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WEAK LIMIT THEOREMS FOR STOCHASTIC INTEGRALS
AND STOCHASTIC DIFFERENTIAL EQUATIONS

By THoMAs G. KurTtz AND PHILIP PROTTER

University of Wisconsin—-Madison and Purdue University

Assuming that {(X,,, Y, )} is a sequence of cadlag processes converging in
distribution to (X, Y) in the Skorohod topology, conditions are given under
which the sequence {/X,, dY,,} converges in distribution to /X dY. Examples
of applications are given drawn from statistics and filtering theory. In
particular, assuming that (U,,Y,) = (U,Y) and that F, —» F in an appro-
priate sense, conditions are given under which solutions of a sequence of
stochastic differential equations dX, = dU, + F,(X,)dY,, converge to a
solution of dX = dU + F(X)dY, where F, and F may depend on the past
of the solution. As is well known from work of Wong and Zakai, this last
conclusion fails if Y is Brownian motion and the Y,, are obtained by linear
interpolation; however, the present theorem may be used to derive a
generalization of the results of Wong and Zakai and their successors.

1. Introduction. For n =1,2,..., let {Y,*: £ > 0} be a Markov chain.
The classical assumptions leading to a diffusion approximation for such a
sequence are that the increments of the chain satisfy

1 (1
(1.1) E[Y),, - Y F"] = b(Ykn); + 0(;)
and

o, 1 (1
(12) B[(¥ - ¥0) 557 = a(¥e) 4 o[

Using these assumptions we can write

k—1
Y=Y+ Z (vi,—-Y")
(1.3) -

=Yy + Z b(Y;" )— + Z a(Y™) + error,

z+1‘/_

where
Ykn+1 - Ykn - E[Yk"+1 - Yknlzn]
VE[(Yh: - ¥ - E[Yg, - Y1505

(1.4) Zi =

are martingale differences with conditional variance 1. If we define X, (¢) = Y|,
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and
1 [n#]
(1.5) W.(¢) = 7—,;-Elzi )
then
X,(8) = X,(0) + ["V"b(X,(5)) ds
(1.6) 0

+j: a(X,(s —)) dW,(s) + error.

[Note that X, is constant on intervals of length 1/n, so the first sum in (1.3)
equals the first integral in (1.6).] Under mild additional assumptions, the
martingale central limit theorem implies W, = W (throughout = will denote
convergence in distribution), where W is a standard Brownian motion. This
convergence suggests that X, should converge to a solution of the obvious
limiting stochastic differential equation. This approach to deriving diffusion
approximations has been taken by many authors [see, e.g., Skorohod (1965),
Chapter 6, Kushner (1974) and Strasser (1986)] although in recent years it has
been largely replaced by methods which exploit the characterization of a
Markov process as a solution of a martingale problem.

A key step in the application of the stochastic differential equation approach
is to show that the sequence of stochastic integrals in the approximating
equation converges to the corresponding stochastic integral in the limit. That
there is a difficulty to be overcome is well known from the work of Wong and
Zakai (1965). See also Protter (1985).

Growing interest in stochastic differential equations driven by martingales
(and more generally semimartingales) other than Brownian motion has led to
renewed interest in this approach to the derivation of approximating processes.
In addition, functionals of stochastic processes which can be represented by
stochastic integrals arise in many areas of application including filtering and
statistics. Limit theorems in these settings require conditions under which
convergence of the integrand and integrator in a stochastic integral implies
convergence of the integral.

Throughout, we will be considering cadlag processes [that is, processes X
whose sample paths are right-continuous and for which the left limit X(¢z —)
exists at each ¢ > 0]. This restriction to cadlag processes allows us to define
stochastic integrals as limits of Riemann-Stieltjes-like sums, that is,

(1.7) [X(s =) d¥(s) = lm ¥ X(£)(Y(tier) = Y(2)),

where {¢,} is a partition of [0, ¢] and the limit is taken as the maximum of
t;,1 — ¢t; tends to zero. The integral exists if the limit exists in probability.
Recall that the choice of the left endpoint of [¢;, ¢, ,) as the argument of X is
critical even when Y is a Brownian motion. Indeed in the Brownian differen-
tial case, if we take the argument of X to be the midpoint, we obtain the
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Stratonovich integral. [We will, of course, assume that X is adapted (and
hence the left-continuous process X(-—) is predictable) and that Y is a
semimartingale for the same filtration, but the uninitiated reader can follow
much of what is going on without a thorough knowledge of these matters.]
Throughout, we will use Protter (1990) as our basic reference for material on
semimartingales and stochastic integration. See this volume for details and
further references.

The following two examples will help motivate the assumptions of the main
theorem.

