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COUPLED REACTION-DIFFUSION EQUATIONS!

By MARK FREIDLIN
University of Maryland

We consider single equations and systems of reaction-diffusion equa-
tions depending on small parameter. These equations are generalizations of
the Kolmogorov—Petrovskii-Piskunov equation. Using the large deviation
principle, we describe the asymptotic behavior of solutions.

1. Introduction. Statement of the problem. Consider the reaction-
diffusion equation (RDE)

du(t,x) D
(1) o " gAutf(w), u(0,x)=g(x),xeR"t>0.

Let feC', flu)>0for 0<u<1, f(0)=FfA) =0, f(u) <0 for u & [0, 1]
and (df/du)l,-o = f'(0) = sup, . , u~'f(u). The class of such functions f we
call #;. The initial function g we suppose to be bounded, nonnegative and
having support G, =[{x € R™: g(x) # 0}] such that G, = [(G,)], G, + 2.
Here [ A] means the closure of a set A € R” and (A) is the interior of A  R”.
Let the initial function g(x) be continuous on (G,) and outside G,,.

It is well known that the solution u(z, x) of (1) tends to 1 when # — o, and
the domain G, c R”, where u(t, x) close to 1 is growing in a sense with the
speed \/2Df"(0) (see [10], [1]).

If the diffusion coefficients, initial function and nonlinear term are nonho-
mogeneous in space but changing slowly so that they are functions of ex,
. where x € R" and ¢ > 0 is a small parameter, a rescaling of the space and the
time is useful (see discussion in [6] and [7]). In the new variables, the problem
will be the following:

du(t, x)

€ 1
= —Lu®+ —f(x,u®), u®(0,x) =g(x),x€R",t>0,
at 2 £

(2)

where L = 3¥{a"(x)9%/dx'9x7), a'/ € C!, Lia(x)A;A; > alAl* for any
%,A € R", for some a > 0. Limit behavior of the solution of (2) when ¢ |0 is
studied in [6] and [7] using a large deviation principle for the family of Markov
processes X/, corresponding to the operators ¢L, ¢ | 0.

In particular, if f(x,-) € &, for everyx € R" and f(x,0)/du = ¢ = const,
it is proved in these papers that lim, ou’(t,x)=1 for x € G, and
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30 M. FREIDLIN

lim, o u®(t,x) = 0 for x & [G,], where G, = {x € R", p(x,G,) < tV2c}, t > 0.
Here G, = suppg, and p is the Riemannian metric corresponding to the
operator L: ds®> = £} ;_,a; (x)dx" dx/, (a,;(x)) = (a”/(x))". This means that
the domain G, can be described by the Huygens principle with homogeneous
isotropic velocity field v(x,e) = V2¢, x,e € R", le| = 1, in the Riemannian
metric p. The boundary of the set G, separates the set where u°(¢, x) tends to
one and the set where u“(¢,x) — 0 for £ |0. One can say that the boundary
4G, is the position of the wave front at time ¢.

If we have two equations of the type (1) with D = D,, f= fi(u), D = D,,
f="rx(w)and f,, f, € ¥, in general, different velocities of the wave fronts are

established in the large time interval: v, = /2D, f;(0) , v, = /2D, f;(0) .

Let us consider the coupling of such equations,

du,(t,x) 1
= oD, Au, + fi(u,) +edy(uy —u,y),
at 2
(3)
du (¢, x) 1
at = gDzAuz"'fz(uz) +edy(u; —uy).

Here d,,d, are positive constants, ¢ > 0 is a parameter characterizing the
strength of the coupling. The physical sense of the last terms in (3) is as
follows. For d, = d, = 0, the equations [(3)] describe diffusion and multiplica-
tion (or killing) of the particles of the first and the second types. The particles
of the different types have no interaction. The new terms describe transmuta-
tion from first to second type and vice versa. The constant ed; is the intensity
of the transition from the first to the second type, and ed, is the same
characteristic for transition from the second to the first type.

If we consider (3) on a fixed time interval independent of ¢ and take ¢ |0,
the functions u,(¢, x), & = 1, 2, tend to solutions of the equations (3) for ¢ = 0.
For ¢ = 0, the equations [(3)] are independent and have, in general, different
velocities of the wave fronts. But in the large time interval, growing together
with £~! when ¢ | 0, one can expect that, due to interaction, some velocity of”
the front common for both components will be established. If the rate of
transmutations is small (¢ < 1), establishing the common velocity takes a
great amount of time. The position of the wave front at time ¢ also tends to
infinity when ¢ — « (at least in the case of initial functions with compact
support). To detect the front we should rescale not only the time but the space
also.

As we will see later, the proper scaling is ¢t — t/¢, x = x/e. Put w5 (¢, x) =
u,(te™1,xe™ 1), k = 1,2, where u,(¢,x) is the solution of the equations (3).
Then we have the following equations for u§ and u%:

dus(t,x) eD, 1
= Au§ + —f(uf) +di(uf —uy),
Jt 2 €
dub(t, x)
at

(4)

eD, 1
2 Aufy + —8—f2(u‘2) +dy(uf —uy).
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Let (u5(, x), u%(t, x)) be the solution of the system (4) with initial condi-
tions (0, x) = g,(x), u5(0,x) = g,(x). We assume that f,, f, € % and
initial functions g,, g, satisfy the conditions listed above. Denote by G, the
support of the function g(x) + g,(x). We define an increasing family of sets
G, CR’", t >0, such that lim, o u5(¢t,x)=1forx €G,, ¢t >0, k = 1,2, and
lim, ouy(t,x) =0 for x € R"\[G,], t>0, k=1,2. The sets G, can be
described in terms of a variational problem connected with the action func-
tional for the family of the Markov processes corresponding to the system (4).
It turns out that even in the space-homogeneous and isotropic case of (4), the
wave front for the coupled system can propagate faster than in each separated
component, and the speed of propagation is independent of d,, d,, provided
these constants are positive.

The generalization of (4) for the nonhomogeneous nonisotropic in-space
medium has the form

duy(t, x)
ot

&) _ eLus(t,x) + ;fk(x, us) + dkj(uj -u3), x€R", t>0,
=1

J
u5(0,x) = g,(x) =0, k=1,...,n.

In (5), L, =3X7 ;_,a%(xX3%/dx"dx’) are elliptic operators with smooth
enough coefficients, d,; >0, filx,")e ¥ foranyx R " and k=1,...,n.
The initial functions g,(x) have the same properties as in the case of the single
equation.

We describe behavior of the lim,  , u%(¢, x) for the solutions of (5). In the
case of systems, in general, the motion of the wave front will not be continu-
" ous. As in the case of a single equation (see [6] and [7]), a wave front can have
jumps. Evolution of the wave front, in general, will not be Markovian: motion
of the front after time ¢, provided the position of the front at the time ¢ is
known, depends on the behavior of the front before ¢. If df,(x, u)/dul,—o = ¢
independent of x and %, the motion of the front will be continuous, Markovian
and can be described by the Huygens principle. The corresponding velocity
field is homogeneous and isotropic not in a Riemannian metric, but in a
Finsler metric. The Finsler metric is defined by its unit spheres near each
x € R". In the case under consideration, the unit sphere at the point x € R" is
the convex envelope of the family of ellipsoids (Riemannian unit sphere):
Sp={2: X7 ;_1a;,;(x)2'2" <1}, k= 1,...,n,(a, ;(x) = (@¥(x) ™.

In the next section we consider (2) and describe the behavior of the wave
fronts in a rather general situation. The main rmachinery here is the
Feynman-Kac formula and the large deviations principle. We show in Section
2 that a generalization of the results of [4] and [6], proved by analytic methods
in [3] can be treated by light modification of the method of [4] and [6].

In Section 3 we apply the similar approach to (5) and prove the general
result on wave front propagation for the coupled RDE. In some cases we can



32 M. FREIDLIN

give explicit formulas for the position of the wave front. We consider such
examples in Section 4. Section 5 is devoted to various generalizations of (2) and
(5).

