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ON ITERATED LOGARITHM LAWS FOR LINEAR ARRAYS
AND NONPARAMETRIC REGRESSION ESTIMATORS

By PETER HALL

Australian National University

Laws of the iterated logarithm are derived for row sums of triangular
arrays of independent random variables, in the context of nonparametric
regression estimators. These laws provide exact strong convergence rates
for kernel type nonparametric regression estimators. They apply to the
important case where design points are conditioned upon, and permit the
design to be multivariate. We impose minimal conditions on the error
distribution; in fact, only finite variance is needed.

1. Introduction. The most common nonparametric regression model is
Y,=g(x;) e, 1<ix<n,

where the pairs (x;,Y;) are observed, the x,’s are fixed d-variate vectors, the
Y’s are univariate random variables, the errors e; are independent and
identically distributed with zero mean and finite variance, and g: R - R is a
smooth function which is to be estimated. The oldest type of estimator and one
which is very commonly used in practice, is a kernel estimator

n n

(1.1) 8(x) = 21YiL{(x —%;)/h,} 21L{(x —%;)/h,}.

i= i=
Here L: R? — Ris a kernel function, typically a spherically symmetric d-variate
probability density and k, is the bandwidth or window size. Under mild
regularity conditions, which include the assumption that 4, — 0 and nh% — o,
8(x) is consistent for g(x) and has variance of size nh%. The reader is referred
to Hirdle ([3], Section 3.1) and Prakasa Rao ([7], Section 4.2) for detailed
accounts of these estimators and their properties.

Our aim in this paper is to give a precise description of the exact rate of
strong convergence of g(x) — Eg(x), in the most common setting for regres-
sion problems: that where the design variables x; are fixed, or conditioned
upon, and represent a realization of a random sequence drawn from an
unknown distribution. The convergence rate takes the form of a law of the
iterated logarithm (LIL) for g(x) — Eg(x). Our result also applies to the case
of regular design.

Hiérdle [2] has derived an LIL in the case where the design variables x; = X;
are univariate and are regarded as random. Hirdle’s proof is based on a
bivariate version of the Komlés-Major-Tusnady approximation [4, 11], and is
not adaptable to the important case where the x;’s are regarded as fixed.
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Stadtmiiller [8] has used strong approximation techniques to prove an LIL for
triangular arrays, which may in turn be employed to derive an LIL for an
interpolation type of regression estimator having fixed, univariate design
points. The contributions of Hardle and Stadtmiiller are particularly notewor-
thy since the embedding techniques which they employ are new in the context
of strong laws for weighted triangular arrays. However, neither method yields
an LIL for the important case of kernel estimators with fixed design, and
neither permits multivariate design. It seems very difficult to generalize the
techniques of Hardle [2] and Stadtmiiller [8] to this setting. In particular,
multivariate design is excluded by Hérdle’s method because of limitations of
the Koml6s—Major-Tusnady embedding and cannot be treated by Stadtmiiller’s
argument because of the difficulty of ordering multivariate design points.
Therefore we have developed alternative techniques.

Our methods are closer to the classical techniques used to prove LIL’s for
triangular arrays than they are to the strong approximation approach. For LIL
results about triangular arrays, see for example Gaposhkin [1] and Tomkins [9,
10]. However, none of these contributions or their precursors, is applicable to
the present case. The most general work has been done by Tomkins [10], but it
covers only one part of the LIL, that where a lim sup is shown to be greater
than or equal to (rather than equal to) a certain quantity. Furthermore,
although the results and techniques of [10] might seem to be applicable to
obtain at least this part of our LIL, they require regularity conditions which
fail to hold in our case. For example, condition (a) on the growth of variance
[10, page 308] does not hold. The work in [1, 9] is only distantly related to the
regression case, being for a specific type of triangular array which is unrelated
to the array arising in the regression setting. Moreover, the methods in [1, 9]
demand at least the existence of a finite moment generating function, whereas
our goal is to make only the minimum assumption of finite variance.