1.1 ExamPLE. Let X =Y =X, = x;1,, and Y, = {141/, Then for ¢ >
1+ @{/n),

(1.8) [X,(s =) dy,(s) = 1,
0

but the limiting integral gives

(1.9) [X(s =) av(s) = o.
0

1.2 ExampPLE. Let W be standard Brownian motion and define W, so that

(1.10) %Wn(t) =n(W(k : 1) - W(—:—)),te {f, Rt 1).

n n

Then
A W,(s =) dW,(s)

- jo‘w([';—s]) dW,(s) + fot(Wn(s) - W([';—s])) dW.(s)

am - zw()(w(5=) - w(z))

<2 (i) =l (w5 ) - w5

> ['W(s)dW(s) + L
o 2

Example 1.1 is indicative of problems that will arise whenever the integrand
and the integrator have discontinuities which coalesce in the wrong way. We
will avoid these difficulties by requiring that the pair of processes (X,,Y,)
converge in the Skorohod topology on D0, ) which is stronger than assum-
ing convergence of each component in Dg[0, ). For future reference, let A
denote the collection of continuous, strictly increasing functions mapping [0, )
onto [0, ). Recall that for any metric space E, a sequence of cadlag, E-valued
functions {x,} converges in the Skorohod topology to x, if there exists a
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- sequence {A,} C A such that x, ° A,(¢) = x(¢) and A,(¢) — ¢ uniformly for ¢ in
bounded intervals. Note that in Example 1.1, Y, converges in the Skorohod
topology with E = R, but the pair (X,,,Y,) does not converge in the Skorohod
topology with E = R2, and in general, convergence in the Skorohod topology
with E = R? excludes the possibility of the type of coalescence of jumps that
causes the problem in that example. In particular, for each n, let y, be
piecewise constant and suppose the number of discontinuities of y, in a
bounded time interval is uniformly bounded in n. Then if (x,,y,) = (x,¥) in
the Skorohod topology on Dpg:[0, %),

(1.12) [ (5 =) dya(s) = [, (s —) dy(s),

(1.13) [ Yals =) dx,(s) = A y(s ) dx(s),

in the Skorohod topology on Dg[0, ). (Actually, the quadruple consisting of
x,, ¥, and the two integrals converges in Dg40, «)). Example 1.2 points to
more subtle problems and we will come back to it when we discuss the
hypotheses of the main theorem.

We will formulate the main theorem, Theorem 2.2, in Section 2. This
theorem is essentially the same as that given by Jakubowski, Mémin and
Pages (1989), but we believe that our formulation and proof are more readily
accessible to researchers without extensive expertise in the theory of semi-
martingales and stochastic integration. Section 3 will be devoted to further
examples and applications. Section 4 contains some relative compactness
results for stochastic integrals and some variations on the main theorem.
Applications to stochastic differential equations will be discussed in Section 5.
In particular, we generalize results of Slomifiski (1989). Some technical results
will be given in Section 6.

2. Weak convergence of stochastic integrals. Throughout we will be
making various transformations of the processes involved. We will need to
have information about the continuity properties of these transformations and
the following lemma will be useful in obtaining this information.

2.1LemMA. Let E, and E, be metric spaces and let F: Dg [0, ) — D [0, ®).
Suppose F(xoA) = F(x)oA for all x € Dgl0,) and all A € A. Suppose
x,(t) > x(t) uniformly for t in bounded intervals implies F(x,) — F(x)
in the Skorohod topology. Then x, — x in the Skorohod topology implies that
F(x,) — F(x) in the Skorohod topology. If x,(t) — x(¢) uniformly on bounded
intervals implies F(x,Xt) - F(xX¢) uniformly on bounded intervals, then
x, — x in the Skorohod topology implies (x,, F(x,)) = (x, F(x)) in the Skoro-
hod topology on Dy, , 5 [0, ).

ProOOF. Suppose x,, — x is the Skorohod topology. Then there exist A, € A
such that x, ° A, (¢) = x(¢) and A,(¢) = ¢ uniformly on bounded intervals. It
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follows that F(x, ° A,) — F(x) in the Skorohod topology, so there exist 1, € A
such that 7,(¢) - ¢ and F(x,°A,)°n,() > F(xX¢) uniformly on bounded
intervals. Since A,°n,(¢) >¢ and F(x,)oA,°n,() = F(x,°A,)°n,(t) —>
F(x)Xt) uniformly on bounded intervals, it follows that F(x,) —» F(x) in the
Skorohod topology. The last statement is immediate from the definition of the
Skorohod topology. O

The following functional gives a good example of an application of the
lemma. Fix m and define k;: [0, ) — [0,%) by hs(r) = (1 — §/r)*. Define Jj:
Dynl[0, ) = Dgnl0, ©) by

(2.1) Js(2)(2) = X hs(lx(s) — x(s =) (x(s) —x(s —)).

s<t

Lemma 2.1 shows that x — J;(x) and x —» x — J5(x) are continuous. Conse-
quently, by (1.12), if (x,,,y,) — (x, y), then

(2.2) A x,(s =) dJy(3,)(s) = A %(s =) dJy(y)(s).