In conclusion, note that a class of RDE-systems similar in a sense to (1) is
studied in [5], [7] and [2]. Using the approach of this paper one can consider the
coupling of such systems. _

2. Wave front propagation for generalized KPP-equation. If the
coefficients and the nonlinear term of a RDE just as the initial function are
slowly changing in space (meaning that they are functions of ex, x € R,
where ¢ is a small parameter), then after rescaling of the space and time we
come to the following Cauchy problem:

32ue

dxtoxt

dus(t,x) £ iy
(6) ot 2mz=1 )
u(0,x) =g(x) = 0.

This is the same problem we have after time rescaling if an equation with
small diffusion is considered ([6]). In this section, we study limit behavior of
the solution of (6) when ¢ |0 in the case f(x, )€ % for any x € R". Let
c(x,u) =f(x,u)u"'. Since fe ¥, c(x,1)=0, c(x,u) >0 for u <1 and
c(x,u) <0 for u>1, c(x) = c(x,0) = max, ., c(x, u). We assume that the
function c¢(x, u) is continuous in x, u, and Lipschitz continuous in «. Assump-
tions on the coefficients a’/(x) and the initial function g are formulated in
Section 1.
Let X7 be the Markov process, corresponding to the operator

82

1
+ _f(x’ u£)7
£

eL =

P
2, dxtox’

> ai(x)

1

in the space R”" (see, for example, [7]). Using the Feynman-Kac formula we
can write down the following equation for u°(¢, x):

1
(D w(tx) = Bag(Xewp| - [le(Xe, ut(t =5, X)) ds).
€70
From (7) one can see ([6]) that
0<u(t,x) <1V supg(x), lim sup u°(¢,x) <1 fort > 0.
x€ER" el0

We will use also the following simple properties of (6).

1. If u (¢, x) and u(t, x) are the solutions of (6) for g = g,(x) and g = g,(x),
vand g(x) > g4(x), x € R", then u(¢, x) > u,(t, x).
2. If ut,x) and u,(t,x) are the solutions of (6) for f= f,(x,u) and for
f=fy(x,u) with the same initial function g, and fy(x,u) = fo(x, u) for
x€R",0<u<sup,cp &(x),then u t,x) > uyt,x)forallt>0,x €R".
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The properties 1 and 2 are implication of the maximum principle for linear
parabolic equations.

Taking into account that c(x,0) = c¢(x) = max, ,c(x,u), we derive
from (7)

(8) u*(t,x) <E g(Xe)exp{ fc(Xs) ds}

The asymptotics of the right side of (8) are defined by the large deviations of
the process X; from zero. Recall that the action functional in the space C,, of
continuous functions ¢: [0,¢] = R” for the family {X;, ¢ |0} has the form
e~ 1S,,(¢), where

f Z a;;(e,)¢i¢l ds, o € C,, ¢ is absolutely continuous,
Sot(qp) = " Jj=1
+ oo, for the rest of C,,.

Here (a,,(x)) = (a/(x))~*. Taking into account the continuity of the func-
tional [lc(¢,) ds, we have the following Laplace-type asymptotic formula (see
[11] and [8)]):

1
(9) lim ¢ In Exg(Xf)exp{;ftc(Xj) ds} =V(t, x),
0
where V(¢, x) = sup{R_,(¢): ¢ € C,,, ¢ = x, ¢, € Gy},
t
Ro(e) = [[C(¢.) ds = S,(9),  Go = suppg.

One can see from (9) that lim_  , u°(¢, x) = 0 if V(¢, x) < 0.
We say that condition (N) is fulfilled, if for every point (¢, x) such that
V(t,x) <0,

V(t x) = sup{Rot(qo) P E oty Po = X, P € GO’ V(t -8, q’s) < 0
for0 <s < T}.

If condition (V) is fulfilled, one can prove ([4], [6], [7]) that lim Lottt x) =1
at the points (¢, x), where V(¢, x) > 0. Thus the set {x € R™: V(¢, x) = 0} can be
considered as the wave front position at the time #. Some results about
behavior of the lim, ,u°(¢,x) when condition (N) is not fulfilled are also
available in [6] and [7].

Evans and Sauganidis in [3] gave an analytical proof of some results of [6].
Moreover, they suggested a game-theoretical approach to the problem which,
together with the small viscosity solution method, gives the description of the
wave front without condition (V). In this section, we explain how the general
case can be treated by a slight modification of the methods of [4] and [6]. We
use the same approach in the following section for studying the systems of
RDE’s.
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Let us consider the heat process (¢, XZ). The first component is the
deterministic motion with the speed —1: ¢, = ¢, — s. The second component
X; is the Markov process in R’, corresponding to the operator ¢L. The phase
space of the heat process is #'= (—,®) X R". Let F be a closed subset of -#.
Define the functional 7 = 75(¢, ¢) on (—o,) X Cy ,, with values in [0, «] by
the formula

T=15(t,0) =inf{s: (¢t — s, ¢,) € F}.

It is clear that 74(t, X*) is the first time when the heat process touches F; 75
is a Markov time with respect to the family of o-fields {%, s > 0}; %, is the
minimal o-field in the probability space, such that X¢ is % -measurable for
any s; < s. The functionals 7 we call Markov functionals. Denote 6 the set of
all Markov functionals.

Let us introduce the function V*(¢,x), t > 0, x € R”,

. 1 o
V*(t7x) = inf sup / N C(QDS) Y E aij(()os)()b;qbg ds: P E Cot,
TE€H 0 2 i,j=1

qpo=x,e,€G0}.

It is clear that V*(¢, x) < (0 A V(¢, x)).

Since 7 = (¢, X°) and 7 A t are Markov times, using the strong Markov
property of the process X;, we derive from (7) that the following equation is
fulfilled for the function u*(¢, x):

u®(t, x)
10 1 .,
(10) =Eu*(t— (7 At), X:'M)exp{—f Mc(X:, us(t—s, X2)) ds}.
, £°0
Of course, (10) is true for any Markov time 7 with respect to the family of
o-fields %, not only for the defined above functionals of the heat process.
Consideration of (10) instead of (7) is actually the main modification which
allows us to describe the motion of the wave fronts in the general situation
without condition (N).

Lemma 1. IfV*(t,x) <O, then lim, o &ln u(t,x) < 0 and
limu®(¢,x) =0
el0

uniformly in (¢,x) from any compact set F c {(s,y), s > 0, V*(s,y) < 0}.
Proor. Since V*(¢, x) < 0, there exists 7* € 6 such that
T*NAL 1 T . i e
sup j;) C(QDS) - E Z aij(QDs)QDs(Pg dSZqD eCot, Po =X, qptEGO
i,j=1

- —B<0.
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Taking into account that c(x, u) < ¢(x) = c(x, 0), for every integer n > 0, we
have from (10)

n 1 .
us(t,x) < Y E xu(t—1*At, Xf,\,*)exp{—f Atc(X;) ds}
k=1 Y
(11) )
t
+ B g(XJexp( = [o(Xz) ds),
€70
where y, is the indicator of the set {(#(k — 1)/n) <7* <kt/n}, k=1,...,n,
and y,., is the indicator of the set {r* > ¢}. Using the Laplace asymptotic
formula for functional integrals, we get

1 e
E xus(t — (7* A t), XE, T*)exp{ f Atc( Xe) ds}

€70

IA

€70

[1 + sgpg(x)]Exxk exp{ - f *o(x2) dS}

(12) i
tk/n .
== sup{j(; c(¢:)ds — S, inn(@): @ = x,
k-1 kt
t<7(p) < ;}, el0.