We have chosen the case of kernel estimators for the sake of definiteness
and simplicity and because they are the estimator type most commonly used to
introduce nonparametric regression. However our new techniques are readily
adapted to other cases, including orthogonal series and histogram estimators.
It seems to be quite difficult to formulate a general result which includes all
these estimator types, in the context of fixed design.

Our main result is stated in Section 2. Section 3 presents preparatory
lemmas needed in the proof, and the proof itself is given in Section 4.

2. Main theorem. We assume that the kernel L is spherically symmetric
and so is given by

(2.1) L(x) = K(llxl),

. where K is a univariate function and ||x|| denotes the Euclidean norm of the
d-vector x. In the case d = 1, we may take simply K = L and there the
assumption of symmetry is not necessary for our method of proof. However,
symmetric kernels are the overwhelmingly popular choice in applications.
Moreover, the functions K which are used in practice are typically piecewise
continuous; they are usually piecewise polynomials. We represent this property



742 P. HALL

by asking that K be equal to a smooth function A, on the interval [a;_;, a)),
for 1 <l <r say, where 0 =a,< '+ <a, <w; and that K vanish on
[a,, ). We also assume that for some constant xy > 1, which may be chosen as
large as necessary,
sup |AP(y) <x’/, allj=0andl<l<r,
O<y<a,

where A(J ) denotes the jth derivative of the function A;. Therefore, K may
have any finite number of jump discontinuities within its support, but all
derivatives of K must exist between those discontinuities.

For the sake of convenience we ask that L be rescaled so that [L = 1. Of
course, any scaling factor cancels from the definition (1.1) of the estimator 2.

We may and do assume without loss of generality that the scale of measure-
ment has been chosen so that error variance is unity. Our only assumptions on
the error distribution are the minimal ones,

(2.2) E(e) =0, E(e?)=1.
For the bandwidth % ,, we assume that
(2.3) h,10, nh too, nh? =< n°L(n),

where 0 <a <1, L is slowly varying and a, < b, means that a,/b, and

b,/a, are both bounded. The final condition in (2. 3) is 1mposed only so that
integral approximations may be made to series involving nh% and may be
relaxed.

In our main theorem we ask that the design points x; come from a
distribution which admits a density f in a neighbourhood of x, and that
(2.4) f is continuous at x and f(x) > 0.

However, a remark following the theorem will point out that this method of
* generating the design may be generalized substantially without seriously
hindering the proof.

We are now in a position to state our main theorem. Define £ as at (1.1),
with L given by (2.1). Assume the conditions on L stated in the first two
paragraphs of this section and assume conditions (2.2), (2.3) and (2.4) on the
error distribution, the bandwidth and the design distribution, respectively. We
shall say that a result holds for a class of realizations of x,, x,,... having
probability 1 if that class has probability 1 in the distribution of random
sequences X;, X,,... drawn from the design population.

THEOREM. For a class of realizations x,, x,, ... having " probability 1,

1/2
(2.5) limsup (nh/loglog nhd) 2(8(x) — E8(x)) = { sz /f(x)}

n—ow

almost surely.

The theorem implies that

lim inf (nh%/loglog nk)"/*(8(x) — E&(x)} = ‘{2( fLZ)/ f(x)}vz

n—»o
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almost surely, as may be seen on replacing e; by —e; in the regression model.
Therefore,

1/2
lim sup (nh% /loglog nh2) %8 (x) — E&(x)| = {2(/L2)/f(x)}
n—o i
almost surely. It follows that the exact convergence rate of g — Eg is
O{(nh? /loglog nh%)'/%},

Note that our conditions on the kernel L permit L to be a high-order
kernel [7, page 42]. However, we do ask that L be compactly supported. This
assumption avoids the need for tail conditions on the design distribution and
significantly reduces the length of proofs. Nevertheless, our techniques do
extend to kernels with unbounded support. The trick is to approximate K by a
compactly supported function and use techniques from the argument in part
(b) of Step (i), Section 4, to control the difference between the estimator and its
approximant. In particular, if we take K to be the standard normal density
function and ask that, in addition to the other assumptions for the theorem,
the parent distribution of the design variables satisfies E(|| X||®) < « for some
&€ > 0, then the theorem continues to hold.