Let {#} be a filtration. A cadlag, {%}-adapted process Y is a semimartin-
gale if it can be decomposed as Y = M + A, where M is an {%,}-local martin-
gale and the sample paths of A have finite variation on bounded time
intervals, that is, there exists a sequence of {#}-stopping times 7, such that
7, = » a.s. and for each £, M™ = M(- A 7,) is a uniformly integrable martin-
gale and for every ¢ > 0, T,(A) = supXL|A(¢,,,) — A(%,)| < » as. (where the
supremum is over partitions of [0, £]).

An R™-valued process is an {%;}-semimartingale, if each component is a
semimartingale. Let M*™ denote the real-valued, £ X m matrices. Through-
out, [XdY will denote [X(s —)dY(s).

2.2 THEOREM. For each n, let (X,,Y,) be an {#,"}-adapted process with
sample paths in Dyim,zn[0,®) and let Y, be an {%,"}-semimartingale. Fix
8 > 0 (allowing & = ») and define Y,? = Y, — J5(Y,). (Note that Y,? will also
be a semimartingale.) Let Y;? = M} + A’ be a decomposition of Y? into an
{#,"}-local martingale and a process with finite variation. Suppose

C2.2(1) For each a > 0, there exist stopping times {r%} such that
P{r7 < a} < 1/a and sup, E[[M), . .« + T, 5 o(A)] < .

n

If (X,,Y,)=(X,Y) in the Skorohod topology on Dypmyznl0,®), then Y
is a semimartingale with respect to a filtration to which X and Y are adapted
and (X,,Y,, [X,dY,) = (X,Y, [XdY) in the Skorohod topology on
Dyyimygmygtl0, ). If (X,,Y,) = (X,Y) in probability, then the triple con-
verges in probability.

2.3 REMARK. If there exist decompositions of {Y;’} such that C2.2(i) holds,
we will simply say that {Y,} satisfies C2.2() for 6. For ¢ > 0, define
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¢ = inflt: IM2@®)| vV IM2(t — )| = ¢ or T(A’) > c}. Suppose the following con-
ditions hold.

C2.2 (i) {T(A2)} is stochastically bounded for each ¢ > 0.
C2.2(iii) For each ¢ > 0, sup, E[IM(t A 79)? + T, 5 «(A))] < .

Since convergence in distribution of {Y,} in the Skorohod topology implies
stochastic boundedness for {sup,., Y, ()}, sup, /M@= sup,_,|Y2(®) -
A2(@®)| < sup, Y, ()| + T,(A3) is stochastically bounded in n for each « and
hence there exists c, so that P{rf < a} < 1/a. In addition, E[[M;], , ,..] =
E[M2(t A ¢<)?] and C2.2() is satisfied with 77 = 75« For § < o, C2.2(iii) will
usually be immediate since the discontinuities of Y, are bounded in magni-
tude by & (making Y a special semimartingale) and there will exist a
decomposition with the discontinuities of each term bounded by 25 [see Jacod
and Shiryaev (1987), Lemma 1.4.24].

2.4 REMARK. To see that Y is a semimartingale, it is enough to show
that Y? is a semimartingale. Without loss of generality, we can assume
that for a = 1,2,...,7% < 72*% Let Y,?* = Y2(- A 72). Then {(X,,, Y,,, Y2, Y2,
Y22, ..., 7L, 72, .- )} is relatively compact in Dygimypmygm[0, %) X Dgn[0, ®)* X
[0, Let (X,Y,Y?% Y, V%2 .. 71,72 ---) be some limit point and let {#}
be the filtration generated by the limiting processes and random times. For
each T > 0, let

(2.8)  Vp(¥) = sup B[ L IE[V*(¢:10) — Y2()I5"]]
where the supremum is over all partitions of [0, T']. Then
(24) sup, Vy(Y?*) < sup, E[TTM%(A‘Z)] < oo

and hence V (Y?*) < » (V. defined using {#)). [See, e.g., Meyer and Zheng
(1984), Theorem 4 or Kurtz (1991), Theorem 5.8.] It follows that Y>* is a local
{#,}-quasimartingale and hence an {%;}-semimartingale. But

(2.5) Yo(t A7) =Y%(t) + (Y3(r*) = Y°* (%)) Xpe <ty
so Y? is a local {#}-semimartingale and hence an {#;}-semimartingale.

2.5 REMARK. If Y, = Y for each n, then {Y,} satisfies C2.2(i) for all finite &.
If {Y,} is relatively compact in the Skorohod topology and satisfies C2.2(i) for
some & € (0,»], then {Y,} satisfies C2.2() for all finite 8. If {(X,,Y,)} is

relatively compact in the Skorohod topology and {Y,} satisfies C2.2(i) for some
8 € (0, =], then {/X, dY,} satisfies C2.2(i) for all finite 4.

