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MULTIPLE STOCHASTIC INTEGRALS WITH RESPECT TO
SYMMETRIC INFINITELY DIVISIBLE
RANDOM MEASURES!

By JERzY SzuLGA

Auburn University

Multiple stochastic integrals with respect to an infinitely divisible sym-
metric random measure are constructed for integrands taking values in a
Banach space.

1. Introduction. Consider a Polish space T equipped with the Borel
o-field & and a o-additive measure u on #Z. Let d > 1 and

Z(A) = (Zy(A),...,Z4(4))

denote an infinitely divisible independently scattered symmetric random mea-
sure with values in R¢, defined on a 8-ring #c Z.
The aim of this paper is a construction of a multiple stochastic integral

D) Zf=Zie - ©Zyf= [ - [f(thta) dZi(t) - dZy(ts)

for integrands f with values in a Banach space E. Throughout the paper we
assume that functions f are symmetric with respect to permutations of their
arguments and vanish on diagonal hyperplanes (i.e., whenever two or more
arguments are equal). In some special cases, for example, for independent
coordinate processes Z,, ..., Z;, this assumption is not necessary.

Many authors have investigated real one-dimensional stochastic integrals
under various restrictions on the measure Z = Z; [Prekopa (1957), random
measures with finite variation; Urbanik and Woyczyriski (1967), symmetry;
Kwapiei and Woyczyfiski (1988); etc.]. In all of the previously mentioned
papers a deterministic finite control measure played a crucial role. Rosifski
(1987) studied the case of Banach space valued integrands and of stationary
processes without this limitation.

The origins of the multidimensional case were connected with Wiener
(1930) who heuristically introduced a notion of Gaussian random chaoses (all
components Z; were equal to a Brownian motion). His theory was formalized
and then extended to processes with finite variance by It6 (1951). Itd’s
approach was used by Engel (1982) for a construction of the multiple integral
(1) for such processes and for T = [0, t]. Banach space valued integrands and
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1146 J.SZULGA

the special case of strictly stable processes Z; (either identical or independent)
were developed by Krakowiak and Szulga (1988a). Real multiple stochastic
integrals of type (1) with respect to symmetric and positive pure jump pro-
cesses were investigated by Kallenberg and Szulga (1989) (even for functions
with supports of infinite measure w).

The list is far from complete and we refer for additional information to
results quoted in the mentioned papers.

2. Notation. All random variables appearing in this paper are defined on
a probability space (£, A, P) which is assumed to be sufficiently rich.

Throughout the paper T denotes a Polish space and & stands for the class
of Borel sets. Let #C % be a 6-ring. A random measure M with values in R?
defined on % is a map

M: Q- Ly(R%)

such that for A = U;A; € %, A, disjoint, M(A) = ¥; M(A,) a.s., where the
series converges unconditionally in probability. In other words, M is a vector
measure with values in Ly(R9).

Consider two random measures M; on %;, i = 1,2. If M is a random
measure on a 8-ring %, , such that #; X #, ¢ %, , and

we call M a product random measure and write M =M; ® M,. If both
measures are the same, we write M2,
Let Z admit the Lévy representation

E exp(i(u, Z(A))}

- (- KQUAL W) + [ [ (costu ) - D(ds, d) .

where Q(A) = (q,;(A)) is a covariance matrix and » is a Lévy measure. We
shall write shortly

Z =D [0, Q’ V]'

Let Kc{1,...,d} and K* denote its complement. For any operation o
involving d coordinates we shall write ox for its restriction to coordinates
indexed by K. For example, if z='(z;,...,2,), then zx = (2;: i €K), if
f: T* > R is a function of d variables, then ty — fx(¢x, tx+) determines a
family of functions on T¥ labeled by ¢4« and so on.

If n is a deterministic positive measure on B, we shall write #,={Be
#: W(B) < »}.

Let &, denote the o-field of Borel sets in T'¢ symmetric with respect to all
permutations of axes. Let E be a Banach space. Define F(E) = Z(E) =
{f: f is a Borel E-valued function on T¢ symmetric and vanishing on
diagonal hyperplanes}. In the sequel we shall omit E if E = R.
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Let , o € & beafamily of &, X -+ X %,-measurable functions from &,
that is, admitting a representation

(2) f= Z f(l:)lAi Xt XAy
ieNd !
where A; € %, are disjoint sets and denote

F =%, ={fe F:supp fc A? for some A € 8,}.

