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BOUNDARY VALUE PROBLEMS FOR STOCHASTIC
DIFFERENTIAL EQUATIONS

By D. NuarLarT aND E. PARDOUX

Universitat de Barcelona and Université de Provence and INRIA

In this paper, we study stochastic differential equations with boundary
conditions at the endpoints of a time interval (instead of the customary
initial condition). We present existence and uniqueness results and study
the Markov property of the solution. In the one-dimensional case, we prove
that the solution is a Markov field iff the drift is affine.

1. Introduction. This paper is concerned with stochastic differential
equations of the type:

1 X, +f(X,)=B i
(1) —L +f(X) =B—, |
where the time parameter ¢ runs over the interval [0, 1] and {W,, ¢t € [0, 1]} is a
standard %-dimensional Wiener process. Instead of the customary initial condi-
tion where the value of X, is specified, we impose a boundary condition which
involves both X, and X, of the form

(2) h(X,, X,) =h.

We assume that {X,} takes values in R¢, f: R¢ » R%, B is a d X k matrix,
h:R% - R4 and h € R

Our goal here is twofold. First, we shall give sufficient conditions for
existence and uniqueness. of a solution. We shall then study the Markov
property of the solution to (1)-(2). There are two types of Markov properties
relevant to our problem. The solution is said to be a Markov process if for any
t € [0, 1], the past and future of {X,} are conditionally independent, given the
present state X,. The solution is said to be a Markov field if for any
0 < s <t < 1, the values inside and outside the interval [s, ¢] are conditionally
independent, given X, and X,. In the Gaussian case (f = 0 and A linear), it is
known that the solution is always a Markov field and even a Markov process
for certain types of boundary conditions; see Russek [10]. We show that the
same is true if f is linear, but usually fails for nonlinear f. More precisely,
when d = 1, we establish the following dichotomy: the solution is a Markov
field if and only if f” = 0. In the case d > 1, there are triangular situations
where the solution is a Markov process, even with nonlinear f’s. However, it
is easy to find higher dimensional examples with solutions which are not
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Markov fields. For a dichotomy result for the problem (X, one-dimensional)

aw,
Cdt

d2X, dX,
dt ( v dt )

with Dirichlet type boundary conditions, we refer to the companion paper [7],
where it is shown that the solution is a Markov process when f is linear and is
not a Markov field if f is nonlinear. Analogous results for a similar type of
equation in dimension one, but with a linear (nonconstant) diffusion coeffi-
cient, are discussed in Donati-Martin [3].

Our tool for the study of the Markov property is the extended Girsanov
theorem due to Kusuoka [5], which allows us to compute conditional expecta-
tions under a law under which the Markov property is known to hold.

Note that there exists literature concerning Gaussian solutions of linear
SDEs with boundary conditions; see, in particular, Russek [10] and Cinlar and
Wang [1]. In the case where both the drift and the diffusion coefficient are
linear (the latter being nonconstant), such equations have been studied re-
cently by Ocone and Pardoux [9]. For other types of existence results, see
Huang [4] and Dembo and Zeitouni [2]. Our negative results concerning the
Markov property seem to be new.

The paper is organized as follows. In Section 2, we prove existence and
uniqueness theorems, mostly under monotonicity assumptions. In Section 3,
we apply Kusuoka’s theorem to our problem and compute a Radon-Nikodym
derivative. In Section 4, we study the Markov property in the linear case and
in the one-dimensional case and in Section 5, we study the Markov property in
higher dimension. In this last section, we establish another existence and
uniqueness theorem in dimension two.

2. Existence and uniqueness. Let {W,, ¢ €[0,1]} be a standard k-
dimensional Wiener process defined on a probability space (2, %, P). We are
looking for a solution {X,, ¢ € [0, 1]} of equations (1) and (2) as an R%valued
process. We shall assume without loss of generality that £ < d and that the
kernel of the d X k matrix B reduces to {0}. We suppose moreover that the
mapping f: R% - R? takes the form

f(x) = Ax + Bf (%),

where A is a d X d matrix and f: R? - R* is measurable and locally
bounded. We are finally given a mapping 4 : R?*? - R? and a vector % € R?
and we consider the equations

X, x BdVVt
3) E‘Ff( ) = T

h(XO’ Xl) =Tl"

In other words, a solution is thought of as an element X € C([0, 1]; R?) which
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is such that
X, + ['f(X,)ds =X, +BW, 0st<l,
0

h(X,, X,) =h.

Note that we shall construct the solution {X,} as a function of the input {W,}
defined pointwise on the space C(R,; R*), so that the fact that {W,} is a Wiener
process is in fact irrelevant in this section. )

Let us first associate to (3) the equation with f= 0:

dy, aw,
— + AY,=B——,
4) dt dt
h(Yo, YI) = TL .
Note that a solution to (4), if any, takes the form
e ey femnan)
0
where the last expression makes sense for any continuous function {W,} by
integration by parts. Therefore a solution to (4) must satisfy
h(YO, e‘A(YO + fleAsBdWs)) ~%.
0
We define F 2 {[leA’'Bd¢(t); ¢ € C((0, 1]; R*)} c R%. We now formulate our
first assumption, which is assumed to hold throughout the paper.
V z € F, the equation
(H1) h(y,e*(y +2)) =h
has a unique solution y = g(2).
We shall now give examples of triples (A, &, &) which satisfy (H1). It is clear
that under (H1), equation (4) has the unique solution
Y, = e-At[g(fleASBdWs) + [‘eASBdWs].
0 0

We now define the sets of functions
Co([0, 11, R*) = {n € C([0, 1]; R*); m, = 0},

3 = {geC([o,l]; RY); & — &0 + [’Agsds €Im B,0<t<1;h(&,£) =h}.
0

It is easily seen that there exists a bijection ¢ from C,([0, 1]; R*) into 3 such
that
Y, = (¥(W)),
= ¢t( W) .
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We finally define the mapping T from C,([0, 1]; R*) into itself by
T(n)=mn+ fof(lﬂs(n))ds.

We now have:

THEOREM 2.1. Suppose that T is a bijection. Then equation (3) has the
unique solution X = o T~"Y(W).

Proor. Let n € C(0, 1]; R*) satisfy T(n) = W. Then X = ¢(n) solves (3).
Indeed,
Xt = (/}t(n)

= —A¢,(n) + B7,

= —Ay,(n) - Bf(¥,(m)) + BW,

= —f(X,) + BWV :
Conversely, if {X,} solves (8), then X € 3. Define n = ¢ (X). Then

T('ﬂ)t =7+ f(Xt)’
BT(m), = Bw, + Bf(X,) - X, - f(X,) + BW,

= BW,.