Minor modifications to our proof show that the theorem remains true in the
case where the design points x; are chosen nonrandomly. For example,
formula (2.5) remains true provided that f(x) on the right-hand side is
replaced by the value of

lim lim (number of points x;, 1 <i < n, in a sphere
( 26) e-»>0n—w
of d-dimensional content ¢ centred at x)/(ne).
Necessary regularity conditions are the same as for the theorem as stated,
except that (2.4) should be replaced by the assumption that both the limits in
(2.6) exist (finite) and the double limit is nonzero. :

3. Preparatory lemmas. Our proof of the main theorem is based on the
four lemmas given here.

Lemma 3.1. Let cq,...,cy be real numbers and I,,...,1I, be numbers

taking only the values 0 and 1, such that |c;|I; = |c;| for 1 <i < N. There
exists an absolute constant A such that for all u > 0 and all C;,Cy > 0,

N N \1/2
P{ Y ec; Y cf) u}
’ i=1

i=1
N ~1/2
1-®(Chu) + C;s( Y clz)
: i=1

> (C; + Cy)

<A

N
X( sup |C,-|)u‘3E{Ie|31(|e| < )\)} + (Z Ii)P(IeI > A)],
i=1

1<i<N
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where A = (L1,)'/2/C, and ® denotes the standard normal distribution func-

tion.
Proor. Put e = e;I(le;| < A) — E{e;I(le;] < M)} If |e;| < A for each i such

that I, # 0, then

N N N
Y ec;= Y eic; + E{el(lel <A)} Y c;.
i=1 i-1 i=1

Now,
N
< /\'1( Y c?

N
E{el(lel <A)} Y c;
i=1

Hence if u > 1,

N
Z €;C;

i=1

N \1/2
> (C, + Cz)( Y cf) u}
i=1

N N \1/2 N
< P{ Y eic;| > Cz( Y cf) u} + (E Ii)P(IeI > A).
i=1 i=1 i=1

Put Y, = e/c; and v = var(LY,) and note that by the nonuniform version of
Esseen’s inequality ([6], point 23, page 132), there exists an absolute constant

{

(3.1)

A; such that for every y,

P( 5 Y, >v1/2y) - 2(1 - @(y)}
i=1

Take w = Cy(X c?)'/%u and y = v~ /2w, obtaining

N 12
> Cz( Yy cf) u} - 2{1 — (v~ "%w)}
i=1

N
<A1+ ) P32 Y EIYP.

i=1

N
<Aw™ Y ElY).

i=1

N
P Z e;c;
i=1
Now, L E|Y|® < Ele},|’L le,l®, Ele}|® < 8E{lel’I(le| < M)},

N N -1/2
w3 Y lel® < Cz‘?’u‘s( Y cf) sup Ic,-I)
i=1 i=1 1<i<N

and v~ 2w > C,u. Therefore,

N N 12
Y elc;|> Cz( Y clz) u
i=1 i=1

N\ -1/2
< 2{1 - ®(Cou)} + 8AlCz_3u‘3( Y cf)
i=1

{

x( sup IciI)E{IeI?’I(IeI < ).
1<i<N

The lemma follows from this inequality and (3.1). O
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LemMA 3.2. Let Y,,...,Yy be independent random variables with zero

means and finite variances, and put

Zi=ZYj’
1

Jj=

Then if u > V2,

P( sup |Z,| > uz) <

1<i<N

In particular,

22 =var(Zy).

2P{Zy| > (u — V2)z)}.