"

3. Control measure. We say that a positive countably additive determin-
istic measure u on (T, &) is a control measure of M if #, C # and

M(A,)) =0 < n(4A,) -0, A, €%,

As a control measure u of Z, one may choose
d
w(4) = T qu(4) + [ flel® A 1}v(A,dr), Aca
i=1
The following result is widely known.

ProposITION 3.1. Let Z be a symmetric, independently scattered infinitely
divisible random measure on (T, #) taking values in R®. Let u be its control
measure. Then the integral Zf converges for every f € &, N Ly(T?, B2, u?).

ProoF. The random measure Z, restricted to a set of finite measure u, can
be decomposed into a sum of two independent random R?-valued measures,
the first of which possesses all moments and the second has a finite support.
So, for a fixed A € Z,, let us write

Z(B) =M(B) + N(B), Be %, BcCA.

For each K c{1,...,d}, the integrals Ng.f1,4(¢g," ) are well defined for
pX-almost all ¢4 since they are finite sums a.s. My f1,44(+, £x+) can be derived
by a standard It6 approach using the L,-theory [see Engel (1982), Theorem
4.5].
Therefore, using the decomposition
Kc{1,...,d}

and applying Fubini’s theorem, we can complete the construction of the
integral. O

COROLLARY 1 The product measure Z(A% N ) is well defined for every
Ac %,

We refer for details to Rosifiski and Woyczyhski (1987) (their argument
must be completed by the assumption of the finiteness of the control measure).
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However, the extension of the product measure to sets not covered by
regular rectangles required additional techniques. A major obstacle is the lack
of a control measure of Z. A natural candidate u® is not suitable, except for
some special cases, like Gaussian or stable processes.

ExampLE 1. Let Z;, =Z, be a unit intensity Poisson processes. Then
Z, ® Zo{(x,y) €[0,0)% xy < 1} < » even though the underlying set has infi-
nite measure. Moreover, Z; ® Z, does not allow any deterministic control
measure [see Kallenberg and Szulga (1989)].

ExamMpPiE 2. Let T=R and Z, =Z, = G + X, where G is a Gaussian
measure with g(A) = E|G(A)|* and X is generated by an a-stable stationary
motion with intensity A, 0 <a < 2. We can pick u =q + A as a control
measure.

Choosing appropriately A = U;B; X B;,,, one can design either a set of
infinite measure u? such that ZA = L(G + XX A,XG + XXA,,,) converges
a.s., or a set for which Z A does not exist even though it is of finite measure u?.
Notice that the necessary and sufficient condition for convergence of ZA is
finiteness of the following numerical series, where q; = q(B,), A; = A(B,):

Z )‘ing+/12’ Z ’\i+1Qia/2,

1
Z 9:9;+15 Z AiA;q|log, —— + 1),
A

4. Marginal Gaussian and Poisson multiple integrals. We decom-
pose Z into a sum of independent Gaussian and Poissonian components

Z=G+X,
where
Q =D [0’ Q’O] and Z =D [0’ O’V]'

We need some facts from Kallenberg and Szulga (1988). Although in that
paper statements are formulated for real integrands, all results needed here
immediately carry over to the Hilbert space context.

Let 2 <d. Let ¢ be a Poisson process on a separable measure space
(S, X, M), where A is its intensity measure. Let {r;} be a collection of all atoms
of ¢ and (g;) be a Rademacher sequence independent of ¢. We introduce a
symmetrized Poisson process £A = ¥ ;¢;1,(7;).

Let f: S* » H be a function with values in a Hilbert space H vanishing on
diagonal hyperplanes. The integral £*f exists if and only if the integral
&% fII? < « a.s. The latter integrals can be interpreted as random multiple
series.
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On the other hand, natural Poisson processes ¢ and £ on S = T X (R* \ {0}
can be associated with the given Lévy process X so that

f = |§~|’ .£= Z 8i1°(7i)’
X,(A) = Lj;q{kxif(ds,dxl,...,dxk).
Observe that
(3) E[IIE*fIPlE] = €2lFIP as.

REMARK. The random variable under the conditional expectation is not
necessarily integrable. Nevertheless, the conditional expectation is well
defined. _

An operator acting from the space of functions f: T* — H into the space of
functions f: T* x R* » H defined by the formula

ka(tl"”’tk;xlv"’xk) =Xy U X 'f(tl’“"tk),
yields a Poisson representation of the Lévy multiple integral
Xf=X1® A ®Xk=§~kka.
The following result is due to Kallenberg and Szulga (1989).