That is, T(n) = Wand X =y T"YW). O

We now give sufficient conditions for T' to be one-to-one and onto, starting
with the one-to-one property. We recall that the mapping f is said to be
monotone if

(f(x) = f(¥),x—y>20, Vzx,yeR
and to be strictly monotone if the previous inequality is strict for x # y.

ProposITION 2.2. Each of the following conditions implies that T is one-to-
one:
A A € R s.t. f+ Alis monotone and
(H2i) eg(z) —g(2) =2 le (2 —2' + g(2) —g(2)); 2,2’ €F
= g(2) = &(2).
(Hzii) 3 A € R s.t. f+ Alis strictly monotone and
etlg(2) —g(2) <le (2 -2 +g(2) —g(2));Vz,2 €F.

_ Proor. Let 0,7 € Cy([0, 1]; R*) satisfy T'(n) = T'(7). We denote Y = y(n),
Y = ¢(m).

d - = d - =
(%= T) +A(Y, - %) = B (m, - W) = —B[f(¥) - (V)]
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It follows that

= (7Y, = T) + 2e"[(f(¥,) — £(¥.), Y, - T + A%, - T =o.
The first part of (H2i) implies that

| —?1|<eA|YO__|
On the other hand, if z = [{e4'Bdn,, zZ = [je4'Bdm,, Y, =g(2), Y, =g
and Y, = e74(z + g(2)), Y, = e *(z + g(2)). It now follows from the second

half of (H2i) that Y, = Y,, hence Y=Yandn=7%. _
Similarly, from the first half of (H2ii), unless Y =Y,

But the reversed inequality
Y, — Vil = e}y, — Y,
follows from the second half of (H2ii), hence Y =Y. O
REMARK 2.3. Sufficient conditions for (H2i) and (H2ii) are respectively as

follows:

31 € Rs.t. f+ Al is monotone and
(j) + (Jj) = x = X, where

H2i , - = _ T
(H20) (/)h(x,3) = h(%,5) =k
(Jj)erlc -zl = ly - 3l.
(H2i) 3 X € Rs.t. f+ Al is strictly monotone and
i

(j) =e'x—xl <ly -5l
ReEMARK 2.4. The following condition also implies that T is one-to-one:

(H2iii) g and eA’Bf(e~4*-) are monotone V0 < ¢ < 1.
The proof is similar to that of Proposition 2.2, noting that it implies that

d —

Zle @ -F) =0,
that is,

Y, — Y, 2|e“‘(Y1 - 171)|
or
lg(£1) _3(51)| > lg(¢1) _g(f_1) +& - &l
with & = e?Y, — Y,, £, = e2Y, — Y,,. Then the monotonicity of g implies
lg(£1) _3(5_1)|2 lg(¢1) — ( ) + & - &%

Hence ¢, = £, and Y, = g(£) = g(¢) = Y,,.
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We now give a sufficient condition for T to be onto.

PropoSITION 2.5. The following three conditions imply that T is onto
(H3) fis locally Lipschitz,
1 -
(H4) lima >0 ; SUPyi<a |f(x)| =0,
(H5)  giscontinuousand I cs.t. |g(x)l <e(1+ Ix]), x€F.

Proor. Let n € Cy([0, 1]; R*). We need to find W € C(([0, 1]; R*) s.t.

t -
W+ [F(4(W)) ds =,
which is equivalent to

[[e*BdW, = [‘eABdn, - ['e*Bf(y,(W))ds = £, + u,.
0 0 0

Then
i, = —e*Bf (e Yg(u, + &) + e *(u, + &)).

For any y € R, let {u,(y), 0 <t <1} denote the unique solution of the
differential equation

uly) = - ‘A Bf(e~40g(y + £;) + A (u(y) + £,)) ds.

Clearly, y — u(y) is continuous. It suffices to show that it has a fixed point.
From (H4), for any ¢ > 0, there exists a > 0 s.t.

IBf(y)l <e(a+yl), yeR
Set a = sup, ., .(le*’] V le=‘). Then (with ¢ > 1),

lu,(y)l < as[ot[a + ac(1 + 2lél. + lyl) + alu,(y)]] ds.

We can choose a large enough such that
ac(1 + 2l¢lls) <a.

It then follows from Gronwall’s lemma that
. [ 2a
luy(y)l < a®ee” e(: + cIyI).
Thus ly| < ha = lu(y)| < a?ce***(2/a) + cR)a and there exists (e, R) s.t.
2
a%(a, R)e“ze“"’R)(— + cR) <R.
a

Let @ denote the a corresponding to &(a, R). Then |y| < Ra = |u(y)| < Ra.
The result follows from the Brouwer fixed point theorem. O
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REMARK 2.6. We do not really need (H4), but only the fact that f at
infinity grows at most linearly:

IF(2)I < p(a + yl),
with p small enough.

RemARK 2.7. The bijectivity of T would also follow from the fact that
¥y = u(y) is a strict contraction, which is the case if f and g are Lipschitz,
with small enough Lipschitz constants.

We now consider examples where our assumptions are satisfied.
Let us consider the case where the boundary condition is linear, that is,

h(y,z) = Hyy + H,z,
where H, and H, are d X d matrices. Then a sufficient condition for (H1) is
that the matrix H, + H,e ™ is invertible and moreover:
g(z) = (H, + Hle‘A)_l(TL — Hie™z)

and (H5) is satisfied. Assume (H3) and (H4). In order to express condition
(H2), let us now assume that

H, is invertible.
We now have that (H2ii') is satisfied whenever

f — (loglHg 'H,|)I is strictly monotone.

_ ExawmpLE 2.8. Periodic boundary condition. This is the case Hy = —H, = I,
h = 0. The boundary condition is: X, = X;. In this case, |H, 'H,| = 1, and we
need to assume that f is strictly monotone. Moreover, A should not have zero
as an eigenvalue, for I — e™ to be invertible. From (H4), we then need A to
be positive definite.

ExampLE 2.9. Proportional initial and final value. Let a,b € R\ {0} and
suppose that the boundary condition is of the form

aXO = le
or in other words H, = al, H, = —bl, h = 0. Note that we can choose A = 0,

provided a # b. We are interested in the case a # 0 only. |H; 'H,| = |b/al. We
need for (H2ii') to hold that

b
f — log| EII is strictly monotone.