P( sup |Z,] > 2uz) < 2P(1Zy| > uz).

1<i<N

This is one version of an inequality due to Kolmogorov and it is proved in

[5], page 260, for example.

LEmMa 3.3. Let Y,,Y,,...

means and finite variances and let y,, y,,. ..

integers m < m/', put

Then if u > V2,

d

Proor. Observe that

’

Z YzI(yz < hn)

i=n+1

sup
m<n<m'

be independent random variables with zero

be real numbers. For positive

5

i=m+1

-
Ly

i=m+1

> 2uz} < 2P(

>uz).

(y;<h,andi>n) e (y;<h,and h;<h,) « (2, <h,),

where z; = max(y;, h;). Therefore,

m' m'
Y YI(y:<h,)= Y YI(z<h,).

i=n+1

i=m+1

Let {(Y,;), 2;)), m <i < m'} denote the sequence {(Y, 2;), m <i < m'} ordered

so that 2.,,,,) < *** <24, Then

Y YI(y;<h,)

i=n+1

sup
m<n<m'

<

Yo I(2i) < hy)

£

i=m+1

XY,

i=m+1

sup
m<n<m'

sup
m<n<m'

)
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and so
m' m' 1/2
Pl sup | Y, YI(Y.<h,) >2u{ Y E(Yiz)}
m<n<m'|i=n+1 i=m+1
n m' 172
<P| sup Y Y, >2u{ o E(Y(,z))}
m<n<m'|i=m+1 i=m+1
m' m' 172
<2P|| ¥ Y, >u{ x E(Y(f))} :
i=m+1 i=m+1

the last inequality following from Lemma 3.2. O

LEmMMA 3.4. For each a > 0, there exist constants 0 < C; < C, < © such
that with 2 probability 1,

n
Cinhd < Y I(lx — x;l < ah,) < Cynhd
i=1

for all sufficiently large n.

Proor. Let X, X,,... denote the independent and identically distributed
random variables of which x,, x,,... represents a realization. Since f(x) > 0,
then

8, = E{I(llx — Xl < ah,)} = P(llx — X,]| < ah,) ~ C3h

as n — o, where C; > 0. Therefore, the lemma will follow if we prove that
with Y, = I(|lx — X,|| < ah,) — §,, we have

(3.2)

i Y, ' = o{(nh‘,’,)l/2 log(nh‘f,)},

i=1

with probability 1.
Put

b = esssuplY)| <2, v, =var(L Y;) < Cynh
“and u, = &(nh?)/2log(nh?), where ¢ > 0. Then by Bernstein’s inequality,

d

> un) < 2exp[—(ui/2){vn + (bun)/3}]

LY,
i=1

<2 exp[ — Cy{log(nh? )}2] ,
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whence it follows that

n

LY,

% P(
i=1 \li=1

>un) < oo,

Result (3.2) now follows by the Borel-Cantelli lemma. O

4. Proof of main theorem. Observe that g(x) — Eg(x) = S, /r,, where
Sn = Z elK(“x - xt"/hn)’ rn = Z K(”x - xi"/hn);
i=1 i=1

and that with 2" probability 1, r, /(nh%) — f(x) as n — «. The latter strong
consistency result for density estimates is readily proved using techniques in,
for example, [6], page 38.

Define

o2 = var(S,) = ¥ K(llx — xl/h,)%
i-1

Then it suffices to prove that for a class of realizations having £~ probability 1,

of/(nh?,sz) - f(x),

limsup S, /(20,2 loglog a-,,z)l/ ?—1 almost surely.

n-—oo

The first of these two results may once again be proved by methods which are
standard for density estimators and so we establish only the second. This we
do in two steps, which derive upper and lower bounds, respectively.

Step (i). Upper bound. Write fa.sl.n as an abbreviation for for all
sufficiently large n. In Step (i) we shall prove that for each & > 0, with
probability 1,

(4.1) S,/ (20?2 loglog o-,f)l/2 <1l+e¢ fasln.