2.6 REMARK. With reference to Example 1.2, note that T(W,) = O(/n).
Proor. Let Z, = (X,,Y,,J5(Y,), Y,?). Z, has sample paths in Dg[0, «) for

E = M*™ x R™ X R™ X R™. The limit in (1.13) suggests attempting to ap-
proximate X, by a piecewise constant process. The problem is to find such an
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approximation that converges in distribution along with X, (in fact, along
with Z,). Furthermore, the approximation must be adapted to a filtration with
respect to which Y, is a semimartingale. By Lemma 6.1, there exists a
(random) mapping I,: Dz[0, ) — D0, «) such that |2(¢) — I.(zX¢)| < ¢ for all
2 € Dgl0,») and ¢ > 0, I(2) is a step function and the mapping z — (z, I.(2))
is continuous at z a.s. for each z € D[0, «). Furthermore, I.(Z,) is adapted to
a filtration 4" = & v #, where & is independent of {#"} (and hence
Y, will be a {#"}-semimartingale). Let X: denote the first, M*™-valued
component of I(Z,). Then |X, - X:|<¢ and (X,,Y,,J5Y,), Y’ X)) =
(X,Y,J,(Y),Y? X°).

Define U, = (X, dY, and U7 = [X: dY? + [X, dJ,(Y,) with similar defini-
tions for U and U®. Then it follows as in (1.12) and (1.13) that (X, Y,, U?) =
(X,Y,U?) in Dygimygmy g0, ©). Observing that

R, =U,-U; = [(X, - X}) dY;}
(2.6)

= [(X, - X3) aM} + [(X, - X3) da?,
we see that for any stopping time 7,
(2.7)  E[sup, . r | R(s)] <(2E[[M2],,,]7* + E[T, ..(43)])

with similar estimates holding for U — U®. Applying C2.2(3i), it follows that
(X,,Y,,U,) = (X,Y,U).

A review of the proof shows that if convergence in distribution is replaced
by convergence in probability in the hypotheses, then convergence in probabil-
ity will hold in the conclusion. O

The transformation J; provides a convenient, continuous way to eliminate
the large jumps from Y, in Theorem 2.2. Occasionally, however, it may be
useful to apply some other truncation of the large jumps. For example, if Y, is
a martingale, it may be possible to truncate the large jumps in such a way that
the truncated process is still a martingale, simplifying the verification of the
hypotheses of the theorem. With these possibilities in mind, we state a slightly
more general version of the theorem.

2.7 THEOREM. For each n, let (X,,Y,) be an {%,"}-adapted process with
sample paths in Dypm, znl0,©) and let Y, be an {&,"}-semimartingale. Sup-
posethatY, =M, + A, + Z,, where M, is a local {Z,"}-martingale, A, is an
{#;"}-adapted, finite variation process and Z, is constant except for finitely
many discontinuities in any finite time interval. Let N,(t) denote the number

of discontinuities of Z,, in the interval [0,t]. Suppose {N,(t)} is stochastically
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bounded for each t > 0 and

C2.7 For each a > 0, there exist stopping times {77} such that
P{ry <a} < 1/a and sup,, E[[M,]; , ,« + T, ,«(A,)] < .

If(X,,Y,,Z,) = (X,Y, Z) in the Skorohod topology on Dyimgmygm=[0, ),
then Y is a semimartingale with respect to a filtration to which X and Y are
adapted and (X,,Y,, /X, dY,) = (X,Y, [XdY) in the Skorohod topology on
Dy gmygrl0, ). If (X, Y,, Z,) = (X, Y, Z) in probability, then convergence

in probability holds in the conclusion.
3. Examples and applications.

3.1 ExaMPLE. As a simple first example, we consider limit theorems for
sums of products of independent random variables which arise in the study of
U-statistics. Let {¢;} be i.i.d. real-valued random variables with mean zero and
variance o2. Define

1
(3.1) Wn(k)(t) = %2 )> &, &,
n 1<i;< -+ ip<lnt]
and Z, = (W®,...,W). Note that W = oW, where W is standard
Brownian motion and observe that we can write

(3.2) WE(t) = jo ‘Wk-D(s —) dWD(s).

It follows (by induction) that Z, = Z = (W®,..., W), where W = ¢ W
and W™ is the corresponding iterated integral. [Note that X, = X in Dg[0, =)
implies that (X, X,) = (X, X) in Dy, 5[0, ®).]

3.2 ExampLE [Bobkoski (1983)]. Let {£;} be as before. For a constant ¢, let
{Y,} satisfy

(3.3) Vi1 =Y, + &pir
Given Y,,...,Y,,, the least squares estimate é for an unknown ¢ is the value
of ¢ minimizing (Y, — ¢Y})? that is, the solution of
(3.4) Z Y. (Y1 —9Y,) =0,
given by
LYY,

3. = R Rt

(35) b= =5y

Now consider a sequence of such processes {Y;"} in which the true ¢, = (1 —
B/n). If we define X,(¢) = (1/Vn)Y?2,,

(36) X,(t) = $r1X,(0) + [glra-1-ns"1dW,(s),
0
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where W, = W,® and if X,(0) — X(0), it follows that X, = X given by
(8.7) X(t) = e PX(0) + ['e™P¢=90 dW(s).
0

Note that X is an Ornstein—Uhlenbeck process satisfying dX = —gXdt +
o dW. For the least squares estimate of ¢, at time ¢, we have

[nt]—1
(3.8) kE Ykn((¢n - $,)Y + §k+1) =0,
=0
which implies
o7 [ntl/n 2 _ t _
(3.9) n(9n = 6a) [ Xu(8)" ds = [ Xo(s —) AW, (s),
and it follows that
A [loX(s)dW(s)
(8.10) n(d, = ¢n) = = :
fX(s)2 ds
0

More general results along these lines have been given by Llatas (1987), Chan
and Wei (1988) and Cox and Llatas (1989).