Here the sign = means logarithmic equivalence for ¢ | 0. Note that

th/n_, . t(k—1) kt
Sup{j;) C(QDS) ds_So,tk/n(Qo):qDO:x, T ST*(t,qp) < ;}

T*NAE 1 r i
< sup{fO [C(%) —3 Lz ai,-(sos)%%}ds:
(13) ‘ bt

<7*(t,9) < —
n n

(k— 1)t kt}

t t

+—supc(x)<B + — sup c(x),
N xerr n yerr

for £ = 1,...,n. Now choosing n > (1,/B)2¢ sup, . g- c(x), we derive from (12)

and (13) that

1 e
(14) limsupeln E, x,u(t — (7* A t), X}, ,*)exp{—-/ Mc( X¢) ds} < - E
. €l0 €7Q 2
A similar bound holds for the last term in (11):
: 1
(15) limsupeln E, ... ,8( Xf)exp{—/tc( Xe) ds} < - E
el0 - €70 2

From (11), (14) and (15) we have the first statement of Lemma 1. The second
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statement follows from the first one and uniformity of the convergence in (14)
and (15). O

LemMma 2. Suppose that lim, € Inu(¢y, xy) = 0, ¢y > 0. Then a constant
A exists such that lim, o u°(t,x) = 1 uniformly in (¢,x) from any compact
subset of the cone K2 . = {(s,y): s > ty, lx — xol < A(s — ¢,)}.

to, Xo

Proor. Using the a priori bound for the Hélder norm of a bounded
solution of a uniformly parabolic equation with bounded coefficients (see [9]),
we can derive from the conditions of Lemma 2 that for any § > 0, there exist
€9, 6; > 0 such that

u®(ty,x) >e %% for |x—xy <e ®/, 0<e<eg,.

Now using the properties 1 and 2 of (6), we conclude that u®(¢, x) >
@*%(t — t,, x), where @*°(¢, x) is the solution of (6) with the initial function

(16) g =g°%(x) ={

and c(x, u) replaced by é(u) = inf, _ 5- c(x, ).

In the case ¢ = é(u) independent of x, we can use Theorem 6.2.2 from
[7]. We should take into account that our initial function depends on e. It
does not influence the proof of the upper bound. So we can conclude that
lim, o @%(t,x) = 0 for ¢ > 0 and p(x, x,) > ¢y/2¢(0) , where p is the Rieman-
nian metric corresponding to the form ds®> = L7 ;_,a,(x) dx*dx’, (a;;(x)) =
(a'/(x))~L. The convergence of #>%(¢,x) to zero is uniform in any compact
subset of the set &= {(s,y): s > 0, p(x,y) > sy/2a(0) }.

To prove that lim, ,&°(¢,x) = 1 for (¢,x) such that ¢ >0, p(x,x,) <
< ty/2&(0) , we use the following bound for the transition density p (¢, x,y) of
the process X; (see [9]): for any &,,¢ > 0 there exist ¢, §, > 0 such that

17 p.(t,x,y) >e /% forlx —yl <8,,0 <e <g,.

From (16) and (17), we derive that for any &, > 0 one can find s; € (0, §,) and
8, £y, 83 > 0 such that the following bound holds:

(18) a%°%(s,y) > e %/¢ forly — x| < 8;,0 <e <e,.

Now we can prove that lim,  ,&1In &%°(¢, x) = 0 for points (¢, x) with ¢ > 0,
p(x, x,) < t/2¢(0) , as was done in Theorem 6.2.2 of [7], and then we can
check that lim,  , @*°(¢, x) = 1 uniformly on any compact subset of the set
{@, x), p(x, xy) < t/2¢(0)}. Since {(¢, x): plx, x4) < £y/26(0)} D {(¢, x):
lx — x,| < At} for some A > 0, and u®(¢,x) < @*%(¢ — ¢,, x), we derive from
here the statement of Lemma 2. O '

e %% for|x — x,| < e ®1/¢,

0, for |x — xol > e %17,

LEmMa 3. Assume that lim,  ,u®(¢y,x,) = 0 for some sequence &'|0.
Then there exists A > 0 such that limsup,. o &' Inu®(¢,x) <0 for any point

(¢,,x) €D, ={(s,):0 <s <ty lxy—yl <A(ty—s)}.

to, Xo
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Let &) ={(t, x): lim, o u*(t,x) = 0, ¢ > 0}. For every compact F belonging
to the interior (&) of &), lim,, 4 u®(t, x) = 0 uniformly in (¢,x) € F.

Proor. The first statement follows immediately from Lemma 2. To prove
the second statement note that compact F can be covered by a finite number
of cones D//2 with vertices (¢,, x,) € (£¢") \ F. The uniformity follows from
the uniformity of the bound in Lemma 2. O

REMARK. It follows from Lemma 3 that the set & belongs to the closure
of its interior (£). If (t, x) € &), then (¢ — h, x) € (£) for small A > 0.

LEMMA 4. Let F be a compact subset of the interior (M ) of the set
M={tx)t>0, xR", V¥t,x) =0). Then lim, oelnu®¢,x) =0 uni-
formly in (t,x) € F.

ProoF. Suppose that for a point (¢, x) € (M), there exists a sequence &'} 0
such that lim, ,¢'lnu®(t,x) = —8 < 0. Then lim, ,u°(t,x) =0 and
(¢, x) € £¢), where £ was introduced in Lemma 3. Without loss of general-
ity we can assume that (¢, x) € (£©?). If this is not true, one can take a point
(¢ = h, x) with small enough k > 0. This new point belongs to (") according
to the remark above, and belongs to (M) since (M) is open.

Define the Markov functional, corresponding to the complement of the set
(&),

T=7(t,¢) =minfs: (¢t — s, ¢,) & (£}

Since (¢, x) € M,

TAL r i
Sup{_/(‘) [C((ps) - % Z aij(gos)gosgpg} ds: (Po =X, th (S GO} > 0

i,j=1
Therefore for any & > 0, there exist ¢?, s € [0, ¢], @y = x, ¢! € G, such that

, 1 . . é
Ry, ni(0®) = [o M[c(ﬁof) Y > aij(¢f)¢f"¢f"}ds 2 -0

i,j=1

(t —s5,¢7) € £ for s €[0,7(¢%), and (¢ — (¢ A 1), P2piyns) € IEE,
Now we define a reconstruction of the ¢°. For any small A, A, > 0, we
introduce the function @2 *v*z,
@5, for s € [0, A,],
@002 = { Qe apr-apyyT-2ays  fors € [A, T = A],
993'—).1+(s—T+,\1)/(1—,\2), fors € [T - AL T = A4A,].

Here T = (¢, ¢°) A ¢; the function ¢2*1*2 is defined for s [0, T — AA,l
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The second reconstruction is defined by formula (% is again a small positive
number, & < A;A,)

o5 = 5‘%'\1')‘2,’& = ¢g"\1"\2, for s € [0, h],
’ @M, fors e[k, T — A, + A

Denote T =T — A A, + b, 2z = o7 = ¢3. The positive numbers Ay Ay, h one
can choose so small that

T 1 . 8
Ne@) -5 T a(8)¢8! |ds > — =,

0 2i=1 2
(19) L S
‘/;—‘T—h[ Z alj(‘Ps)‘Ps‘Ps]d §

i,j=1

Note that the set {(¢ — s,%,): s € [h,T — h]} is a compact subset of (£").
Therefore, as it follows from Lemma 3, u*(¢t —s,$,) > 0 when &' |0 uni-
formly in s €[, T — h].
Since (t — T,2) ¢ € and T < T, we have from Lemma 2
limu*"(t - T,z)=1,
"0
at least for a subsequence {¢”} of the sequence {¢’}. Moreover,
lim,. o #°"(s, y) = 1 uniformly in a neighborhood of the point (¢t — T, z).
Let a; be the Euclidian distance between the set {(s,y), s € [h,t — h],
Yy = ¢} and the compliment of the set (£%); a, is the size of the nelghbor-
hood of the point (¢ — T,z), where lim,. 1o u®"(s,y) = 1. Denote ¢,
. min{s: |g, — $7l <y}, ¥ > 0, and let a3 > 0 be so small that

- o
maxe(x)(T ~t,,) + [ > (@)Eplds < 3

"‘3 1".,_

ay > 0 is such that |c(x) — c(y)| < /8¢ for |x — y| < a,. Put

={(s,y):ls =Tl + ly — 2| < 3(ay A a3)}, a=a; ANag Aas A ay,
{(t,¢) = min{s: (¢t — s,9,) €T}, ¢ = {(t, X?).
Using (10) we have

u(t,x) =Eu(t— ¢ At, X;M)exp{ [ c(  ut(t —s, X:))ds}

(20) >Eu(t— (At X;At)xanp{ [ e(X; ue(t—s,Xi))dS}

= Il’
where x, is the indicator of the set {sup,_, 7l X: — &,| <a} =
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_For small enough & > 0, u*(s,y) > ; in the a-neighborhood of the point
(T,z) and

T o
/tA{C(X:, us(t—s, X))ds > ch(Xss) ds — 3 for X* € B,,.
0 0

Therefore, using the lower bound for P {B,} given by the large deviation
principle, we get that

I lE 1 7 _ 4 o
> p— pR— —_— —
123 xxaexp{sfocws) 8>exp{ 48}

1| .7 r e
= eXp{;[/;T[C(@) - % Z aij(as)a.;ag:ld - g}},

i,j=1

(21)

for ¢ > 0 small enough. From (19), (20) and (21) we have that
lim, ,elnu®(¢,x) > —8. Since § is arbitrary positive number, taking into
account that lim sup & In u°(¢, x) < 0, we conclude that lim, | , € In u°(¢, x) = 0.