Let ¢ > 1 and write m, for the integer part of c*. Put

(4.2) t, = (202 loglog o:2)"*,

and note that ¢, is increasing in n. Result (4.1) will follow if we prove that for
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each ¢ > 0 there exists ¢ > 1, chosen sufficiently close to 1, such that
(4.3) S /tm, <1+e faslk,

(4.4) tn. sup 1S,-8,,|<e faslk.

m<n<mp,,

Parts (a) and (b) below derive (4.3) and (4.4), respectively.

Part (a). Derivation of (4.3). In view of the Borel-Cantelli lemma, it
suffices to prove that for each £ > 0,

P(S,, > (1+2¢e)t, } <=
1

(4.5)

T s

Assume that K vanishes outside (—C,, C,). Bound the probability on the
left-hand side of (4.5) by applying Lemma 3.1 with ¢; = K(lx — x,ll/A ),
I, =IUx — xll/k,,, < Cp), u = u, = (loglog g2 )'/% C; = e and C; = 1 +&.
Thus, in order to establish (4.5), it suffices to prove that for each C; > 0,

0

L [1-2{Q+e)u)] <

k=1

kf—_31(mkhmk)_l/zE[|e|3I{|e| < C3(mkhmk)1/2}] <o,

Y (mkhmk)P{C3|e| > (mkhmk)l/2} <o
E=1

(The mh,,, terms in the last two series arise because the quantity LI;, which
appears in the definition of A in the Lemma 3.1, is here asymptotic to a
constant multiple of m khmk.) This is readily accomplished by making integral
approximations to the series.

PaRT (b). Derivation of (4.4). Put m=m,, m'=m, .. If m <n <m/,
then

S, -8, = Z e{K(lx — xll/k,) — K(llx — x;l,/R )}

i=1

+ Y eK(lx - xl/h,).

i=m+1

Our assumption that K(y) = ZA,(y)I(a;_; <y < a;) for smooth functions A,
permits us to use the representation K(y) = LB,(y)I(y < a,), where B, is a
linear combination of the A,’s and therefore satisfies the conditions imposed
on the A;’s. Hence to prove (4.4), it suffices to show that for ¢ > 1 sufficiently
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close to 1,
mp
;L sup  |T eB(lx —xl/hy) (I - xll/k, <a)
m<n<mp,y|i=1
~B(llx - %;ll/k ) I(lx = 2ll/h,p, <a)}| <& faslk,
t,:  sup Y. e;B(lx — xll/h,)I(llx = x,ll/kh, <a)| <& faslk,
mp<n<mp,y|i=m,+1

where (B, a) denotes a generic (B, a,). These two results (for 2z rather than
¢) will follow if we prove that

my

tnl  sup Y ei{B(IIx - x,ll/h,) — B(llx — x,~||/hmk)>
my<n<mp.i|i=1
46)
xI(lx — xll/h, <a)| <& faslk,
my
t;l  sup |L eB(lx—xl/h,,)
my<n<myyq|i=1
xI(llx = xll/R,,, <a <llx - xll/h,)| <& faslk,
Mpy1
tnr  sup . Yy ei{B(IIx - xll/h,,,,) — B(llx - inI/hn)}
mp<n<mp.y|i=n+1
(4.7) xI(lx — x;ll/kh, <a)|<e faslk,
Mmpi1
X Y eB(lx—xl/k,, )I(lx—xl/k, <a) <& faslk.
my<n<myli=n+1
If
(4.8) (B, = oy )/ B <0, 2 Eg,

then for k > k,, the left-hand sides of (4.6) and (4.7) are dominated by

mpg .
Y e;BY(llx — xill/h o ) I(lx = 2,0/, < a)

i=1

’

tal Y (67/j!) sup
j=1

my<n<mp,,

Mpy1
Y eBY(lx - xll/h,,,, ) I(lx — xll/h, <a)

i=n+1

’

tht Y (67/j!) sup
j=1

m<n<mpy,,

respectively. Therefore, result (4.4) will follow if we prove that for a sequence
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of positive constants {r;,; j > 1, k > 1} satisfying