ExaMpLE 2.10. Nonlinear boundary conditions. Let d =k =1, A =0,
B =1, f be monotone and satisfying (H3), (H4), h(x,y) = e* + y. Then the
corresponding stochastic boundary value problem has a unique solution.
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We note that the two endpoints ¢ = 0 and ¢ = 1 do not play symmetric roles
in our conditions. However, it is easy by time reversal to deduce from our
results a result where the initial and final states are exchanged and f+ A is
required to be monotone decreasing for a certain A.

Other types of boundary conditions which are not covered by the previous
results consist in specifying I components of X(1 <l<d—-1) and d -1
components of X;. For example, a second order scalar equation

d?z, ( dZ,) aw,

az N\ dt

with Dirichlet (resp., Neumann) boundary conditions leads to a first order
equation in R2, where the first (resp., second) component of X, and X, are
given. Such an equation is studied in the companion paper [7], using specific
methods which differ from the general methods presented here. Another
situation of interest is where we fix the first / components of X, and the last
d — | components of X;. An example of such a situation (with d =2, I = 1)
will be treated in the last section of this paper. .

3. Computation of a Radon-Nikodym derivative. From now on, we
assume that 2 = d and B = I. In order to study the Markov property of the
solution, we shall exploit the extended Girsanov theorem of Kusuoka (Theo-
rem 6.4 of [5]). In this section, we first state that theorem and then apply it to
our situation. We now assume that Q = Cy([0,1]; R%) equipped with the
topology of uniform convergence, % is the Borel field over (), P is standard
Wiener measure and Wy(w) = w(¢) is the canonical process.

THEOREM 3.1. Let T = Q — Q be a mapping of the form
T(0) =0+ [ K,(0)ds,
0
where K is a measurable mapping from Q into H = L%0, 1; R%) and suppose

that the following conditions are satisfied:

(i) T is bijective.
(ii) For all w € Q, there exists a Hilbert—-Schmidt operator DK(w) from H

into itself such that (a) | K(w + f.h ds) — K(w) — DK(w)hllg = o(lkllg) as

|kl tends to zero; (b) h — DK(w + f h,ds) is continuous from H into
Z2%(H), the space of Hilbert-Schmidt operators (c¢) I + DK(w) is invertible.

Then if Q is the measure on (Q, ¥) s.t. P = QT ™1, Q is absolutely continu-
ous with respect to P and

‘fg ld, (- DK)Iexp( 6(K)——/|Kt|2dt)

where d,(—DK) denotes the Carleman-Fredholm determinant of the
Hilbert—Schmidt operator —DK and 8(K) the Skorohod integral of K.
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To define the Carleman-Fredholm determinant (see, e.g., [11]), it is suffi-
cient to say that: (i) if A is a linear operator from R” into itself,

d.(A) = TT(1 - Aj)exp;,
J

where the A;’s are the nonzero eigenvalues of A counted with their multiplici-
ties; (ii) A — d.(A) is continuous from _#2%(H) into R.

Let us recall the notions of derivation on Wiener space and Skorohod
integral. Let S denote the subset of L%(Q) consisting of those random vari-
ables F of the form

F=f(f1<h1(t),dw,>,...,[1<hn(t),dm>),
0 0
where n € N; hy, ..., h, € L*0,1;R%); f € C3(R"). For F € 8,

no9
D,F = Eﬁcfl( [, awy, ..., [ ‘<hn(t),th>)hi(t)

and we denote by D2 the completion of S with respect to the norm || - |1,
defined by

IFIfz = E(F?) + E[\D,Fdt, Fes.
0

Note that D,F is a d-dimensional random vector. We shall denote by D/F its
Jth component.
If a process u € L%(Q X (0, 1); R?) is Skorohod integrable,

E(5(u)F) = E[(u,,D,F)dt, Fe8.
0

It is part of Theorem 3.1 that K is locally Skorohod integrable in the sense
that there exists a sequence {(2,,, K,,)} such that Q, € &, K, € L%0, 1;D"2),
neN;Q,1Qas asn—» K=K, on[0,1] X Q,. It then follows that 8(K)
is well-defined by 8(KXw) = 8(K Xw), o € Q,, n €N; see [6]. For more
information about D and &, we refer in particular to Nualart and Zakai [8] and
Nualart and Pardoux [6].

We now want to apply Theorem 3.1 to the mapping T from Section 2 and to
compute the Radon-Nikodym derivative.

We have K,(0) = f(4,(w)). Assume that f, g € C}(R%;R?).

D,K,(w) = f‘l(‘l’t(‘”))Ds‘/’t(‘”)
= f'(‘/’t("’))e_At[g’(fl)eAs + eAsl[o,t](s)]’
where ¢, = [¢e** dW,. The operator DK(w) € .Z2(H) is given as
, d
(DK(0)(h))'(t) = ¥ ['DiKi(w)h]ds.
j=170

Conditions (iia) and (iib) are satisfied here. These properties are easy conse-
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quences of the fact that 2 — (y(w + [oh, ds), £(w + [4h, ds)) is continuous
from H into R?*? for any w € (. Recall that everything here is defined for any
o € () and not just a.s., by integrating by parts the Wiener integrals.

Let {®,, 0 < ¢ < 1} denote the d X d matrix valued solution of

do,
7 = _f,(‘l’t)q)n
o, =1.
We now have:

ProPoSITION 3.2. Suppose that fe< CYR%R?), (H1) holds and g€
C(R%,R?). Assume moreover that T defined in Section 2 is bijective and
further that

(5) det(I — e4®,g'(£,) +g'(£,)) # 0.
Then the conditions of Theorem 3.1 are satisfied.
Proor. It remains to check that K,(w) = f(y(w)) satisfies condition (iic) of

Theorem 3.1. From the Fredholm alternative, it suffices to check that —1 is
not an eigenvalue of DK(w),V w € Q). Let h € H s.t.

h + DK(w)h = 0.
Then
h,+ f’((ﬁt)e‘A‘[g'(gl)fleAshs ds + ['e*n, ds] = 0.
0 0
Define H, = e 4[teA*h  ds. We get

H,

-t P H + F()e Vg (6)e H, = 0,

Consequently,
(I + <I>1f1<l)s‘If"((//s)e‘Asg’(gl)eA ds)H1 =0.
0
Since H; = 0 = H = 0 = h = 0, it suffices to show that

det(I + q>1f01<1>;lf'(¢s)e-ASg'(§l)eA ds) # 0.