Uniformity of the convergence u®(t,x) to 0 for points (¢,x) € F c (M)
follows from the fact that set F' can be covered by finite number of the cones
D};/%,, introduced in Lemma 3, with the vertices outside F. O

THEOREM 1. Let u®(¢,’x) be the solution of (6). Then lim, ,u®(¢,x) =0
uniformly for (t,x) belonging to any compact set F; C [(s,y): V*(s,y) < 0}
For any compact subset F, of the interior of the set {(s,y), s > 0, V¥(s,y) = 0},
lim, o u®(t, x) = 1 uniformly in (¢, x) € F,.

Proor. The first statement follows from Lemma 1 while the second state-
. ment follows from Lemmas 3 and 4. O

REMARK. In general V*(¢,x) < (V(¢,x) A 0) and {(¢, x), V(¢,x) <0)C
{(t, x), V*(¢, x) < 0}. The inclusion may be strict; see the corresponding exam-
ple in the end of the next section. If the condition (N) is fulfilled, the inclusion
becomes an equality. One can give a bound from below for the interior of the
set {(¢, x): V*(¢t, x) = 0):

(22) ({2, x): V¥(¢,x) = 0})) 2{(¢,%): p(x,Go) <t},
where p is the Riemannian metric corresponding to the form
1 r
2= — . L dx/
ds 5e(x) i’JZﬂa,J(x) dx*dx’.

The proof of (22) follows from Theorem 1 and Lemma 6.2.4 from [7]. In the
case’ ¢(x) = ¢ = const, (22) becomes an equality. Under condition (N), the
interior of the set {(¢,x): ¢ >0, V*(,x) = 0} is equal to the set {(¢, x),
V(t, x) > 0}.
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3. Weakly coupled RDE. In this section we consider the system
dus(t, x)
at

(23) + Y dy(ui(tx) — uit, ),
j=1

1
= 8Lku2(t’x) + ;fk(x’ ui(t’x))

u5(0,x) = g,(x), k=1,...,n,t>0,x<R".
We assume that

15 92
Lk:EiZ_Ialk](x)W’ k=1,...,n,
=

are uniformly elliptic operators with bounded smooth coefficients (say, a’/ €
¢®), d;; > 0. The nonlinear terms f,(x, - ) are elements of #; for any x € R"
and k£ = 1,...,n. Assumptions on initial functions g, are the same as in the
case of a single equation. We denote by G, the support of the function
Y %_18:(x). Since g,(x) > 0, G, is equal to the union of the supports of g,.

A Markov process (X7, v,) in the phase space R” X {1,...,n} can be con-
nected with the system (23). The component v, of this process is the right-con-
tinuous Markov process with n states such that P{v,,, =jl,, =i} =d;;A +
O(A), A} O, i #j. The first component X; is defined by the stochastic
differential equation

dX; =Veo,(X;) dW,,  ou(x)oy¥(x) = (a¥(x)),

where W, is an r-dimensional Wiener process. Using the It6 formula, it is not
difficult to check that the generator A of the process (X;,v,) on functions
f(x,k), x €R", k=1,...,n, having uniformly continuous bounded second
derivatives in x, has the form

A k) = oLy F(3, ) + T dus( (2, ) = £, ).

Taking this into account one can write down the probabilistic representation
for the solution of (23) in the linear case when f, = ¢,(¢,x)u,, k = 1,2,...,n.
In particular, the generalized Feynman-Kac formula for the solution of (23) in
this case has the form

1
@) i) - Eaa(XDew(S [0 X0) ds).
0

Using (24) we get the following integral equation for the solution of (23) in the
nonlinear case f}, = ¢,(x, u,)u,:

Ed & & ’ 1 ¢ £ 4,€ &
(25) us(t,x) = Ex,kg,,t( X; )exp{;/(;c,,s(Xs, u,,s(t - s, Xs)) ds},

x€R",t=>0,k=1,...,n.
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Using the strong Markov property of the process (X;,v,), we can write down
the equation

uj(t, x) = Ex,kui,,\t(t —-(rA0), X:/\t)

1,
f /\tcvs(X:, uf,s(t - s, X:)) ds},

€70

=9 xexpf

where 7 is arbitrary Markov time with respect to the filtration {%,, ¢ > 0},
I =0(X: vE,0<s <)

LEMMA 5. The following properties of the solutions of (23) hold:

() 0 < uf(t,x) <1V sup, , g, (x).

(i) limsup, o u3(¢t,x) <1 fort >0, X€R", k=1,2,...,n.

(iii) Let {u}(t’x)} be the solution of (23) for an initial function g'(x) =
(gi(x),...,g.x)), and let {u(t,x)} be the solution with an initial function
g"(x) = (gy(x),...,8!(x)). Suppose that g/(x)=>gp(x) for x€R’, k=
1,...,n. Then u,(¢t,x) > u(t,x) forallt >0, xR, k=1,...,n.

(v) Let {u'(t,x)} and {u}(¢, x)] be the solutions of (23) with f, = f{(x, u)
and f, = f{'(x,u), k=1,...,n. Suppose that f;(x,u) > fy(x,u) for all x €
R, k=1,...,n. Then u,(t, x) > u)(t,x), forx €R",t>0,k=1,...,n.

Proor. (i) Suppose that the set G = {(s,y,1): ui(s,y) > 1V sup, ; g(x)}
contains a point (¢, x, k) and put ¢, = inf{s: (¢ — s, X7, v,) &€ G}. Since {; is a
Markov time and ¢; < ¢ with probability 1, we have from (26)

€

1
27) ui(t,x) = Ex'kuf,{l(t - ¢, X;l)eXp{ [olc”’(X:’ us (¢t —s, X)) ds}.
According to the definition of ¢,
(28) uf,{l(t -4, Xg)<1v slupgl(x).
, X

Since
inf ué(t—s,X:)=>1
oé?sglu"s( s, X;)

for trajectories (X¢,v,) starting from (x, k), and c(x,u) <0 for u > 1, the
integrand in the exponent of (27) is nonpositive. Thus from (27) and (28), we
have that u5(¢,x) < 1V sup, , g(x), and the set G must be empty.

(i) Assume that for some ¢ > 0, x € R", k € {1, ..., n}, there is a sequence
&' 0 such that lim, , u}'(¢,x) = 1 + 2a > 1. Denote

D=D%={(s,y,i):s <t,ui(t—s,y) >1+a},
Ly=inf{s:s<t,uf(t—s,X) =1+a}.

Let K be a compact in R”. Denote @ = {(i,x,u): i €{1,...,n}}, x €K,
l1+a<u<1+sup,, g(x). Replacing {; by {, in (27) and taking into
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account that max; , ,ycq (%, u) < —B <0, we get

wi(t, %) <E, 4u, (¢ = Lo XE)Xp <0

1
(29) +E, 8/ Xs)exp(;/;c,,s( X£) ds)x;f,

< (1 + a)Px,k{§2 < t} + Px,k{§2 = t}’

if ¢ is so small that sup, ; g,(y)e™?/° < 1. From (29), one can see that
u(¢, x) < 1 + a. This contradiction proves the second statement.
(iii) The difference v,(¢, x) = u}(¢, x) — u}(t, x) satisfies the system
3vk 1 n
P eLyv, + ;ck(xau’k’ ul)v, + 2 dy (v, —vy),
v,(0,x) = gi(x) —gp(x) =8,(x) =0, k=1,...,n,

where
fk(x’ulk) _fk(u’u%)

uy —ufy

&p(x,up,up) =
Then for v,(¢, x), the following equality holds:

1
vk(tvx) = Ex,kav,(Xse)exP{—[tév(Xss’ u;,(t - S, X:)’
8 s s
(30) °
uy(t—s, Xse))ds}.