(4.9) Y (07/im <,
j=1
we have
0 [« my
DI P{ sup Y ¢BY(lx —x,l/h,,)
j=1k=k, mp<n<mg.yli=1

(4.10)

xI(llx —xll/h, <a)

> tmk'rjk} < o,

®© my
Y P{ sup Y ¢;B(lx — xll/R )
k=ky \mip<n<my,|i=1
(4.11)
XI(llx = xll/h,, <a <lx- xll/h,)| > tmke} < oo,
o o Mpy1 .
Yy T P{ sup Y ¢BY(lx - xll/h,,,,)
(4 12) J=0k=k, my<n<mp,yli=n+1

xI(llx = x;ll/h, <a)|> tm,,’fjk} < oo,

where in (4.12), we take 7, = ¢.

The next step is to remove the suprema from the left-hand sides of
(4.10)-(4.12). In the case of (4.10) and (4.11), this may be done by using
Lemma 3.2, which applies to suprema of sequences of consecutive partial
sums. Each of the suprema in (4.10) and (4.11) may be put in that form by
reordering the indices ¢, 1 <i < m,, so that the differences ||x — x,|| are
monotone. Arguing thus, and defining

my

wh = ¥ BO(lx - x,ll/h,,, ) I(Ix - 2,I/A,,, < a),

J
i=1
my, :
wi =Y B(lx - x,ll/k,, )" I(Ix - %,l/A,,, <a <lx - xl/k,,..),
i=1 .
we see from Lemma 3.2 that if

(4.13) tmTie > 2V2Wj, by E > 2V2w,,
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then (4.10) and (4.11) are implied by

g

mp
i=1

Ms
P

xI(lx = x;ll/h,, < a)l> tmkfrjk/Z} < o,

Y e;B(lx - /)

i=1

(4.15)

xI(lx = zll/h,, <a <llx - %l /h o, )| > tmka/2} < oo,

The supremum in (4.12) cannot be rendered into a supremum of consecu-
tive partial sums simply by changing the order of the indices i. In this case we
resort to Lemma 3.3 rather than Lemma 8.2. Arguing thus, and defining

Mp+a
vi= Y BY(llx —xl/h

J .
i=m,+1

we see that if ¢, 7, > 2V2v;,, then (4.12) is implied by

VI(llx — x;ll/h , < @),

Mmpg+1

© e Mpy1
X X P{ Y eBY(lx - xll/hp,,,)
Jj=0k=ky i=m+1

(4.16)

xI(lx = xl/hy, <a)| > tkajk/Z} < o,

Result (4.4) will follow if we prove (4.14)-(4.16).

We establish (4.14)—(4.16) by using Lemma 3.1 to bound the respective
probabilities. The method is similar in each case, and so for the sake of brevity
we shall derive only (4.14). In Lemma 3.1, take y > 1 and put N = N, = m,,

I,=1,=I(lx - %/, <a),
Cl=Clj= _j, Cz=Czj=Xj,
1/2 . e
Ii) ( sup Icil)xj(loglog mkh‘fnk) .
1<i<N

Fu;thermore, define

) ) 1/2 . 1/2
(4.17) 1 =2t (x77 + X’)(Z Iik) (sqplcijkl)xf(loglog myhd,) "
1 12
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Then
1/2
tmTin/2 = (Ci + Cz)(z 012) Ujps
l

and so by Lemma 3.1, the left-hand side of (4.14) is dominated by

Azz( o(xu50)

J=1k=kg

(4.18) +X-3J( > Iik)-l/z E[IeI3I{IeI < x"( )y Iik)l/z}]