THEOREM 4.1. The integral X fexists (X f, =50, respectively) if and only if
(4)  EMLFIP<® as.  (EL,fl? > 0, respectively).
Moreover,

(i) X f exists for every bounded function f € %, ,;
(ii) Xf exists for every function f(ty,...,t;) = f{(t)) - fi(t;) such that
X, f; exists,i =1,...,k, and
Xf=Xif1  Xpfs

(i) Iff, — u* a.e., sup,lf,| < g and Xg exists, then X fand X f,, exist and
Xf, —»p XTf.

Moreover, the integral X is maximal in the sense that any linear operator X
satisfying (i) and (iii) (with X replacing X) and the condition
(i) for everyA,,...,A, € &,

X(A; X - X Ay) =X (A) - Xu(Ay)
must agree with X, and corresponding integrable functions fulfill (4).
The question concerning classes of integrable functions is rather delicate,

especially if one wishes to go beyond the symmetric case [cf. a discussion in
Kallenberg (1989)].



1150 J. SZULGA

On the other hand, the Gaussian integral G f is much easier to character-
ize. '

PROPOSITION 4.2. Let dqg = dg,; ® ‘- ® dq,, be a measure generated by
the covariance matrix Q. Gf exists if and only if [:|f Pdg < .

ProoF. Observe that Gf defines the isometry between %, , and
L,(Q, &, P), which can be extended onto Ly(d ). The identity

(5) EGff = [ Iffdg, fe
Tk
is easy to check. O

Let us point out that the Hilbert space H = L(G) = L(T*, &, dq) appears
in a natural way and will play the important role in the future construction.

5. Multiple stochastic integral. Let K c({1,...,d}, K* be its comple-
ment and 2 = #K. Define

1/2

£l = ([ M P dar) . FTEoR

HI_{* = {fe 9.: ”f(!Ka)”K* < @ “’K a'e'}’
e = g € Fe €% (Lyg)* <),

where Lyg(xg,tx) = I'1;c g x;8(tx), according to our convention.
By virtue of Fubini’s theorem, for every f € & such that

(6) the function ¢ty — || f(tk, )k~ € Z,
we can define a mixed multiple integral
(7 Y f=Xg(Gg+f) = éKLK(GK*f)'

ProposiTiON 5.1. The mixed integral Yg = XxGg«f has the following
properties:

() Yg f exists for every bounded function with support contained in a
rectangle B X C € By X By« such that vg(B) - qg+«(C) < oo

(i) Y, exists for every function f(tg,tx+) = 8(tx) - h(tx+) such that Gg.h

and Xy g exist and
Y. f=Xgg Ggh.

Gii) If f, » fa.e, If,] < g and Ygg exists, then Y f exists and Y f, —p
Yy f. Moreover, any integral Yy satisfying (i) and (iii) (with Yy replaced by
Yy ) and the condition

(ii") for every B and C such that vg(B) - qg+(C) <

must agree with Yy, and corresponding integrable functions satisfy (6).
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ProOF. By definition, we can view Yy f as a multlple Poisson integral
£XFy of a Hilbert space-valued function Fyy = L kGg+f: T¥ > Hy.. This is a
consequence of Theorem 4.1 and the definition of Y. More precisely, we need
a part of the multiple integration theory which can be carried over to the
Hilbert space case. As has been noted in Kallenberg and Szulga (1989), the
condition for the existence of the multiple Poisson integral §KFK is that
§|IFKIIHK < oo, Similarly, the sequence (¢F,) —; 0 if and only if the sequence
of Poisson integrals (¢||F, 12 He) —p 0. Therefore the conditions (i), (ii), (iii)
follow immediately.

For the additional statement, we do not need the Hilbert space context. We
apply a standard procedure: First, (ii') implies that Yf and ¥ f agree for simple
functions f and then (iii) is used to prove the final statement. O

Now, we define

Zf= Y Y f
K

for f € %, with the property
(8)  the function tx — || f(tk, )k € £% forevery K c{1,...,d}.
-#, will denote the space of functions satisfying (8).

THEOREM 5.2. The properties (i)-(iii) are carried over to the integral Z.
That is,

(1) Z f exists for every bounded function with support contained in a cube
B? for some B € B, ;

(i) Zf exists for every function f(t,...,t;) =f{t)) - fty) such that
Z,f; exists,i = 1,...,d and

d

(i) If f, — fa.e, If,| < g and Zg exists, then Zf, Zf, exist and Zf, —p
Z f; Any integral 2 satisfying (i), (ii) (with Z replaced by 2) and the
condition

(i) for every A,,...,A; € &,

ZA X XAy =Zy(Ay) - Zy(Ay)
must agree with Z, and the class of Z-integrable functions is contained in _£.
ProoF (The first part). The properties (i)-(iii) follow immediately from
Proposition 5.1. For the remaining part of the proof we need an auxiliary

result. Notice that the conditional expectation appearing in the formulation is
well-defined regardless of the integrability of the underlying random variable.
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ProrosITION 5.3. Let f, f,, satisfy (8). Then
(a) E[(Zf)%] = ¥ 5Lk f Ik,
K
(b) Zf,—»p 0 = Yif,—p 0 foreveryKc{l,...,d}.