Since
o7 =1+ [‘07f/(s,)ds,
0

®ileA=1+ [0 o1 (g,)e A dt — jo "B e A dt

1 -
=1+ [0 O (w,)e 4 dt,
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the previous condition is equivalent to
det(I + @, (e ™ —I)g'(£)e?) # 0,
which is clearly equivalent to (5). O

Now we need to give sufficient conditions for (5).

ProposITION 3.3. Suppose that f, g € CY(R%;R?). Then (5) follows from
each of the following slightly stronger versions of the hypotheses of Proposition
2.2:

A1 eRs.t. f+ Alis monotone and VY x,y € R?:
eMg'(y)xl = le™A(I + g'(y))xl = x = 0.

AreRs.t fi(y) +AI>0,Vy eR?and
Vx,y € R eMg'(y)xl < le (I + g'(y))xl.

(H2i")
(H2ii")

ProOF. Suppose first that (H2i") holds. Then f'(y) +AI >0, V y € R%,
Consequently, V v € R¢,

d s 9
e IR.g'(6)V] = —Ad,g' (&), [£/(9) + AT] g (£1)0) < 0,

etlg'(&)vl = |@,8'(¢p)vl.
If (5) is not true, then there exists v # 0 s.t.
D.g'(&)v=e(I+g'(&))v.
Consequently,
erlg'(€)vl = le™(v + g'(£)v)),

which, from the second half of (H2i"), contradicts v # 0.
Similarly, under (H2ii"), if there exists v # 0 s.t.

D.g'(é)v = e A1 + g'(£1))v,
then ®,g'(¢)v # 0 and
erlg'(€)vl > le™*(v + g'(£)v),
which contradicts the second half of (H2ii"). O
REMARK 3.4. Again with f, g € C'(R?;R?), if T is bijective and (H2iii)
holds, then the conditions of Theorem 3.1 are satisfied. Indeed, going back to

the proof of Proposition 3.2, if we consider the equation for G, = [{e**h  ds,
we see that the sufficient condition (5) can be replaced by

det(I — ¢,8'(£,) + &'(£,)) # 0,
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where

v,

= — _eAtf'r(wt)e—At\Ift,
¥, =1I.

But if the previous determinant vanishes, then there exists v € R?\ {0} s.t.
v—¥g'(é)v +g'(é)v =0,
(v - ¥,8'(&)v + 8'(£1)v, &8'(£1)v) =0,

hence

(v, g'(é)v) + §|\If1g’(§1)u - g,(§1)0|2 - %l\lflg’(gl)vlz + %Ig'(fl)vlz =0.

But (v, g'(é))v) > 0 and the monotonicity of e“f'(y,)e 4* implies that
lg'(¢Dvl? > [P, g'(¢,)v|%. Consequently, V,8'(¢)v = g'(¢,)v, hence v = 0, which
contradicts the previous assumption.

It now remains to compute the Radon-Nikodym derivative J = dQ/dP of

Theorem 3.1. The main step is the computation of the Carleman—Fredholm
determinant d (—DK), which is given by:

LemmaA 3.5. Under the assumptions of Proposition 3.2, if K, = f(i,),

d(—DK) = det(I — e“®,g'(£,) + £'(£1))

xexp( = [ 15| F(0)e g (61)e] )

The proof of Lemma 3.5, which is a little long and technical, is given in the
Appendix.

THEOREM 3.6. Under the assumptions of Proposition 3.2, if Q is defined as
in Theorem 3.1 with K, = f(y,), then

J = Idet(I - eAq)lg'(‘fl) + g'(fl))|
exp| 3 [Tr 7o) e = [ (o) o dW, 3 [Fcuor at]

where [ f(,)o AW, denotes the generalized Stratonovich integral (see Nualart
and Pardoux [6)).

Proor. The result follows from Theorem 3.1, Lemma 3.5 and the following
expression of the correction term between the Skorohod and the Stratonovich



1130 D. NUALART AND E. PARDOUX

integrals (see Nualart and Pardoux [6]):

s(fw) = [ () AW,
1~ 1 1 +7 _=
- [0 F(,)°dW, — [0 Te[(D*f(¥)), + (D~F(¥)),] dt

- flf((pt) odW, — %fl Tr f'(¢,) dt — flTr[ f-'((//t)e“Ag(gl)e‘A] dt.
0 0 0
O

4. The Markov property. In this section, we want to study the Markov
properties of the solution {X,} of equation (3). We first need to specify the two
Markov properties which are relevant in our framework.

DeFINITION 4.1. We say that {X,; 0 < 1} is a Markov process if for any
t€0,1], o{X,; 0 < s <t} and of{X,; t < 7 < 1} are conditionally independent
given X, i.e., past and future are conditionally independent given the present.

DEFINITION 4.2. We say that {X,; 0 < ¢ < 1} is a Markov field if for any
0<s<t<l, o(X,; r<[st]Dand o(X,; u €[0,1]\ (s,2)) are conditionally
independent, given o(X_, X,).

It is easily seen that any Markov process is a Markov field, but the converse
is not true. ‘

Clearly, in the case of periodic boundary condition X; = X,,, we cannot
expect {X,} to be a Markov process, but at most a Markov field. It is known
(see Russek [10], Ocone and Pardoux [9]) that in the Gaussian case (f affine, h
linear) the solution is always a Markov field and is moreover a Markov process
if h(x,y) = Hyx + H,y is such that Im H, N Im H; = {0}.

We shall see that the solution is again a Markov field whenever f is affine
(even for nonlinear A’s), but that it is not always a Markov field if f is
nonlinear. More precisely, we shall prove that in case d = 1 the solution is a
Markov field iff f is affine. As we shall see, the situation in higher dimension
is more complex.

Let us first study the case of an affine f. Consider the equation

dX, aw,
—_— +AXt+C=.37,

(6) dt
h(Xo’ X1) = 71’

where A, B,h and % are as in Section 2 and ¢ € R%. We assume that (H1)
holds with E = R?, which implies that (6) has the unique solution

(M X, = e'Atg(fleAs(BdWS - cds)) + e‘AtfteAs(BdWs — cds).
0 0
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THEOREM 4.3. The process {X,; t € [0, 1]} given by (7) is a Markov field.

Proor. Define ¢, = [te4*(BdW, — cds).
Let o€ C,(RYand 0 <s<r<t<1.