+(Z1a)p {|e| >x(Z I,k)w}),

provided that (4.9) and (4.13) hold with the definition (4.17) of 7;. In
obtaining the quantity at (4.18), we have used the following argument to
bound the coefficient of the third term:

-1/2

(Z Ciz) ( sup |ci|)u‘3
i 1<i<N

-3/2

= (Z 012)( sup |Ci|)_2( ) Ii)_a/z)(_3j(10810g mkh‘rin,,)

i 1<i<N i

< (Ze2)( sup |c,.|)_2(2iz,.)

i 1<i<N

-3/2

-1/2

=(214)

In view of Lemma 3.4, there exist positive constants 0 < C3 < C, < » such
that

(4.19) Cym,he, < Z I, < Cymyhd,
T
for £ = k,. If x is chosen so large that
sup [BYY(y)l < x,

O<y<a,

then the right-hand side of (4.17) is dominated by
4CH 2%, (my ke, loglog myhd, )" < Cyx®
If we choose ¢ > 1 so close to 1 and %, so large that (4.8) holds with

0= mln[)( {log(1 + C5 %)} ]
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then we shall have

Y (07/iY)7, < Cs5 X 0772/j1 = Cylexp(6'/2) — 1} <&,

Jj=1 Jj=1
which ensures (4.9) with 7;, given by (4.17). Similarly it may be proved that
(4.13) holds for this 7,,, provided x is chosen sufficiently large. Therefore it
suffices to prove that for large y, the series in (4.18) converges. This may be
done by integral approximations to the three series which comprise (4.18),
using (4.19). To treat the first of the three series, note that u >
(loglog m k%, )'/2.

STEP (ii). Lower bound. Write i.o. for infinitely often. In Step (ii), we shall
prove that for each 0 < ¢ < 1, with probability 1,
(4.20) S,/(202 loglog o2)"* > 1~ ..

Write m, for the integer part of c* and define ¢, as at (4.2). Result (4.20)
will follow if we prove that for each £ > 0, there exists ¢ > 1, chosen suffi-
ciently large, such that

(4.21) 18, /tm,., <& faslk,
(4.22) (Smyy = Smy) /b, > 1— ¢ 0.

The proof of (4.21) is very similar to our derivation of (4.3) in Part (a) of Step
(i), and so is not given here. We prove only (4.22).
Observe that

Mmp41

my

Smk+1 - Smk = §lei{K(llx - xi"/hmkn) - K(“x - xi“/hmk)}
Mpya
+ Y eK(lx —xl/h, ).
i=m,+1

Therefore (4.22) will follow if we prove that for each ¢ > 0, we have for ¢ > 1
sufficiently large,

mpg
(4.23) ;! gle,-<K(|Ix —xll/R,,,) — K(lx = x,ll/h,,,)}| <& faslk,
My
(4.24) tor, 2 el(llx—xll/k, )>1-¢ io.
i=m;+1

Result (4.23) is a consequence of

ZO:. P[

k=1

my .

L efK(lx = xl/hy,..) = K(l = 5l/k,))

i=1
which follows from Lemma 3.1. The method of proof is similar to that
employed earlier to derive (4.14). Hence we confine attention to proving (4.24).

> 5tmk+,] < oo,
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For distinct values of k, the series on the left-hand side of (4.24) is
stochastically independent. Therefore (4.24) will follow via the Borel-Cantelli
lemma if we prove that for ¢ > 1 sufficiently large,

(4.25) kZ P{T, > (1 -¢)t, } =,
=1
where
mgia
T,= Y eK(lx-=l/k,, ).
i=m,+1

The remainder of our proof is dedicated to deriving (4.25). First we need an
estimate of the distribution function of T),. Put A, = (m, k%, )%

e, =e;I(le)l <A,) — E{e;I(le] <A,)},

My

T, = > eikK(”x - xill/hmk“)’
i=my+1
My
My = E{eI(Iel < )\k)} Z K("x - xill/hmk+1)’
i=mp+1