3.3 ExampLE. Work on approximation of nonlinear filters [DiMasi and
Runggaldier (1981, 1982), Johnson (1983) and Goggin (1988)] involves study-
ing the limiting behavior of a sequence of Girsanov-type densities, each of
which typically includes the exponential of a stochastic integral. For example,
let {X,} be a sequence of processes with sample paths in Dg[0, ), such that
X, = X. Let N be a unit Poisson process independent of the X,, let the
observation process Y,, be given by

(3.11) Y, () =N(nj:()¢ +n"12h(X,(s))) ds
and define
(3.12) U,(¢) = n7172(Y,(¢) — Ant).

Note that %, Y» = #U» and observe that (X,,U,) = (X,U), where for a
standard Brownian motion W independent of X,

(3.18) U(t) = VAW(t) + [h(X(s)) ds.
0
Suppose that (X, U,) is defined on a probability space (2, &, P,). Then

there exists a probability measure @, on the same measurable space (Q, &)
under which X, has the same distribution as under P,, Y, is independent of
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X, and is a Poisson process with parameter nA, and P, <@, on " =
a(X,(s), Us): s < t) with

dP,
L0 = g0 |,
—exp| [‘In(1 + n~V2A (X, (s —))) dY,(s) — [‘n'/2h(X,(s))d
514 e {fo (1+n (X.(s =) s /(.)n (X.(s)) s}

= exp{jZan In(1 + 27227 h(X,(s —))) dU,(s)

+j;)t(nA In(1+ 2~ Y27 h(X, (s -))) — n'?h(X,(s))) ds}.

Similarly, if (X, U) is defined on a probability space (Q2, &, P), there exists a
measure @ on (Q, &) such that under @, X has the same distribution as
under P, U is independent of X with the same distribution as VYA W and
P < Q on &, = o{X(s), U(s): s < ¢t} with
dP t 1 t 1 112 )

(3.15) L() =45 P exp{fo)t h(X(s)) dU(s) — jOEA h2(X(s)) ds}.
Expanding the logarithm in (3.14) in a Taylor series and applying Theorem
2.2, we see that L, = L under {P,}, P and under {Q,}, Q. Results of Goggin
(1988) can then be applied to show that the conditional distribution w,(¢) of
X, (¢) given &Y= converges in distribution to the conditional distribution w(¢)
of X(¢) given &Y as a process in Dg )0, ).

3.4 ExampLE [Meyer (1989), Emery (1989)]. Next we consider the problem
of showing existence of solutions of the structure equation arising in the study
of chaotic representations formulated by Meyer. Given F € C(R), the problem
is to show existence of a martingale X satisfying

(3.16) d[X],=dt + F(X(t —)) dX(¢),
or, equivalently,

(3.17) X(t)* - X(0)% - 2[0‘X(s —)dX(s) =t + [O’F(X(s -)) dX(s).

Of course, if X is standard Brownian motion, then (3.16) is satisfied for
F(x) = 0. If X is a martingale with |X(¢)| = V¢, then, obviously from (3.17),
(3.16) holds with F(x) = —2x [see Protter and Sharpe (1979) and Emery
(1989) for a construction of such a martingale]l. For Azema’s martingale
[Protter (1990), Section IV.6], F(x) = —x.

Following Meyer (1989), we define a sequence of discrete time martingales
and show that the sequence is relatively compact and that the limit satisfies
(38.16). Setting AY,(k) = Y, (k + 1) — Y,(k) and assuming for simplicity that
Y,(0) = 0, the discrete time analogue of (3.16) becomes

(3.18) AY, (k)% = % + F(Y,(k)) AY, (k).
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Consequently,

F(Y,(k)) £ VE(Y, (k)" + 4/n
2
and since we want Y, to be a martingale, we must have
P{AY, (k) = A7 (R)} = 1 — P(AY, (%) = AL ()}
(3.20) A (k)
T AL (k) - AN(R)

Define X,(¢) = Y,((nt]. Note that E[X,(¢)?] = [nt]/n and more generally

[n(t+h)] [nt]
n Con

The relative compactness of {X,} (and hence for {(X,, F - X,)}) follows easily
[see, e.g., Ethier and Kurtz (1986), Remark 3.8.7]. Since X, satisfies

(3.19)  AY, (k) = = A% (k)

(3.21)  E[(X,(t + k) — X,(1))!1F%] =

X,(6)" = X,(0)" - 2[ X, (s =) dX,(s)

- [—'Zl + fOtF(X,,(s —)) dX,(s),

we see that any limit point of the sequence {X,} satisfies (3.17). More gener-
ally, the above construction will give solutions of

(3.23) d[X]; = dt + F(X,t —) dX(¢)

for any F: Dg[0,%) — Dgl0, ©) satisfying C5.4(i)) and C5.4(ii)) and F(x,?) =
F(x',t) for all x € Dg[0,«) and ¢ > 0, where x* = x(- A t).