Since 8,(x) > 0, we derive from (30} that v,(¢,x) > 0.
(iv) The functions W, (¢, x) = u)(¢, x) — u/(t, x) satisfy the system

oW, (¢, x . n
_k;_t_) =eL,W, + h(¢,x) + (¢, x)W, + ) dkj(Wj - W,),
j=1
Wi0,x) =0, k=1...n,
where
hi(t ) = filx, ui(t, 2)) = fi(x, ui(t, 2)),

t.x) = Fo(x, ui(t, %)) — Fr(x, wy(t,x))
C\t,x) = u'(t,x) _ u”(t,x) .

One can write down the following equation for W, (¢, x):
1 S A
(31a) W,(¢,x) = Ex/th,, (t —s, X;')exp{—f et — sy, X2) dsl} ds.
o ¢ €70
Singe h,(¢,x) > 0 for all ¢, x and %, we have from (31a) that W,(¢,x) > 0. O

Denote by H,, the set of all right-continuous step-functions on [0, ¢], ¢ < =,
with values from the set {1,...,n} having finite number of jumps. For any
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a € H,,, define the functional
ot(‘P) = f Z au((ps)qosqog ds

l Jj=1
for absolutely continuous ¢ € C,,, and SZ(¢) = +x for the rest of C,,. It is
known that S%(¢) is the action functional for the family of processes Xpre,
defined by the stochastic differential equation

.. 1/2
dXe® = Voo (Xo0) dW,  oy(x) = (a¥(2))",

with W, a Wiener process in R” (see [8] and [11], where it is proved for
continuous coefficients, but in the case of finite number of discontinuities the
proof preserves). But we need uniform in a € H,, bounds of the probabilities
of large deviations. Such bounds are given by Lemma 6.

LEMMA 6. For any ¢ € C,,, ¢, = x and any v,6 > 0, one can find 4> 0
such that for all « € H,,

Px{ sup |1 X*°¢ — ¢l <3} >exp{——[S (@) +Y]}

O0<s<t
provided & € (0, ;).
For any s,8,y > 0, one can find ¢, > 0 such that for all « € H,, and
e € (0, &0,

1
Px{pot(Xfx’e’ ¢:) = 8} < exp{— ;(S - 7)}’
where ¢¢ = {p € C,,, ¢o = x, S&(¢) < S}, p,; is the uniform metric in C,,.

Proor. The first statement one can get from the standard proof of the

lower bound ¢ (see [11] and [8)).
To prove the upper bound usually the process X;:°(¢) is considered:

ngl’e(t) = ‘/_O'at(Xgl’e("Ta(t))) aw,, 7"'.s(t) = [t/8,]8,, 0<§; <1
(see [11], Section 6). For any a € H,,, the process X;'°(s) is a continuous’
transformation T' =T, ; of the process VeW, 0<s < t. Thus the action
functional for X3 s(t) can be calculated using the contraction principle. For
small enough §, one can have good bounds for p, (X*¢, X3*°). Combining the
bounds for X3¢ and for p, (X*°, X3 ¢), the upper bound included in the large
deviation pr1nc1ple can be proved But the transformation T, ; is not uni-
formly continuous with respect to the number of jumps of the function
a,, s € [0,¢]. To have uniform bounds, let us introduce the family of processes
Xg *(s), which are defined as follows. Denote h; = h[m;(?), 7,(¢) + 8,], the
time which the function a, spent in the state i durlng the time interval [ (D),
75 () + 8;]. Put hy =0,

’ 6(t,x) =o,(x) forte [wa(t) +ho+ - +h,_q,

ms(t) + ho+ - +hy), k=1,...,n
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The number of discontinuities of the function ¢(s, x) on time interval [0, ¢] is
not bigger than ¢5~'n. The process X;'“(s) is defined as the solution of the
equation

dX3:*(s) = Ve d(s, X3 (m5(s))) AW,

This equation defines a map Ve W > X ¢ in C,,, which is uniformly continu-
ous in @ € H,, and the contraction principle gives us bounds which are
uniform with respect to a € H,,. At the same time, since X, 5 °(s) = X5:°(s) for
s = k§;, k an integer, the distance p, (X2¢, X¢) can be properly bounded
for small enough 8,. Together with the bound of p, (X °, X3°) from Section
6 of [11], it gives us a uniform upper bound for

Px{po,t(Xa’e’ ¢s) 26} d

Define the functional R, (¢, @), ¢ € C,,, @ € H,,, by the formula
t
R, (¢,a) = [, (¢.) ds = S5e).

For any fixed @ € H,,, the functional R, (¢, a) is semicontinuous from above
in ¢ € C,,.
Introduce the function V(¢,x),¢ > 0, x € R,
V(t,x) =sup{R,,(¢,a): 9 €C,,, 0 =%, ¢, € Gy, @ E'Hot},
where G, is the support of L7 _,g,(x) and {g,(x)} are the initial functions in
(23). It is easy to check that the function V(¢,x) is continuous. Denote
& ={tx):t>0,x<R", V(tx) <0}
We say that condition (N) is fulfilled for (23), if for any (¢, x) € &,
V(t, x) = Sup{Rot(§D’ a): ¢ € Cota Po = x, P = GO’ a € Hot,
V(t —s,9,) <0for0<s <t}.

THEOREM 2. The following statements hold for the solution {u3(t, x)} of
(23):

(i) Let F, be a compact subset of the set {(t,x): ¢t > 0, x € R", V(¢,x) < 0}.
Then lim, o u%(¢, x) = 0 uniformly in (¢,x) €Fyand k =1,...,n.

(ii) Assume that condition (N) is fulfilled. Let F, be a compact subset of the
set {(¢,x): t>0, x R", V(¢t,x) > 0}. Then lime}o us(t, x) = 1 uniformly in
(t,x)eF,andk=1,...,n.

ProOF. The proof is similar to the proof of Theorem 1 from [6], and we
merely point out the differences.
Since c¢,(x) = c,(x,0) = max, _, c,(x, u), we have from (25)
i(t,%) < B (X1 owp( [[e,(X:) )
(31b) °
v, 0 <s < t].

1 .
BB (K )exp( - [l (X0) i)
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We can calculate the asymptotics of the conditional expectation in (31b) under
the condition v, = a,, using the large deviation principle for the family { X2 ¢},

1 .
limeln E X*)exp!{ — | ¢, (X**) ds
) lime In E, g, (X)exp{ - [, (Xe) d)

= Sup{Rgt(¢): ¢ € Cot’ ‘PO =X, ¢t = Gat}’

where G,, is the support of the function g,(x). The convergence in (32) is
uniform with respect to x from any compact set F' ¢ R", and due to Lemma 6,
with respect to any a € H,,. From (31b) and (32), the first statement of
Theorem 2 follows.

The proof of the second statement uses the same arguments as the proof of
the similar statement in the Theorem 1 from [6]: Using condition (N), the first
statement and the lower bound from Lemma 6, one can prove that for every
8 > 0 and any compact set F C {(¢, x): v(¢, x) = 0}, there exist ¢, > 0 such that
for0<e<ey(t,x)eFand k=1,...,n,

(33) wi(t, x) > exp{—g}.

Then the second statement of Theorem 2 can be proved with the help of (25)
and the strong Markov property as it was done in the case of one equation ([4],
[6] and [7].

Now we consider an example where condition (N) is fulfilled and Theorem 2
can be used. This example will also be helpful in a general situation, when
condition (N) does not hold.

