
below were defined in Section 3. We add a subscript ¢ indicating that they are
constructed with p = 1/2 + £(6/2).

Proor oF THEOREM 2.14. We consider ¢ as the indicator function of the
box [a, b], the extension to other functions being immediate. Let Y c X, be
the set ([-] is the integer part)

[be~1]
Y = {(0,5)2 Elilr(l)«?_l Y o(x) =p(b- a)}

x=[ae"1]

[be 1]
ﬁ{(mf)i Eli_{f(l)s_l Y é(x)=(A—-p)(b- a)}

x=[ae" 1]

NN {(a,f): limen(e™'r,¢) = (A - p)r}
rela,blNQ e=0
=Y, NY,NY,.
Observe that, by Lemma 3.3,

[be~1]

(6.1) po, (Yy) = vp{ lime™* Y o(x)=p(b- a)} =1.

.
€ x=[ae" 1]
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On the other hand,

(6.2) Y,oY,NnY,,
where

[6e~1]

Y= {(0,6):lme™ ¥ (o(x) +£(x) = Mb - a>}.
ez x=[ae~1]
This, Lemma 3.3 and (6.1) imply that
[6e~1]
(6.8) g, (¥s) = s (Y,) = {n lme ¥ m(x) = A(b - a)} -1.
£ x=[as"1]

Finally, from Lemma 3.23, it follows that
(6.4) a,o(Yy) = 1.
Using (3.30) and Remark 3.12, compute

mlY.(¢,m) — Y()l
= us,Y.(d,0 +7v) — Y(o)l
[be~1]

el Y (o(x) + £(x)k(n(x, £)))

x=[ae"]

(6.5a) = (ph,. X a,)

)

b A—p
_((b_a)P'*"/; 1 + e20m—» dr)

where «,(y) is the family of independent Bernoulli random variables with
distribution «,, such that

e () =1 = [1+ 5 ffj))

defined in Remark 3.12, for p = 1/2 + (6 /2)s. The last member of (6.5a) is
bounded by

[be~1] '
Hplet X o(x) - (b—a)p
x=[ae1]
[be~1]
+(uhe Xa)le™t X (&(x) - (A —P))Ks(n(x,f))’
x=[aes"1]
(6.5b) -
+(uy,e X a,)|[(X —p) (8_1 Y k(n(%,8))
x=[ae™1]

b 1
_./; 1 + o207 —p) dr
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Since uf , = py (-1£(0) = 1) and p, (£(0) = 1) > 0, we can consider Ko, in-
stead of pj .. As ¢ — 0, the first line in (6.5b) vanishes by equation (6.1) and
dominated convergence. In the second line, since k(y) < 1, use (6.3) to prove
that also this line goes to zero. The third line is bounded by

[be™1]
e (A —-p) L (k. Xa)(k(n(x,8) =k ([x(2 — o))
x=[ae™1]
[6e~1]
(6.6) (A —p)(wp,. Xa) et X k([x(r-p)])
x=[ae"]

b 1 d
e _ar
|, T e

The second line in (6.6) goes to zero by the law of large numbers for
independent random variables. Since «,(-) are zero—one random variables,
each term in the sum of the first line of (6.6) is bounded by

1466\ "= i 146\ *A-P -
(1+(1—£0) ) _(1+(1—£0) )
which goes to zero by (6.4). The sum then goes to zero by (6.4) and dominated

convergence. This proves (2.16). The proof of (2.15) is easier.
For (2.17), compute, using (3.30) [ f, = IT, < sm(x)],

Toi [y = u%,syg(lf([y +e7'r]) + y([y + e7r]))

)

(6.7) = (uy,. ¥ @) [T (o([y +e7r])
yEA

+&([y + e e (n([y + £7'r].£))).

Now, the law of large numbers for n(x, ¢) of Lemma 3.23, Corollary 3.29 and
the absolute continuity of ujy, wrt. u,,, imply that wh, Lo((e~1r]) - p,
wo, (EQe™rD) > A — p and n(e"'r], &)e > r(x — p). Hence, for p =1/2 +
£(0/2), as ¢ - 0, (p/q) (e} ; g20r(h=p) W5, -almost surely and the last
line of (6.7) converges to the solution x of Theorem 2.14 by dominated

convergence. [

7. Weakly asymmetric hydrodynamics. The proof of Theorem 2.18 is
very similar to that of Theorem 2.7. The important observation is that in order
to prove Theorem 4.5 it was only necessary to have a weak law of large
numbers for the flux of ¢ particles. But this was a consequence of the laws of
large numbers for the fluxes of o and & particles, which move according to
simple asymmetric exclusion process. Let @° be the measure for the weakly
asymmetric simple exclusion process [i.e., a process with generator as in (2.1)
constructed with p = 1/2 + £(0/2)] with initial measure v,, and let F; be the
algebraic number of particles that crossed the point % during the time interval
[0, ¢].
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THEOREM 7.1.  For all positive c, the following holds:
lin%)Qe(laFte-z —0p(1 —p)t| >c)=0.

Proor. Adapting to our case the proof of Theorem 2 of [13), it is not hard
to prove that eF,, . -2 — ¢F,,-» and ¢F, -2 are negatively associated random
variables. This implies that V°F,/¢ is decreasing in ¢, where V¢ denotes the
variance w.r.t. @°. So that, if w < te72,

V°F,—., V°F,

te™2 T w

Besides, @° converges weakly, as ¢ — 0, to @°, the law of the symmetric
simple exclusion process. On the other hand, @*(F,)* is bounded uniformly in
&, by comparing to a Poisson process with rate 2. So we have that, as ¢ — 0,
V*F,, converges to V°F,, which, by Arratia [4], behaves like Vw . (Here we used
that the flux is bounded in absolute value by the position of the tagged
particle.) The theorem is now a consequence of (7.2), by letting first ¢ — 0 and
then w - . O

(7.2)

The proof of the following corollary is the same as the proof of Theorem 4.5.

CoroLLARY 7.3. For all positive c, the following holds:
lin})QE(laX(te_z) -0(1l-A—-p)l>c)=0.
Proor oF THEOREM 2.18. The proof follows from the weak law of large
numbers of Corollary 7.3 and from the fact that

el =0 o+ () )

converges uniformly in & to 1/(1 + ¢27®~»), 0

1
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