(3.22)

3.5 ExampLE [Neuhaus (1977)]. Let &;,&,,... be iid. uniform [0, 1] ran-
dom variables and let 2 be a measurable, symmetric function defined on
[0,1] % [0, 1] satisfying

1,1
3.24 h? %
(3.24) /(;fo (x,y) dxdy <
and
(3.25) ['h(x,y)dx = ["h(x,5) dy = 0.

0 0
Define
1
(3.26) Zy=— ¥ k(& ¢).
l<i<j<n

Then {Z!} is asymptotically Gaussian. To see that this is the case and to
identify the limit, we follow a suggestion of Lajos Horvath and represent (3.26)
in terms of the empirical distribution function F,:

1 n
(8.27) F(¢t) = —~ glxléi,w,(t).
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In terms of F,, Z" can be written

(3.28) zt = n [[ h(s,t) dF,(s) dF,(2)
s<t
and defining B,(¢) = Vn (F,(t) — t), the symmetry of & and (3.25) give
(3.29) z! = [[h(s,t) dB,(s) dB,(t).
s<t

If g satisfies the same conditions as &, then

(3.30) E|(z! - 28] = 2252 —5— [ [ (h(x.9) - g(x.5))" dzdy.

Since any A € L%([0,1] X [0, 1]) can be approximated by smooth g, we may as
well assume that A is continuously differentiable. Under this assumption we
can write

(3.31) X,(t) = foth(s,t) dB,(s) = h(t,t)B,(t) - foths(s,t)Bn(‘s)ds

and, since B, = B, the Brownian bridge [see, e.g., Billingsley (1968), Sections
13 and 19, or Protter (1990), Section V.6], the continuous mapping theorem
implies that X, = X given by

(3.32) X(t) = fO‘h(s, t) dB(s).

More precisely, (X,,, B,,) = (X, B) in Dy, [0, ).
The process B, is a semimartingale with decomposition

Bn(t) = \/;(Fn(t) - t) = \/E(Fn(t) _ j(; - _nis) )

tFn(s)

(3.33) _ff —

1

t

=M, (t) - fol—_an(s) ds.

Note that E[M,(:)?]1=E[[M,)]=¢ In fact, [M,], - t, implying, by the

martingale central theorem, that M, = W and yielding, in the limit, the
classical stochastic differential equation for B. For this decomposition we have

E[Tt(fo'lL_an(s) ds)] [[ —IBn(s)Ids]

(3.34) VE[B.(s)] ds

01—3

=f0‘

ds < »
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for ¢ < 1. Consequently, the conditions of Theorem 2.2 are satisfied and zZh
converges in distribution to

(3.35) z# = [ ['h(s, 1) dB(s) dB(#);

for related results see Hall (1979). Rubin and Vitale (1980) and Dynkin and
Mandelbaum (1983) consider more general symmetric statistics. Rubin and
Vitale represent the limiting random variables as series of products of Hermite
polynomials of Gaussian random variables. Dynkin and Mandelbaum repre-
sent the limits as multiple Wiener integrals. These higher order limit theorems
can also be obtained by the previously used techniques with the limiting
random variables represented as multiple integrals of B. Filippova (1961)
obtained limits represented as multiple integrals of Brownian bridge in special
cases.

3.6 ExampLE [Duffie and Protter (1989)]. Theorem 2.2 is useful in the
derivation and justification of models in continuous-time finance theory as
limiting cases of discrete time models. For example, let the sequence of random
variables £7, £7, ... denote the periodic rate of return on a security with initial
price S,. After k periods the price of the security will be

k
(3.36) s,;L=sg]:[1(1 + £7).

Let Y,(t) = £, _(,,é" and S,(¢) = [, Noting that S7,, — S = S§7¢;, we
can write

(3.37) S.(¢) = 8,(0) + -’:S"(s —)dY,(s).

If 67 units of the security are held during the (¢ + 1th period, the financial
gain for the period is 62(S},; — S7*) and the cumulative gain up to time ¢ can
be written

(3.38) G(9) = [ 0,(s —) dS,(s),

where 6,(f) = 0, Suppose that {Y,} satisfies C2.2(i) for some & and that
(Y,,0,,S,(0) = (Y,0,S(0)) (in Dg0,) X R). Then the limiting equation

(3.39) S(t) = S(0) + fO‘S(s —)dY(s)

has a (locally) unique global solution, so by Theorem 5.4 [see also Avram
(1988)], S, = S. [More precisely, (Y,,6,, S,) = (Y, 6, S).] It follows that {S,}

also satisfies C2.2(1), so that G, — G given by
(3.40) G(t) = [0(s =) dS(s).
0

The solution of (3.39) with S(0) = 1 is called the stochastic or Doléans—-Dade
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exponential and is denoted £(X). The general solution is then given by
S = S(0)&(X) [Protter (1990), Section I1.8].