Ele(X,)|X,; u € [0,1]\ (s,2)]
= E[p(e™™(g(&) + £,))| €45 u € [0,1]\ (s, 1)]
= E[p(e™(y + &,))| €45 u € [0,1]1\ (5, 8)]ly=ge-

{¢,) is a Gauss-Markov process, hence also a Markov field. Therefore, the
conditional law of ¢, given o(&,; u €[0,1]\ (s,?)) is Gaussian with mean
co + Ci&, + Cy¢, and constant covariance, where c, € R? and C,,C, are
d X d matrices satisfying C; + C, = I. Therefore, the quantity
E[p(e (y + &)l €45 u € [0,1]\ (5,)]
is a function of y + C ¢, + Cy¢, = C(y + &) + Co(y + &).
Consequently,
Ele(X,)|X,; u € [0,1]\ (s,?)]

is a function of X, X,, hence equals

E(¢(Xr)|Xs7Xt) o

We now come back to our original equation, but with 2 =d and B =1I:

t

ax, o
E‘Ff( ) = Fra
h(Xo,X1)=Tl.

Recall that Q = Cy([0, 1]; R%), & is its Borel field, P its Wiener measure,
P=QT ', J =dQ/dP and W(w) = w(?).

Note that whenever f is affine, (H1) is satisfied and T is bijective, we are in
the situation of Theorem 4.3 and the solution {X,} is a Markov field. We now
prove a converse to that property, in the one-dimensional case.

(8)

THEOREM 4.4. Suppose that d = 1, (H1) holds, f and g are of C? class, T
is bijective and either (H2i") or (H2ii") holds. Assume moreover that g'(x) >
-1,Vxe€Rand g' # 0. Then if {X,, t €[0,1]} is a Markov field, f is affine
(i.e., f" = 0).

Proor. Let f be any nonnegative measurable functional defined on ().
Since
X(0) =¢-T ),

Y(o) = ¢(w),
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we have that
[ f(X(0)) dP(0) = [ f(¥(w)) dQ(),

that is, the law of {X,; y €[0,1]} under P is the same as the law of
{Y;; t € [0, 1]} under Q. Therefore we are going to assume that {Y;} is a Markov
field under @, or in other words that for any 0 < r < ¢ < 1 and any nonnega-
tive r.v. x which is &%, = o{Y,; s € [r, ]} measurable,

EP(XJL? t)
EACED)

(where % =0(Y,; s €[0,1]1\(r,2)) is &, =0(Y,,Y,) measurable. Note
that the superscript i stands for interior and e for exterior. Recall that

=[(1 +g'(¢&,))H'H® - g'(£)] KK,
where ¢, = [le4' dW, and

H-ep([ Fyas) Ho-es([  Fryas),
[r,2] r,tl°

Ay = Eq(XIF70) =

i _ £ ° _ 1 £ _ 1 d 2
Ki—ew|~[ F(V)-aW,~3[ F(vyds-3f f(%) ds),

Ke=exp—f f(Y) dW——f f(Y)ds——f f(Y)ds)

Indeed, 1 + g'(¢,) — eA<I>1g'(§1) >0 as. Th1s is clear from 1+g'(¢)=0if
g'(¢;) < 0 and follows from both (H21”) and (H2ii") (see the proof of Proposi-
tion 3.3), if g'(¢,) > 0.

Since the increments of {W,} in any interval I are o(Y}; ¢ € I) measurable,
we conclude that K‘ and H' are &', measurable, K° and H® are %°,
measurable. Also, ¢, is & measurable We shall next use the following
notation:

E,(2IF,.)

for any nonnegative (or P-integrable) r.v. Z.
Since {Y;} is a Markov field P, we have

_ (L+g(6))HEHE' — g'(£1)¢K°
Y (+g(&))HHK - g (§)K'

Consequently,
(9)  He(1+g'(&))xHK - AHK| = g'(£)(xK* - A,KY).
We now choose two particular y’s:

L. —1 Lo—1
x1=(H'K') ', x;=(K")
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and write A; for Ax,-’ J = 1,2. Define the set
G = (K = AK'} N {xzK' = AK'}.

G € ¥, ,, and on G, we have

K oHEK
A =X ST

K'  HK''’

XzKi _ XzHiKi
K HEK'

Consequently,

(Hz) HiKi = Kl,

HiKi = HiKi,
which imply that

i ! iy~

(H) = (HH .
The strict Jensen inequality now implies that 15//f(Y,)ds is &, measur-
able. Now the following set is also in &, ;:

G=6°n{g'(&) * 0}
= (6°n {(H'K # LHE)) U (G° 0 (x,HEK' # AHEK')).

So from (9), 15[log(I1 + g'(¢,)7'D + [, o f(Y,) ds]lis &, measurable.
We now want to deduce from the two previous measurability properties that

f"(Yy(w)) =0,
Vse[r,t]as.onGandVs e [0,1]\ (r,t) as.onG.

First observe that %, , is generated by the random variables ¢, + g(¢;) and
¢, + g(&,), where the process {¢, = [5e“* dW,; 0 < s < 1} is a Gaussian pro-
cess with covariance function given by

E(¢,€,) = <1[0,s]’ 1[0,u]>ﬁ’

where H = L2(0,1; 2“4 du). We denote by D the derivation operator with
respect to this Gaussian process, which is defined as follows. We denote here
by S the subset of L2({2) consisting of those random variables F of the form

F =f(§(h1)”§(hn))’

where n €N; hy,...,h, € L%0,1); fe C(R") and &(h) £ [Jh(2)dé,. For
FesS,

(10)

n g
DF=3 %(g(hl),...,f(h,,))hi(t)
i=1 i



1134 D. NUALART AND E. PARDOUX

and we define D2 (resp., D" 2) as the closure of S with respect to the norm

IFll,. = (E[F? + IDFI%])”
(resp., |Fll5,2 = (E[F? + (D, F)*)'/?, where D, F = {h, DF )g).

Since D (resp., D,) is closable, DF (resp., D, F) is well defined for F € D"2
(resp., D" 2). Moreover, it is proved in Nualart and Pardoux [6] that D (resp.,
D,) is a local operator and DF (resp., D, F) is well-defined for F € D{;2 (vesp.,
D%2), where D32 (resp., D%?) is the set of r.v. F such that there exists
{(Q,, F,)} c Fx D2 (resp., D*?) with () 0, 1 Q a.s. () F=F, as. on Q,.