Let c,(x) = c be independent of x € R” and k. In this case,

(34) V(t>x) =ct— %lnf{j: Z a?;((ps)go;q)g ds: Po =X, ¢ € G07 a < Hot}'
i,j=1

Calculate

. t & i
D(¢,x,y) = lnf{fo L afs(e,)ei¢lds oo =%, 0, =y, a € Hot}

i,j=1
= inf inf inf
N 215092, 1€ERT 0<tg,...,tN_1
(35) igsi15---,in€{l,...,n} N T o1, =t
r
t P
. Lie
inf [7 L a%(e,)¢iél ds.
PO=X, Pt =215 s Prot w4ty ~%n 0 i,j=1

a€H,,: a;=a,, for
Seltg+ - +tp, b9+ - +tp+itp,q)

Note that

r ’ 1
. t i
lnf{fo L a(e)e¢ldsioo=a, e, =b} = ;pz(a,b),

i,j=1
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where p is the Riemannian metric corresponding to the form ds? =
X} -10;;(x)dx’, dx’ (see, for example, [7], Chapter 6). Then the inner inf in

(35) is equal to

D]. = Dl(t,x;zl,.'.,zN_l;y;to,tl,..',tN_l, t;io,il,...,iN__l)

_ Nil p?k(zk, Zp41)

£=0 123

)

where p, is the Riemannian metric corresponding to (af;, (x)) = (a?/(x))™".

Consider now inf, ., D;. Using the Cauchy inequality, we have

= Nilp?k(zk’zkﬂ) = NS P25 Z041) ZNZ_l Ve ’
. . E (_ Vtk) ( vt )
(N_lpik(zk’zk+1) )2 1

> Pi{Zrr Zrr1) |

E=0 L k=0 k=0
N-1 2
kgo VE 7( 20: pik(zk’zk+1)) .
On the other hand, if

N-1 -1
= tPi,,(Zk,Zku)( ) pik(zk’zk+l)) )
0

then D, = ¢t~ (Z{"'p; (2;, 2,4 1))% Thus

N-1 2
inf D, = "( Z pik(zk:zk+1)) .
to+ o HEy_1=t t 0

£>0

Now we assume for a moment that all operators L, have coefficients
independent of x. Then we can unite all time intervals on which the same
metric p;, is considered. Using the triangle axiom for metric, we get that

1 n 2
D(t,x,y) = 7 inf ( ) Pk(zk—pzk)) )
Z1yeee3@p—-1 k=1
zO =X ’ zn =y
where n is the number of equations in our system. Taking into account that in
the space-homogeneous case a Riemannian metric p has the property that

plax, ay) = lalp(x, y) for any real a, it is easy to check that the set

n
{x: inf ( ) pk(zk—bzk)) Sd}
2y, 2, 1€ERT | p_q
20=X, 2, =Y
is the convex envelope of Riemannian spheres
S, = {x: pp(x,y) <d}, k=1,2,...,n.

.To describe D(t, x, y) in the case of space nonhomogeneous coefficients, let

us define the function d(x,y), x,y € R", by the following conditions:

1. d(x, ay) = |ald(x, y) for any real a.
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2. d(x,y) = 1 on the boundary of the convex envelope of the sets

r

{y €R™ ), ak(x)y', ¥y < 1} =S, k=1,2,...,n.

i,j=1
Put

_ . t .
A(x,y) = mf{ [[d(6,162) dsi 00 = 2. =y}.

It is easy to check that this infimum is independent of the parameter ¢ and
defines a metric p in R” (Finsler metric).

One can calculate that

1
(36) D(t,x’y) = 752("5:3’);

in the space-homogeneous case, it was proved above. The general case can be
considered by the approximation of the metric by a piecewise space-homoge-

neous one.
From (34), (35) and (36) we derive

52(x7 GO)
2t )

Now we can check that condition (N) is fulfilled: In our case &_= {(¢, x):
t>0, V(¢,x) < 0} = {x: p(x,Gy) = tV2c}. For a point (¢,x) € &£_, choose a
small A > 0 and consider the function (p;‘ such that qof =x for s € [0, h] and
ot = §(s — h) for s € [h,t], where $(s) is the minimal geodesics of the metric
p, connecting x and G, with the parameterization proportional to the length,
#0) =x, ,_, € G,. The point (¢ — s, ¢?) for all s € (0,¢) belongs to the set
{(s,y),V(s,y) <0},

V(t,x) =ct —

_ ﬁz(x’ GO)
t—h
Therefore V(¢,x) = }lin(l) sup{R,(¢", @), @ € H,)} and condition (N) is ful-
l
filled. O

sup{R,.(¢",a):a € H,} =ct

From Theorem 2 we have the following result.

TueoREM 3. Let ¢c,(x,0) =c, forallx € R", k €{1,2,...,n}. Let p(x,y), .
x,y € R”, denote the Finsler metric corresponding to the kernel d(x, y), which
is defined by conditions 1 and 2 above.

Then

1, forp(x,G,) <t/2c,
0, forp(x,G) > tV2c.

limus(t,x) =
610 k(’ )
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The convergence is uniform in (t,x) for (¢,x) in any compact set F such that
Fn{@, x): p(x,Gy) = tV2¢ )} = ¢.

The statement of Theorem 3 means that the propagation of the wave front
is governed by the Huygens principle. The corresponding velocity field is
homogeneous and isotropic in the Finsler metric p.

LEMMA 7. Suppose that for some x, € R" and k, € {1,...,n} and for any
81, 85 > 0, there exists ¢4 > 0 such that

(37) g (x) =gi(x) =e™®/° for 0 <& <egg, lx — x| <%/,

Then a constant A > 0 exists such that lim, (u%(t,x) =1 for t>0,
lx — x4l < At and any k = 1,...,n. The convergence is uniform in any com-
pact subset of the cone {(¢,x): t > 0, |x — x,| < At}.

Proor. Because of Lemma 5 it is sufficient to consider the case
when g,(x) = 0 for & # k, and g (x) = g; (x) for |x — x,| < exp{—3J,/¢} and
é,ﬁo(x) = 0 for |x — x,| > exp{—38,/¢}. Moreover, we can confine ourselves to

the case c(x, u) = c(u).

From Theorem 3 one can derive that lim, ,u%(t,x) =0, for (¢,x) €
{(s,y): s > 0, p(x, xy) > sy/2¢(0) }. Here p is a corresponding Finsler metric.
As it was explained when we proved Theorem 3, for every point (¢, x), ¢ > 0,
p(x, xo) > ¢y/2¢(0), and any & > 0, there exists a function ¢2, 0 <s <t¢,
) =x, @2 = x4, plxy, p2) > 59/2¢(0) for 0 < s <t and a® € H,, such that

1 - S o
(38) [ealed) = 5 L aii(od)edier? |ds > - 5.
0 i,j=1

Without loss of generality we can assume that a® = &, for s € [t — h,t] for
small enough A > 0. Taking into account (38), the lower bound for Lemma 6,
(87) and the bound (17) for the transition density of the process corresponding
to the operator L, , we get that

(39) lin(} elnus(t,x) =0
€l

for ¢ > 0, p(x, x,) < t/2¢(0) , and any k = 1,...,n. From (39) it follows that
lim, o u5(¢,x) = 1 in the interior points of the set {(¢,x), ¢t > 0, p(x, xo) <

ty/2¢(0) }. One can carry out the proof of the last statement in the same way
as the proof of Theorem 1 from [6].
To get the statement of Lemma 7, note that

{(¢,x),¢>0, |x — x, < At} c {(t,x), t>0,p(x,x,) <ty2c(0) },

for some A > 0. O
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Let 7 = 1(¢,9), t € (—»,®), ¢ € C,,, be a Markov functional introduced in
Section 2 and 0 be the set of all Markov functionals.
Denote

T 1 Z L
V*(t’ x) = inf Sup{f“\ l:cas((Ps) Y Z a‘:;((PS)(b;(ﬁg:l ds:
TEH 0 2

i,j=1
¢ €Cyy =%, 0, € Gy, a EHot}'

LemMa 8. If V*(¢,x) <0, then lim, ,uj(,x)=0 forany k=1,...,n.
The convergence is uniform in (¢, x) for (¢, x) in any compact subset of the set
{(s,y): V*(s,5) < 0}.

Taking into account equation (26), Lemma 5 and the upper bound from
Lemma 6, the proof of this lemma is similar to the proof of Lemma 1 and thus
we omit it.

The following lemma is a corollary of Lemma 7.

LEMmA 9. Let 10, £ ={(¢ x): lim, ,u}(t,x) =0 for some kq €

{1,...,n)} and (¢, x,) € & . Then there exists A > 0 such that
lim sup,. , e'Inuf(t,x) <0 foranyk =1,...,nand (t,x) € D;’:’xo, where
D .o =1{(5,9):0 <s <tg, lxg — ¥l <A(t, = 5)}.