3.7 ExamMpLE. For each n, let Y, be an {%;"}-semimartingale and let {r}}
be a sequence of {%,"}-stopping times with 7§ = 0 and lim, _,, 7} = . Define
(3.41) Y (t) =Y, (7)), rP<t<tl.,

Suppose that Y, = Y and that {Y,} satisfies C2.2(i) for some § € (0, »]. (In
partlcular this last statement holds if Y, = Y for all n.) Then {Y,} is relatlvely
compact in the Skorohod topology and satisfies C2. 2(G). If sup, 77,1 — 72 = 0,
Y = Y. Since the increments of Y can be estimated in terms of the incre-
ments of Y, the relative compactness of {Y,} follows easily [see Theorem 3.7.2
of Ethier and Kurtz (1986)]. The convergence assertion follows from Proposi-
tion 3.6.5 of Ethier and Kurtz (1986). To see that C2.2(i) is satisfied, define

(342) A (1) =A%(mh), M) =Mi(7}), TR <t<7ti

If§ = w, then Y, = M3 + A, E[[M], sl < E[[M), , .«] and E[T, , ,o(A3)] <
E[T, , .«(A3)] so C2.2(i) holds. If § < =, then

(3.43) Y, = dy(¥,) + M2 + A2 + (Jx(Y,) — J5(Y,)),

where Jy(Y,) = J;(Y,)7}) for 7f <t <7P,.. As before, F[[M insal <
El[M?], are] and we claim that there exist stopping times 7} satisfying
P{7y <a} < 1/a and sup, E[T, , ;( A% + Ja(Y ) — J5(Y,)] < . The relative
compactness of {Y,,} and (Y} implies that {T(J;(Y,) — J,(¥,))} is stochastically
bounded for each ¢. For each a > 0, select c, such that P{T ' (J(Y,) —
Js(Y,)) > ¢} < 1/2a, and define 5% = inflt: T,(Js(Y) JY,) = c,} and
7% = 72 A n%. Then, noting that the magnitude of the discontinuities of
M? + & + (J\(Y,) — J4(Y,)) is at most 5,

E[T, (&, + Jy(Y,) - J5(Y,))|
<E[T, ;2(A3)] + ¢,
+ E[(J5(¥,) = J5(T,)) (2 A 72)
44) (%) = Ta(T))(E A 72 )]
<E[T;,,2(4A5)] +c, +8
+ E[IM3(¢ A 72) — M2(t A 72 )
+AL(e A FE) = Aot A FE )|
< 2E[T,, 2(A)] + ¢, + 5 + ‘/E_[[_AT]MT] ,

and C2.2(G) follows.
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4. Relative compactness and additional convergence results. The
conditional variation on [0, ¢] of a process X with respect to a filtration {%,} is
defined by V(X) = sup E[X,|E[ X(¢;,,) — X(¢)|F, ]I, where the supremum is
over all partitions of [0, ¢]. (For vector-valued X we take |x| = |x;|.) For a
stopping time 7, X will denote the stopped process given by X"(¢) = X(¢ A 7).

4.1 LemmA. For n=1,2,..., let X, and Y, be {% "}-adapted, X, in
Dyyrn[0, ) and Y, in Dyn[0, ). Assume the following condition:

C4.1 For each a > 0, there exist stopping times {12} with
P{ry < a} < 1/a such that for each t > 0,
sup, E[lY;/*(#)]]l < » and sup, V(Y ") < = (where
the conditional variation for Y, is with respect to
Fmh.

Let H,(t) = sup, .| X,(s)| and suppose that {H,(t)} is stochastically bounded
for each t. Define

(4.1) Z,(t) = [ X,(s =) d¥,(s).

Then {Z,} satisfies C4.1 and there exist strictly increasing, {%,"}-adapted
processes C,,, with C,(0) = 0, C,(¢ + k) — C,(¢t) = h and {C,(t)} stochastically
bounded for all t,h > 0, such that, defining v, = C;%, Y(t) = Y,(y,(t)) and
Z.(t) = Z,(y;t), (Y, Z,,v,)} is relatively compact in DR™ x R* x R[0, «).

4.2 REMARK. (a) Note that Z,(¢) = Z, (v, ().

(b) Theorem 3.5 of Kurtz (1991) gives conditions on the sequence {C,}
which imply relative compactness for {(Y,, Z,)}. This theorem is an extension
of Theorem 2.3 of Jacod, Mémin and Métivier (1983).

(c) The result will also hold under the assumption that X, is predictable
and H, is a right-continuous, adapted, increasing process satisfying | X, (s)| <
H,(¢) for s <t, with the usual extension of the stochastic integral to pre-
dictable integrands.