Note that ‘7r,t cI=o0(¢,, &, &) = a(é(hy), £(hy), E(hy)), with h, = Lo,y
hy=1,4 hy=1,1 Let K=sp{hy, hy hs. We shall use the following
lemma, whose proof will be given at the end of the section.

LeEMMA 4.5. LetF € D12, A € & and 1, F be & measurable. Then DF € K
a.s.on A.

We shall choose succesively (G, Z) and (G, U) for (A, F), where -

= £r — ' -1 &
z=[ foods U=log(i+ge) v [ F(Y)ds
D,z = ['f(Y,) DY, ds
- (g0 [Ftyesr s + [FEe e ds 1,00

12 _As ' '
#( [ FEre ds [+ (€0 10,10) + (61, (0]
Hence DZ € K a.s. on G implies that [f"(Y,)e ** ds is constant for 6 € [r, t],
that is, that
f(Y,)=0, se[r,t] as.onG,

DU = ~g'(&)|6'(&)* +&' (8] "+ [ F(T)eH[g(&) + Tp.(0)] ds
- 2" (g 1+ g'(6)) " g6 [ | F(X)etds

+[ P(Y)eAods + [T (Y)e A ds.
tve

OATr

Again DU € K a.s. on G implies in particular that
f(Y)=0; se[0,1]\(r,t) as.onG.
Hence (10) is established. Let us finally conclude that f” = 0. Note that this

implies that P(G) =1 so that DU € K as. on G will be automatically
satisfied, without g” having to vanish.
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Suppose that f” is not identically zero. Then by continuity there exists an
interval I c R with positive Lebesgue measure s.t. f"(y) # 0, ¥ € I. Choose
0 (r,t)and 7 € (0,1)\[r,¢]. It follows from (10) that

(11) P(GN{Y,eI})=0,
(12) P(Gn{Y, el})=o.

However, Y, = e #*(g(¢) + £)and G € &, G € #. But the conditional law
of Y, given & , and the conditional law of Y, given o both have R as their
support. Consequently (11) and (12) imply that

P(G) = P(G) =0,

which contradicts the assumption g’ # 0, since the law of £, is equivalent to
Lebesgue measure.

Note that if g’ = 0, then X, is deterministic and {X,; ¢ € [0, 1]} is a Markov
process and that the case X; deterministic corresponds to g’ = —1.

Proor oF LEMMA 4.5. Since we can approximate F by ¢, (F) with ¢, €
CyR), ¢,(x) = x for |x| < n, it is sufficient to prove the result for F € D}z2 N
L*(Q). Let h € H with h L K. Then since E¥(F) is a function of ¢(h,), £(hy)
and £(hy), it is easily seen that E¥(F) € D*2 and that D,[E¥(F)] = 0.
However, F € D22 and F = E“(F) a.s. on A. It then follows from the local
property of D, that

D,F = folh(t)Dtht —0 as.on A,

and this holds for any A L K. It remains to choose a countable set {h,,
n e N} cH s.t.

heK o (h,h,)g=0 Vn

and to remark that
D,F=0 Vn as.onA. a

REMARK 4.6. One may wonder whether, in case f” # 0, the solution {X,}
might be a germ Markov field, that is, for any 0 < s <t < 1, o(X,; u € [s,t])
and o(X,; u € [0, 1]\ [s, t] are conditionally independent, given N .. (o (X,;
u€ls—¢€s+e]Ult—e¢t+ e]). We have not been able to answer this ques-
tion in general. However, in the case where % is linear, hence {Y;} is a
Gaussian process, one can show that f” # 0 implies that {X,} is not a germ
Markov field. The argument is identical to that in the companion paper [7] and
we do not develop it here.

5. The Markov property for nonlinear f in higher dimension. We
want now to show via both an example and a counterexample that in higher
dimension the solution to a nonlinear stochastic differential equation with
boundary conditions may be a Markov process and may also not be a Markov
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field in the case d > 1. However, the examples which we are going to consider
are not covered by the existence and uniqueness result of Section 2. Indeed, we
want to consider boundary conditions of the type (here 1 <[ < d):

Xit=aqa,, 1<k<lI,
Xjr=b,, l1<ks<d-I,

where ay,...,a;, by,...,b,_, are arbitrary real numbers: that is, we fix [
coordinates of X, and d — [/ coordinates of X,. With this type of boundary
condition, the second half of (H2i) or (H2ii) cannot possibly be satisfied.
Again we are studying the equation
W,

dx,
(14) v +f(X) = T

together with the boundary conditions (13). Note that in case f is affine and
(13)-(14) has a unique solution, it is a Gauss—Markov process; see Russek [10]
and Ocone and Pardoux [9].

We now give an example with a nonlinear f, where there is a unique
solution which is a Markov process.

Let I be the integer part of (d + 1)/2; for 1 <k <[, let i, = 2k — 1 and
forl <k <d —1,let j, = 2k. Suppose now that f has the following triangu-
lar form: for 1 <k <d, f*(x) is a function of x!,...,x* only. Suppose
moreover that each f* is a measurable function of (x,..., x*) and satisfies

If(xt, ..., x* L x)l < Ly(xt, ..., 25" 1) (1 + |x]),
If(xt,. .., x* %) — f(xh .., x* L y) < Ly(xt, ..., % Dlx — yl,

where L,: R*~! > R, is measurable and locally bounded.

It is easy to show by induction on & that under these conditions the
equation (14) together with the boundary condition (13) has a unique solution.
Moreover, again by induction on k, we show easily that {X,} is a Markov
process. Clearly {X], ¢ € [0, 1]} is a Markov process and the induction is carried
over with the help of the following standard lemma, whose proof is left to the
reader.

(13)

LemMa 5.1. Let {Y,, t € [0, 1]} be an m-dimensional Markov process and let
{V,; t €[0,1]} be an n-dimensional standard Wiener process independent of
{Y,}). Suppose we are given a measurable and locally bounded mapping
g: R™*" - R* L: R™ - R, such that

lg(y, %)l < L(y)(1 + Ixl),
lg(v, %) — g(y,x") < L(y)lx — x'l.
Let {X,; t € [0, 1]} denote the unique solution of the SDE
X, Y, X))+ W
dt _g( 2] t) dt .
Then the m + n-dimensional process {(Y,, X,); ¢t € [0, 1]} is a Markov process.