LEMMA 10. Let F be a compact subset of the interior (M) of the set
M = {(¢,x): V¥(¢t,x) = 0}. Then lim, ,elnus(t,x) =0 for k =1,...,n uni-
formly in (¢t,x) € F.

Proor. The proof of this lemma is similar to the proof of Lemma 4, and we
omit it. O

THEOREM 4. Let (u(¢, x),...,u%(¢, x)) be the solution of (25).

For any compact subset F, of the set {(s,y): s >0, V*s,y) <0},
lim, ,u5(t,x) =0 fork=1,...,n uniformly in (¢,x) € Fy.

For any compact subset F, of the interior of the set {(s,y): s >0,
V*(s,y) = 0}, lim, | o u$(¢,x) = 1 for k = 1,...,n uniformly in (¢,x) € F,.

Proor. The proof follows from Lemmas 5-9. O

In Theorem 3 we considered the case where c,(x) = ¢ is independent of k2 and
x. Now we consider as an example (25) when L, = L for all k:

dus(t, x) n
——— =Lu}, + ¢, (x,u3)u, + d,(us—us),
(40) ot k x( %) us, ng k,( J k)

u5(0,x) = gp(x), k=1,...,n.
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The function V*(¢, x) for (40) has the form

V*(t, x)

. tAT 1 r P
inf sup{fo [cas(qos) -3 X a?;(¢s)¢;¢£]d8=
i,j=1

TE0

Po =%, ¢, € Gy, EHat}

TEO pi=x <k<n
¢ €Gy

. tAT 1 s
inf sup f max c,(¢,) — 5 X a;j (@) ps¢7 | ds ;.
o |1 2,551
Thus the function V*(¢, x) and the law of the wave front propagation will be
the same as in the case of the single equation

ous(t, x)

(41) 7

n
=eLu® + é(x)u(1—u?), u(0,x) = X gu(x),
k=1
where é(x) = max,, c,(x).

In particular, let r = 1, a''(x) = 1 and G, = {x < 0} and let the function
¢(x) decrease when x increases for x > 0. Denote by ¢, the solution of the
equation ¢, = V2¢(4,), ¥y =0, for s > 0. It follows from Example 2.2 of
Section 6.2 of [7] that

1, x<¢,,t>0,

llf%uk(t’x) = llf%u (¢, x) = {0’ £> U, t> 0.

One can check in this case that condition (N) is not fulfilled, and the infimum
in the definition of the function V*(¢, x) is reached on the Markov functional
7*(¢, ) = min{s: ¢,_, = ¢,}.

As in the case of the single equation, the wave front may have jumps. For
example, if in the case under consideration an interval (a, B) C R* exists,
where the function é(x) increases fast enough, then the front will have jumps.
It follows from Example 3 in [6].

In the conclusion of this section we formulate some results on the upper
and lower bounds for the domains where (¢, x) are close to 0 or 1.

Denote V**(¢, x) as the V*-function defined for the single equation du /9t =
eL,u + (1/¢)c,(w)u with the initial function (0, x) = X} _,8,(x).

The following inclusions are a simple implication of the definition of the
V*-function:

{(¢,x):¢>0,V*(t,x) =0} 2 U {(¢,x),¢>0,V**(¢,x) = 0}.
k=1 .
If for some k, € {1,...,n},
r r .
YUY, i) r b=
Z laij‘-’(x))t)d < Z 1afj(x))t)d foranyA,x € R, k=1,...,n,
i j= i, j=

and c,(x) > c;(x) for x € R", k = 1,...,n, then V*(¢,x) = VEox(¢, x).
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One can have more explicit bounds from below for the set {(¢,x): ¢ > 0,
V*(¢, x) = 0} in the following way. Denote by A(x,y), x,y € R’, the function
defined by the properties: A(x,y) = |¢|h(x, y) for any real ¢; h(x,y) = 1 on the
boundary of the convex envelope of the ellipsoids

Si = {y: Lali(x)(2eh(x)) 'y <1}, k=1,...,n.

Then

{(£,x):¢>0,V*(t,x) = 0} 2{(£,x),¢> 0, p(x,G,) <t},
where p(x, y) = inf{[{h(ep,, ¢,) ds: ¢ € C,,, ¢y = x, ¢, = y} is the Finsler met-
ric with the kernel k(x, y). Taking into account Lemma 5 and Theorem 3, one
can carry out the proof of this inclusion in the same way that Lemma 6.2.4
from [7] was proved.

4. Space-homogeneous isotropic case. In this section we give explicit
description of the wave front motion for the space-homogeneous isotropic
system. For brevity, we consider the case of two equations,

dui(t,x) ea 1
A E) O aws + —ew)uh + dus — ),

- ot 2
(42) dup(t,x) eap 1 ey
—ar ~ g Aust jea(ug)uh + dy(uf —up),

x€R",¢>0,u1(0,2) = g(x), u5(0,x) =gy(x).

We make the usual assumptions on the nonlinear terms and the initial
functions, ¢, = ¢,(0), G, = supp(g; + g,). Without loss of generality we as-
sume that c; > c,. Otherwise we change the indexing.

. THEOREM 5. Let p(-, - ) be the Euclidean distance in R"™ and ¢; = c,. Then
fork=1,2,t>0,x €R",
l. g(t ) 1; lfp(xaGO) <Ut,
imu =
cl0 * ¥ 0, ifp(x,Gy) > vt,
uniformly in (¢, x) for (¢, x) in any compact F c {(t,x): t > 0, x € R"} such
that
Fn{(t,x):t>0,x €R", p(x,Gy) = vt} = ¢.
The speed v is given by the formulas

v2ac;, ifa; = a,,

v2ac,, ifa, <a,, 2a,¢; 2 ¢1a,5 + @:Cy,
C1@3 — C20y

’
\/2(02 —a;)(c; —¢y)
ifa; <ay,2a,c, V 2a,c, < ciay + aiCy,

V2asc,, ifa; <ay, 2a5c, = ciay + agcy.

(43) v=
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Proor. If a; > a,, then taking into account our assumption c¢; > c,, we
have V(¢, x) = c;t — p*(x,Gy)/2a,t, where p is Euclidean distance. It is obvi-
ous that condition (N) is fulfilled in this case, and our statement follows from
Theorem 2.

Consider now the case a; < a,. Denote

|.s|2
Vo(t, ) = sup{ A [c + o

Qs

dsquECoty¢0=xﬂ¢t=OﬂaEHot}'

Because of the homogeneity in space,

(44) V(t’x) = sup VO[tyx_y]'
yeGy

It is easy to check that

v, ) L N
tox) = ¢+ -p)t— 5 + '
ot x) = max ept +¢y(1=p)t = gmin| o+ T ey

Taking into account that

s lx — 2/? |x?
min + = ,
z pta, (1 - p)ta, t(pal +(1 —p)a2)

we have from (44)

Joc|®
45) V(¢ =t + 1- - .
(45)  Vo(t,x) omax, [clp c3(1 - p) 5% (pa, + (1=p)ay)
Denote by f(P, M) the function under the max sign in (45), M = |x|/V2.
Solving the equation df/dp = 0, and taking into account that the smallest of
the roots corresponds to the maximum, we see that max,_,_,f(P, M) is
reached at the point
a, M
ags —a, \/(C1 - ¢)(ay —ay) ’
if P,<[0,1]. If P, > 1, the maximum is reached at the point P =1 and

max,_,.; f(P, M) = f(0, M) in the case P, < 0.
Thus we get the following expression for f(M) = max,_,.; f(P, M):
M? ¢, — ¢y

c;— —, M<a,
a, 2= Ay

P, =

€9 — Czal

-2M

]/ <M<a2 ,
)
MZ
Cy — — M>a
2 ay,’ 2\' ay, —a;

9 — Q

f(M) =
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From (44) and (45) we get

V(t,x) =tf s |

Since the condition (N) is fulfilled for the function V(¢, x), we get from
Theorem 2 that the position of the wave front at time ¢ is defined by the
equation f(p(x,G,)/tV2) = 0. Solving this equation, we find that p(x, G,) =
tv, where v is defined by the formulas in (43). O

—(p(x’GO) )

Consider the case when a, and ¢, are fixed and a,, ¢, = 0. Then Theorem
5 gives the following expression for the speed v:

512
2

v= +0(1), acyl0.
The speeds in separated equations, when d; = d, = 0, will be /2a,c; and
V2asc, . We see that in this case the speed of the front in the coupled system

is bigger than in separated equations.
In the case a; = ¢, = 0 (42) has the form

dui(t,x) 1

—— = —o(uui +dy(uy —wf),  wi(0,2) = g(2),
(46)

dusy(t,x)  ea,

— = A+ dy(uf - ug),  u3(0,x) = gy(x).