Proor. The statement (a) can be easily proved for fe &, by virtue of
Fubini’s theorem and by applying (5) and (3). In the general case, it follows
classically by the already proven part (ii) of Theorem 5.2 and the dominated
convergence theorem.

The implication <« in (b) follows from the construction of the integral Z. To
prove =, we may assume that G, ¢ and ¢ are defined on a product
probability space (2, ® O, ® Q,, o, ® & ® &,,P, ® P, ® P)) and the men-
tioned processes are projection mappings. Denoting corresponding expectations
by E, and E_, we infer that

E[(2f)%] = E,E(2f)" ¢as.

The latter identity can be easily seen by using the routine approach, first
deriving it for simple functions, then passing to the limit. The first, already
proven part of Theorem 5.2 can be used here.

If, in a given class of random variables, the convergence in probability and
in L, are equivalent, then the property continues to hold for the closure in
probability of this class [Krakowiak and Szulga (1988b), Proposition 2.2 and
Corollary 2.3].

This observation applies to any sequence of integrals Z f, since each of
these integrals, conditioned on £, can be viewed as an a.s. limit of multivariate
polynomials in independent Gaussian random variables. For such polynomials,
the convergence in L, and in probability coincide [Krakowiak and Szulga
(1988b), Corollary 2.8 and 2.6].

Thus the mapping Z f — E[(Z f)?|£] is continuous by means of the conver-
gence in probability. To see this, we switch to a.s. convergence by passing to
subsequences and use Fubini’s theorem.

An application of (4) of Theorem 4.1 and (a) of this Proposition completes
the proof. O

PROOF (Theorem 5.2, the conclusion). If Z is an integral operator satisfy-
ing (@), (ii") and (iii), then by (i), Z agrees with Z on %, and by (ii’) and (iii), on
the class of bounded functions with rectangular supports.

Let Z f exist. There is a sequence (f,) of bounded functions with rectangu-
lar supports such that f, — f and sup,|f,| <f. Then 2f, -, Zf by (ii).
By Proposition 5.3(b), Y, f, is a Cauchy sequence for each K and thus
EX(Lg f)? =1lim, ¢¥(Lg f,)? < © a.s. Hence, by Proposition 5.1(ii), Y f ex-
ists and Yx f,, »p Yx f. Since K is arbitrary, this completes the proof of
Theorem 5.2. O

REMARK. There is an alternative way of constructing the multiple stochas-
tic integral of the type discussed in this paper. We can begin with the definition
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of a mixed multiple integral

YKf= GK"‘(XKf)"

which, by Fubini’s theorem, is well defined for the functions .f :TX¥x TE" 5 R
satisfying the condition

(9) j;‘K*‘fK(LK f(f]{, éK*))qu*(dtK*) < oo for p.K-almost all !K'

We readily recognize the condition (6).

The further steps follow the spirit of Proposition 5.1 and Theorem 5.2.
Their counterparts can be stated in a similar manner. It will follow that
YK = Y. Exactly as in the original construction, we can derive the following
identity, beginning with simple functions and then passing to limits:

E[|Yxf|2|§] = LK*fK(LKf(éx,fx*))2QK*(dtK*) < .

We omit the details since the arguments are very similar to those presented
earlier and the new construction is more tedious than the original approach.

ExampLE 3. Refining Example 2, it is easily seen that, for a symmetric
function f, the integral Z f exists if and only if the following three integrals
converge [see also Cambanis, Rosifiski and Woyczyriski (1985)]:

[(jlf(x,y)lzq(dx))a)t(dy), | [If(x,9)Pq(dx)q(dy),

If (2, )I*
JIf (x, v)I*A(dv) [If (u, y)I*A(du)

Existence of a general integral is reduced to 29-! Poisson integrals
and finiteness of L,(dg)-norm. Although explicit characterizations of the
former integrals are rather tangled, one may employ a recursive procedure
[Kallenberg and Szulga (1989), Theorem 3.7] to describe integrable functions
by means of a number of deterministic integrals.

The following result does not resolve the characterization problem but may
be used to view Z f as an iterated integral.