STOCHASTIC BOUNDARY VALUE PROBLEMS 1137
Let us now give an example in dimension 2 where the solution is not a

Markov field. In fact we are going to prove a partial dichotomy.
Let d = 2 and consider the equation

ax, . dW,
7+f( t)_g"

Xl=XZ=0,
where f(x!,x2) = (ilfz‘( :12)) and f, is measurable and locally bounded and
satisfies assumptions to be specified later. The equation for {Y,} is simply

dy, dw,

dr  dt’

Yl=YZ=0.
Hence

Y, = p(W) = (W‘l - W)
w2

The mapping g defined by A(y,y + g(2)) = h is given by g(x!, x2) = (—x,0)

and its derivative is the matrix g' = _01 g . We now assume
(H6) fo is of C? class,
(H7) 0 <fy(x) <K, for some K > 0Oandall x € R.

We again define T: C([0, 1]; R?) — C,((0, 1]; R?) by

¢
T(n) ==, + fof(t/fs(n))ds-
We have:
ProrosiTION 5.2. Under the assumptions (H6) and (H7), T is a bijection.

ProoF. We need to show that V W € C([0, 1]; R?), there exists a unique
n € Cy([0,1]; R?) s.t.

i =mp =i + 07+ W,
77 = fo(nf — mi) + W2
Let v = n — W. Then v satisfies
ol=vl-vl+v2+ W -W'+ W2
(15) 07 = fa(ve + W' —vi — WY),

vg=v2=0.
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For each y € R, let {z(y), 0 < ¢ < 1} denote the unique solution of
ui(y) =y — uy(y) + ui(y) + W,
13(y) = fo(u(y) + W —y — WY),

uo(y) = ug(y) =0,

where W, = W! — W! + W2

The first equation gives us an explicit expression for ui(y) in terms of y,
{u2(y),W,; 0 <s < t}.

Consequently, the equation can be transformed into a closed equation for
{2} and we obtain the following expression for z1(y):

ui(y) = (1= ey + [(e W, ds
Ls—1(° 1 _ wi to—t{7 ot
+f0e fofz(Wt W1+f0e W,do — e~y
+ [ u(y) de) dtds,
0
where u%(y) is the unique solution of

u?(y) = fotfz(th - W+ fose"‘sW; do — ey + fose"‘sug(y) dﬂ) ds.

From (H7) the mapping y — u2(y) is decreasing. From this and again (H7), we
obtain

dul
1(3’) <1-eL
dy

Consequently, the equation u}(y) = y has a unique solution, hence (15) has a
unique solution for any {W,}, and T is a bijection. O

We now want to apply Theorem 3.1, with A =0 and f= f. The assump-
tions of that Theorem are satisfied under (H6) and (H7). Indeed, those
hypotheses imply (5), since

F(=) = (fé(_xll) 3)

dq’(t) _ (‘Dzl(t) - q)u(t) ‘Dzz(t) - cI)12('5))
dt fo(Y:)®1a(2) f(Y)@u(t) |

®;(1) O
det[I — @,8'(W) + g'(Wy)] = det( )

Dy(1) 1
= q)u(l)-
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But
Dyy(t) = —Dyy(8) + Dyy(2); D1y(0) =1,
‘i’21(t) = fé(YtI)q’n(t); ®,,(0) = 0.

Consequently, ®,,(¢) > 0,V ¢ €[0,1] and ®,,(1) > 0.
Note that whenever f is affine, {X,; ¢ €[0,1]} is a Markov process (see
Russek [10], Ocone and Pardoux [9]). We now have a converse to that result:

THEOREM 5.3. Suppose that (H6) and (H7) hold and that {X,; t € [0, 1]} is
a Markov field. Then f is affine (i.e., fy = 0).

ProoF. We proceed as in the proof of Theorem 4.4 and use the same
notation as there. Let us fix 1 € (0,1) and let & =0o{Y,; 0 <s <t}, L' =
o{Yy, Y,; ¢t <s < 1}. Let xy be a nonnegative %, measurable random variable.
Since {Y}} is a Markov field under @,

Ep(xJ1&")

= t =
AX EQ(Xl‘% ) Ep(?ﬂft)

is 0(Y,, Y,) measurable, where
1 1
7= @uesp|§ - ['1(%)-aW, - 3 [ ey ar
0 0

Let H, = exp(—[§f(Y)odW, — 3/4f(Y)I®ds); 0 <t <1 and &(,¢) =
®(1)®(t)~". Then

_ EP[X(<D12(1’ £)Py(2) + CDH(l,t)d)u(t))exp(H,)If‘]
X EP[(‘I’m(l’t)‘Dzl(t) + q’u(l’t)q)u(t))eXP(Ht)ljt] .

Hence, with the notation F = E,(F|Y,,Y,),
[x®oi(Oexp(H,) — A B, (¢)exp(H,)| @151, ¢)
+[x®1(Oexp(H,) — A, B ,(D)exp(H,)| ®14(1, ) = 0.

(HT) implies that ®,5(1,¢), ®y(2), ®,,(1,¢) and ®,,(¢) are strictly positive a.s.
for 0 < ¢ < 1. Choose

A

X1 = Cl)zl(t)_lexp( —H,),
X2 = <I>u(t)_1exp( —H,).
Let
G = {A1 = (q)21(t)eXp(Ht))_1} N {Az = (<I>11(t)exp(Ht))_1}.

It follows from the strict Jensen’s inequality that on G, y(¢) = ®,,(2)/®,(¢) is
(Y, Y,) measurable and on G°, 2(t) = ®,,(1,¢)/®,(1,1) is a(Y,, Y,) measur-
able.
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Moreover, G € (Y, Y,). But y(¢) and 2(¢) are {W,}; 0 < ¢ < 1} measurable.
Therefore, from Lemma 4.5 applied to &= o(Y,,Y;), A = G(resp., G°) and
F = y(t) [resp. 2(2)], the previous statement implies that on G (since {W,} is
two-dimensional, {D, F} is two-dimensional; { D}F} denotes its first component,
that is, the derivative in the direction of {W,}}),

D;y(t) = k(w)DgY;! + k() DYy
and on G,
D;z(t) = l(w) DY} + I(0) DY,

However, D;Y,! and DY, are constant both for 6 € [0,¢) and for 6 € (¢, 1].
On the other hand, .

Ye=Fo(Y') + 5. =93 3=0
tAO t .
Di, = = [ e ['(1 - 29.) ) 13(v) @,

and Djy, constant for € [0, ¢) implies that f;(Y,!)) = 0, s €[0,¢) a.s. on G. If
P(G) > 0, this implies f} = 0.
Suppose now that P(G) = 0. Then P(G°) =1 and

2,=—1-2z+f3(V})22, z, =0,

Dlz, = ftowexp(ftsl — 22, (¥ du) 2(Y1) 22 ds.