(46) is formally excluded from our considerations because of the degeneration
of the first equation. But (25) is fulfilled and only minor changes should be
. made in the proof to show that

[C,Q
17 lfp(x1G0) < tv 122 ’
Ci104

0, if p(x,Go) >ty =~ .

limus(t, x) =
el0

5. Remarks and generalizations.

ReEMARK 1. Note that the law of the motion of the wave front is indepen-
dent of the constants d;;. The only assumption is that these constants are
positive. If d;; = d,;(x) > 0, then the results also hold’ To consider this case,
one can, for example, use the fact that the measure in the space of trajectories
of the process (X;,v;), corresponding to the equations with d;; = d,(x) is
absolutely continuous with respect to the measure of the process (X;,v,),
corresponding to the case when all d,; = 1. The density can easily be written
down explicitly. We can use the same approach in the case d,; = d, ;(x, u) > 0.
Using explicit formulas for the density, one can consider the case when



54 M. FREIDLIN

constants d,; are negative (see [7]). If some d, (x) are 0 in a domain D C R’,
new effects may appear.

REMARK 2. Let D C R™ be a domain with smooth enough boundary. One
can consider the mixed problem for the coupled RDE’s

duy(t, x) 1
t = SLku‘;e + _fk(x7 ui)
E
-
(47) +i£1dkj(u§—ui), x€D,t>0,
dus(t, x)
=0, u3(0,x) = gy(x), k=1,...,n.
an aD

The probabilistic approach allows us to describe the behavior of the solution of
(47) and & | 0. One should take into account the form of the action functional
for the family of processes (X;,v,) with reflection on the boundary (see, for
example [8]). The Dirichlet conditions and more general boundary conditions
can also be considered in a similar way.

ReEMARK 3. Consider a system of weakly coupled RDE’s with a drift. For
brevity, we confine ourselves to a space-homogeneous system of two equations.
After rescaling of the space and time as it was explained in Section 1, we get
the system

dui(t,x) eay . 1 .
T = TAul + (vaul) + ;01(u1)u1 + dl(ug - ui),

(48) du(t, x)
) ot
u5(0,x) = gy(x), u5(0,x) = g5(x), G, = supp(g; + &2)-

For brevity, let G, be a compact subset of R". If b, = b, = b, we can introduce
new variables @5(¢, x) = u5(¢, x + bt). The functions (&4, @%) satisfy the sys-
tem without drift. On can get the wave front for (48) by translating the front
for (48) with b = 0 and the same initial function on vector —bt. If [b] < v,
where v is the speed of the front from Theorem 5, then the domain, where the
solution of (48) is close to 1, will expand in all directions for small &. If |b| = v,
a half space exists in R’, where u4(¢, x) will be always close to zero. In the
case [b| > v, lim, ,u%(¢,x) = 0 for any x € R", k = 1,2, and ¢ large enough.

In the general case when b; # b,, the domains were u%(¢, x) tends to 1 and
0 are defined by a function V(¢,x): lim, ,uj(t,x) =1 if V(¢ x)> 0, and
lim u3(¢,x) = 0 if V(z,x) <0. The function V(¢,x) = min, g V(¢ x — y),
where .

£€a, 1 . .
= ‘E‘Auez + (by, Aug) + ;02(u€2)u€2 +dy(uf — uj),

11(x/t) + pby + (1 = p)byl*
Jx) =t +ey(1-p) — =
Vo(t, %) 0121?;{1 cp + eyl =p) 2 a.p +ay(1 —p)
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Calculating the maximum and solving the equation V(¢,x) = 0, we can
describe the motion of the wave front.

REMARK 4. Consider the initial-boundary problem for a single equation,
dus(t,x,y) € 2u® 1% 1

= & — + — + —f(u*
ot 2i§=1a =) o T2 T
(49) xRyl <1,
dut(t,x,y)
— =0, u(0,x,9) =g(x)20, fe5.
9 y=+1

Here the y-variable plays, in a sense, the same part as the number % in the
case of system. To describe the behavior of the u®(t,x,y) for £ |0, let us
introduce the Finsler metric g in R”,

- . t . .
p(xq, x2)1nf{fol(<ps, ¢,) ds, g = x,, ¢, = xz}, X, %y €R7,

where [(x, z) satisfies the properties: I(x,#z) = [t|l(x, 2), I(x,2) = 1 on the
boundary of the convex envelope of the family of the ellipses Sy =
{z€e R":XTa,(x,y)2'2/ < 1}, lyl < 1. Then one can prove that lim z°(¢, x, y) =
1 in the domain {(x,y): x € R", p(x,G,) < ¢ty2f(0), lyl <1} and
lim, o u°(¢, x,y) = 0 outside the closure of this domain.

ReEMARK 5. Consider a family of dynamical systems in R” depending on a
point z of a measurable space H as a parameter,

(50) u,=f(z,u,), z€H, f=(f,..., 1)

" Suppose that a Markov process (X,,v,) in the phase space H X {1,...,n} is
defined. Let A be the generator of the process (X, v,). Consider the system of
“partial differential equations”

dur(t, k,x)
(51) — =fi(x,u*) + AAu(t, k, x),
u(0,k,x) = g,(x), x€H, k=1,...,n,t>0,
where A is a numerical parameter, g(x) = (g,(x),..., g,(x)): H > R".
(51) defines a semiflow in the space of functions on H X {1,..., n}, which

we call coupling of the dynamical systems (50) by the Markov process (X,, v,).
If A > 0 is small, we speak about weak coupling, and in the case of large A we
speak about strong coupling.

For example, a single equation

du(t, x)
at
which we considered in Section 2, can be looked upon as the result of coupling

=f(x,u) +ALu, x€R",ucR
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of the one-dimensional dynamical systems & = f(x, u), dependingon x € R" =
H, by the Markov process in R", corresponding to the elliptic operator A L.
In general, (50) can be a family of semiflows in a linear space. For example,
(23) can be considered as the result of coupling of the semiflows
duy,

(52) o Lyuy + fi(x,u,), x€R,

in the space of continuous functions on R’, depending on a parameter
k€ H={1,...,n}, by the Markov process in H.

Using the generalized Feynman-Kac formula or other formulas for proba-
bilistic representation of the solutions of linear problems, such a point of view
allows us to write down an integral equation for the solutions of the nonlinear
problems. This integral equation can be used for an asymptotic study of the
solutions. In particular, in the case of weak coupling (A |0) after proper
rescaling of the space and time, some results on wave front propagation can be
proved in a general set up.

In the case of strong coupling (when A — «), one can expect that some
averaging principle describes the asymptotic behavior of the coupled equations.
For example, let (52) be coupled by the Markov process v} in {1,...,n} such
that P{v} ) =jlv} =i} = Ad,;;A + 0(A), A 10, d;; > 0, i #j. The correspond-
ing coupled system has the form

dul(t n
(53) _uk((?t;x) = Lu} + fi(x,u}) + )\ngdkj(u}\ - u;;),
uh(0,x) = g,(x), ke{l,...,n},x€R",t>0.
If now A — «, under some minor assumptions, lim, _,_, u}(¢, x) = u(¢, x), k =
1,..., n, exists independent of % and is the solution of the Cauchy problem
du(t, x)
at

where the bar means averaging with respect to the stationary distribution
(q1,...,q,) of the process v;:

L= ZQkLk’ f= qufk(x,u), g= Zngk(x).
1 1 1

=Lu+f(x,u), u(0,x)=g(x),
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