[[|f(x,y)|°‘(1og+ + I)A(dx)/\(dy).

ProposITION 5.4 (Decoupling principle). Let Z be a random measure whose
coordinates are independent copies of the coordinates of Z. Then Z fand Zf
converge or diverge simultaneously.

Proor. We can apply the decoupling principles for Poisson and Gaussian
multiple integrals. The one for Poisson integrals can be found in Kallenberg
and Szulga (1989). Its Gaussian counterpart is easily seen because the underly-
ing isometry (5) involves only diagonal measures from the covariance ma-
trix @. O
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Define a functional

1/2

¢f=E1 A (E[(2f)%])

THEOREM 5.5. The functional ¢ is an F-norm turning the linear space £,
of functions satisfying (8) into a Fréchet space. Moreover, the natural embed-
ding of £ into L((Q, &, P) is continuous and the set ¥, is dense in _£,.

Proor. Metric properties of ¢ are evident. Continuity of the embedding
map follows by an argument similar to that used in the proof of Proposition
5.3(b). To prove completeness of the metric ¢, we can reduce the problem to
Poisson integrals ¢X and then apply Theorem 4.5 in Kallenberg and Szulga
(1989). Finally, Theorem 5.2(iii) shows %, to be dense in .. O

ProrosiTioN 5.6 (Contraction principle). Let Zf exist and g € & be a
bounded function. Then Z fg exists. Moreover,

(10) ofg<(1Vigl)of.

ProoF. Apply an elementary inequality 1 Aab<(1Va)Xl Ab), a,b>0
and Proposition 5.3(a). O

COROLLARY 2. ZA is a random measure on
2= {Ae B, E[(2f)%] < ®a.s.}.
For a fixed B € %, p*(B% N - ) can serve as a control measure for Z(B% N ).

ProOF. Suppose that ZA exists and A = U;A;, where A, are disjoint sets.
Then, by the Contraction Principle, each ZA; exists and the series L; ZA,
converges unconditionally in probability. The latter statement is easily seen
since, for every sequence (1) of signs, we have

Y +ZA

i=m

E1l A

n n
<¢ ) +1,<¢ U A4
i=m i=m
by (10) and dominated convergence. O

6. Vector integrands. Let E be a separable Banach space (the separabil-
ity assumption is not essential, though). One of the possible ways of construct-
ing a stochastic integral for functions with values in E is the Dunford-Bartle
approach [Bartle (1956)]. However, their generic formula needs to be adjusted
to the discussed situation.

We utilize the notation from the previous sections. For functions from
(E), we write f, - f [locu] if f, > f in measure u?(B¢ N -) for every
Be #,.
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1. For a simple #measurable function f = ¥ 5 xz1, define the operator
Z[f;B] = ¥ xZB.
B

2. A B-measurable function f is said to be Z-integrable, f € L,(E) in short,
if there exists a sequence of simple F#measurable functions ( f,) such that
@ f, = f lloc u]; (b) Z[ f,,; B] converges in probability for every B € Z.

The limit in 2(b) is then denoted by [z fdZ, or Z[ f; B], or simply Z f if B = T.
THEOREM 6.1. The integral Z [ is well defined.

Proor. We must show that the indefinite integrals [; fdZ are determined
uniquely. By applying functionals and using separability of the underlying
Banach space, it is enough to prove the following claim for real simple
Hmeasurable functions and a certain real-valued random set function Zy:

Iffon dZ —p Zy forevery B € # and f, — 0 [loc 1], then Z = 0.

Indeed, let Z f,, converge in probability and f, — 0 [loc u]. Since the space of
Z-integrable real functions is complete by Theorem 5.5, the limit of Z f,, is a.s.
equal to an 1ntegral Zf for some f Thus, there is a subsequence (f,,)
convergent to f u? a.e. Hence f= 0 u® a.e. and the limit must be 0 a.s. O

REMARK. In general, the existence of the integral Zf does not induce
indefinite integrals Z[ f; B] (unlike the real case), for the counterpart of the
contraction principle (cf. Proposition 5.6) requires some additional geometric
properties of the underlying Banach space. If, for two independent Rademacher
sequences (¢1) and (£2),

Y %n.6L6Z convergesa.s. = Z @ nXmn€l €2 converges a.s.

for all double arrays {x,,,} C E, {a,,,} C [— 1, 1], then the required contraction
for integrals holds. Every Banach lattice with no finite dimensional subspaces
uniformly isomorphic to /7 has this property. For the discussion on contrac-
tion principles we refer to Krakowiak and Szulga (1986) [see also Krakowiak
and Szulga (1988b)].
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