Myl 2

v, =var(ey) Y K(lx - xill/h,,, )"
i=m,+1

Assume K vanishes outside (—C,, C,). Then

sup |P(T, < vi/%y + ) — P(Tj < vy/%y)|

—o<ly<o®
(4.26) s
< Y I(le -xll/h,,, ., < CO) P(lel > A}).
i=m,+1

By the Berry-Esseen theorem ([6], page 111), there exists an absolute constant
A > 0 such that

sup |P(T} < vy/%y) — ®(y)l

—o<ly <o
Mmpy1
(4.27) < Av;o? Z“E{leikK(IIx - xll/h,, )P}
M l=m,

Mpy1
< 8A(suleI3)v,;3/2 Yy I(IIx -xil/hy,,, < CO).

i=m,+1
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Next we estimate the right-hand sides of (4.26) and (4.27). The argument
employed to prove Lemma 3.4 may be used to show that with 2 probability 1,
as k — x,

My
(4.28) > I(le - %ll/hp,,, < Co) ~Cy(myyq — m/«:)h‘rin,=+1
. i=m,+1

~Cy(1 - e my . hg

Mp+1?
Mmpi1 mpi
Y IK(lx - xll/h,,, ) < (suplKl) ¥ I(lx - xll/k,,,, < Co)
(4.29) i=mu+1 i=my+1
~Cy(1 - c_l)mk+1h‘rink+1’
Mmpyq

2
(4.30) > K(le - xi”/hm,,+1) ~Cy(myiq — mk)h‘rinkﬂ
. i=m,+1

~ Cy(1 — c™H)my b

Mp41?
9 My 2 d
O = L K(lx = xill/h,, )" ~ Comyiihf,,
i=1
1/2
(4'31) tmk+1 = (20.'?‘“1 IOgIOg 0"2’k+1)

~<202mk+1hd loglog(m,., 1hS )}1/2’

Mmp+1 Mmpi+a

where C,;,C, > 0 do not depend on c. From (4.29) and (4.31), it follows that

Mmpyq
1=m,
from (4.30),
My 2
(4.33) v~ ¥ K(lx—xl/h,, ) ~Cyl—cYYmy, ke,
i=mk+1

from (4.26) and (4.28),
sup IP(Tk <uvy%y + B) = P(Té = vlt/2y)|
—‘W<y<®
1/2
< C3(mk+1h¢'ink+1)P{|el > (mk"'lht'inkn) };
from (4.27), (4.28) and (4.33),
sup |P(T} < v}/%y) — ®(y)

—o<y<®

< C3(mk+1hd )_1/2E[IeI3I{|eI < (mk+1hd )1/2}],

Mp+1 Mmp41

(4.34)

(4.35)
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where in (4.34) and (4.35), C5 depends on c; from (4.34) and (4.35),
sup [P(T, > vy’%y + 1i) — {1 — @(3)}

—o<y<ow

< C;,,((mkﬂh‘fnkH)P{Iel > (mkﬂh:'inkﬂ)l/z}

)51 2 mai )

Mmp+1

(4.36)

=17,
say; and from (4.31)-(4.33),

v = {1 = e)tm,,, — ma}/vi?~ (1 =)ty /0K
(4.37) ) e
~(1-e)(1 - ) H2loglog(m,. k%, )}

Take y =y, in (4.36) and choose ¢ > 1 so large that (1 — eX1 — ¢ )2 <
1 — (2¢/3). Then for large &, by (4.37),

1/2
i < {1 - (¢/3)}{2loglog(m,,1h%, )} =2,
and so by (4.36),
(4.38) P{T, > (1 = &)ty, } =1 - ®(3;) — 7

It may be shown by integral approximations to two series that X, < ». The
relation

1 - ®(y) ~y~(2m) " * exp(-y%/2),

valid as y — «, allows that ¥ {1 — ®(y},)} = «. The desired result (4.25) follows
from these results and (4.38). O
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