But D;z, constant for 6 € (¢,1] implies that f;(Y,!) =0, s € (,1] a.s. on G*,
hence 5 =0. O

APPENDIX

Proor oF LEMMA 3.5. We are going to approximate the process K, = f(i,)
by a sequence of elementary processes. For each n > 1 we introduce the family
of orthonormal functions e,(¢) = Vn L, ¢pl<i<n,witht =i/n.

Define '

1 = i—-1 1
K" = fl ,—At;_, ti 1A W(e.
/ «zElf(e [El‘“ e

(16)
+g( Z eﬁ—ﬂ%W(q))])ei(t),

Jj=1 n

where W(e;) = Vn (W(¢;) — W(z,;_)).
We have, by taking a subsequence if necessary, that

lim {j‘u{t -k7Pdt + [ [D,K, - DK} dsdt} -0
n 0 0“0

for almost every W. Therefore, using the continuity with respect to the
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Hilbert—-Schmidt norm of the Carleman-Fredholm determinant, we deduce

that d (—DK™) converges to d ,(—DK) as n tends to infinity for almost all W.
The processes K™ are elementary in the sense that they can be expressed as

a7 K2 = LU0 (Wen) oo, Wen) (),

where the functions ¢": (R%)" - (R%)" are defined by

1 i-1 1 n
P (%g,...,%,) = —fle A —= Y eti-1dx. + g —Zetl-le.) ,
(18) (%1 ) = ‘/_ ‘/,Tj=1 J n o J
l<i<n.

From (17) we deduce
. noogyrd
DiKpi= %,
i,h=1 3

—(W(ey),..., W(e,))ei(t)es(s), 1<1,j<d.

That means the Carleman—Fredholm determinant of —DK" is equal to that
of the Jacobian matrix of " composed with the vector (W(e,), ..., W(e,)). We
denote by J¢™(W) the n X d-dimensional square matrlx deﬁned by
Oy foxiXWey),...,W(e,)), 1<l,j<d,1<i,h<n.Then we have

(19) d,(—DK™) = det(I + Jy")exp( —Tr Jy™).

We are going to use the following notation:
frou = F|ean| T et = W(e)) + 5[ = T etow(e)
1 =f"|e i e®i-t—W(e;) + gl — ), e®i-1W(e;
1 = ‘/E J g ‘/’7 ish ( J
forl1 <i<n and
1 n
g=8|—=X%L e“”f-IW(e-))-
(WT i1 ’

We can decompose the matrix J" into n? square matrices of dimension d.
The (i, h)-block, 1 < i, h < n, is given by

1.
‘ f./ _Ati—lg’eth—lA’ if i < h,
(20) _]n
dxy, 1. oAt -A if §
_f i=1(I + g')e A%-1 if i > h,

Therefore, the trace of the matrix J¢" is equal to

_ Z TI‘[ fr e —At;_ lgleAt ],
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which converges as n tends to infinity to

[ el F(wye g (6r)e™] dt.

Then it remains to compute the following determinant:

[

det

-3

S

= det[eAz_:l‘i det

I+ g

n fog
fle™41(1 +g')
foe™42(1 + ¢')

n-1

S| = I |-

1
Fr gt Aty
nfoge

1.
I+ _f{e—AtlgreAtl
n

1
I+ ~fig
n

> frgetts
n

1
—f{e_mlg’e‘“z
n

1. 1.
;fée—Atz(I +g')eA‘1 I+ ;fée_Atz(I'l-g')eAtz

1 £1 ot
nfog

- 1
{e—Atl(I + g:) e—Atl + ;f{e—Atlg:

. 1, 1,
freA(I+g) —fe (I +g) oMt —freM(I+g)

Subtracting each column from the preceding one we get

0

0

1
e—Atn_l + ;f,’._le_"”"‘lg’

I 0
—At Lo —a —At
—e 14 ;fle 1 e 1
n-1 1
[eAZ 4| det 0 —e Ak 4 ;fée_mz e At
i=1
. 0
0 0
I 0 0
—I+ —efhfle=4n I 0
1
0 -I+ ;e“‘?fée‘“‘z I

= det

I

1 £1 st
nfog

L
—fie~4hg'
n

1 Fr ot
ot 14
1
_ /e—Atl ’
n't &

1
; ﬂlze—Atzgl

1 Fr ot
;ftog
ie““lf_'e_‘“lg'

n 1

1
_eAtzfée —Atzg/
n

1 ~
_etn—zAf”l_ze_A‘n—zg'
n

1 _ 1
I+ _etn—lAf"‘_le_tn—lA I+ _etn~1Af”l_le_tn—lAg’
n n
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To simplify the notation, set e*Af'(¢,)e "4 = R,. Then we obtain

1 1 1 1
I+ ;Rtn—lg + (I - ;Rtn—l);Rtn—Zg + (I - ;Rt,,_l)

1 1
x(I— —R, 2)—Rt RS
n L () "=

1 | ] 1 ,
=det| I + - Rt,,_l + ' I (I - -;.L—Rtn—j)Rtn—i—i 8-

Consider the solution ¥, of the linear system
\i’t = -RY,
v, =1.
Then we can approximate each term I — (1/n)R, _ by ‘I’,n_j+l‘l',:_1j. Indeed, we

have

- tnj+1 _

. W l=1— ["VMRyw ! ds
n—j+1 ‘n—j ¢ s7s n—j
n—j

1 a;
=I- —R, + 2%,
n v n

where supla; ,|/n — 0 as n — o
Consequently, we get

1 n—1
det(I + —~ Y v, ‘I'_lRt,,_i_lg')

n-1" tn—i
i=1
and this converges to
(21) det{ 1+ 9, [ 4 () 4g () ).
We have

e AW, = I - [‘Ae=4¥, — ['F(y,)e*AW, ds =1 - ['F/(s,)e "4y, ds;
0 0 0

compare this with the equation for ®, in Section 3. We get e ‘A¥, = ®,. On

the other hand, ¥ = I + [y le'Af'(y,)e "t dt.
Therefore, the determinant (21) is equal to

det(I + Wy(~I + ¥ V)g'(£))
= det(I - V,8'(£;) +g'(§1))
= det(I — e*®,8'(£1) +8'(£1).

This completes the proof of the lemma. O
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