(d) Let
ot (D"
(4.2) Y, = k‘L:«O on Xl1+k/n%1+(+1)/n?

and X, = —sign(Y,). Then the conditions of the lemma are satisfied and

n—11 1
(4.3) Z, = k§1 X1tk /2 + opXl1+1/n,09
The vy, can be selected so that y, = 1/n on the interval [1,2) and y, =1
otherwise. The sequence {Zn} then converges in Dgi[0,») to a continuous,
piecewise linear function. Note that {Z,} does not converge in the Skorohod
topology. (We thank Mémin and Slominski for bringing this example to our
attention and pointing out a serious error in an earlier version of this paper.)
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Proor. Each Y, has a unique decomposition Y, = M, + B, where M, is
a local martingale and B, is a predictable finite variation process satisfying
E[T, ,.«{B,)] < V(Y ") [see Kurtz (1991), Proposition 5.1]. If we write

49)  Z(0) = [K,(s -) dM,(s) + [X,(5 =) dB,(5),

the first term is a local martingale and the total variation of the second term
up to time ¢ is bounded by H,(t — )T,(B,). Consequently, if o, is a stopping
time so that the first term stopped is a martingale, H,(o,, — ) < c and o,, < 75,
then V(Z2») < cV,(Y,/*). But for any B > 0, ¢, @ and o, can be selected so that
P{o, < B} < 1/B and it follows that {Z,} satisfies C4.1. This in turn implies
that {(Y,, Z,,)} satisfies C4.1. Corollary 1.3 of Kurtz (1991) then gives the other
conclusions. O ‘

4.3 ProprosiTioN. Let {(U, s Y,)} be relatively compact (in the sense of
convergence in distribution) in Dge,pn[0,©) with (U,,Y,) adapted to {F,"}
and {Y,} satisfying C2.2(G) for some & > 0. Suppose that X,, has sample paths
in Dyn[0,®) and is adapted to {Z,"}. Define

(4.5) Z,(t) = Uy(t) + jo ‘X (s —)dY,(s).

Suppose there exist strictly increasing, {%,"}-adapted processes C,, with
C.(t + h) — C,(#) = h and {C,(8)} stochastically bounded for all t,h > 0 such
that, defining v, = C;1, U,t) = U(y,(®)), etc., {(U,, Xn, Y,,v,)} is relatively
compact in Dye, Mkmeme[O «). Then {(Z,,U,,Y,)} is relatively compact in
Dty gt xgml0, ).

Proor. For technical reasons, we extend the definition of the processes to
the time interval [ — 1, ») by setting U, (¢) = U,(0), X,(¢) = X,(0), Y,(¢) = Y (0)
and C,(¢) = ¢ for —1 <t < 0. These definitions ensure that {(Un, Xn, s Y )b
is relatlvely compact in Dy pgemygmscgl — 1, %)

The fact that (Y, } satisfies C2.2(i) implies that {v, } satisfies C2.2(3i). Conse-
quently, selecting a convergent subsequence from ((U,, X,,Y,,v,)} with limit
(U, X,Y,7), by Theorem 2.2, {(Z,,U,, X,,Y,, v,)} converges to (2,0,%X,Y,y),
where

(4.6) Z(t) = U(t) + [‘ X(s —)d¥(s) = U(t) + j‘X(s —) dY(s).

We may assume that (U, s, Y,) converges along the same subsequence and
the limit must be (U,Y) = (Uoy~L, Yo y~1), where y~1(¢) = influ: y(u) > #}.
[Note that y~! is defined so that it is rlght-continuous and that the conditions
on C, imply y %(¢)=¢ for ¢t <0.] Lemma 2.3 of Kurtz (1991) (with the
obvious modification for the time interval [—1,x)) implies that (U,,Y,) =
(U, Y) in the Skorohod topology if and only if on any interval on which v is
constant, (U Y) is constant except for at most one Jump But on any interval

on which (U,Y) is constant, Z is constant and Z jumps only when Uor?Y
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jumps. Consequently, on any interval on which y is constant, (Z,U,Y) is
constant except for at most one jump. Applying the cited lemma again, we have
that, along the subsequence, (Z,,U,,Y,) = (Z,U,Y) in the Skorohod topol-
ogy on Dk gmygmygl—1,%). But (Z, U, Y) must be continuous at 0, so the
convergence holds in Dy, pimygmygl0, ) as well, and the proposition follows.

O

4.4 CoroLLARY. Let {(U,, X,,,Y, )} have sample paths in Dy, ppmxpml0, ©)
and be adapted to {F,"} and let Z,, be given by (4.5). Suppose that {(U,,Y,)} is
relatively compact in Dge, gm0, ), that {Y,} satisfies C2.2(1) for some & > 0
and that {X,} satisfies C4.1. Then {(Z,,U,,Y,)} is relatively compact in
Dty giescpml0, ).

Proor. The relative compactness of {(U,,Y,, /X, dJs(Y,))} is immediate.
Since the stochastic integral on the right of (4.5) has a discontinuity only when
Y, has a discontinuity, and {(U,, Y,,)} is relatively compact, the proposition will
follow if we show that { /X, dY,°} is relatively compact [see, e.g., Kurtz (1991),
Lemma 2.2].

C2.2(i) implies C4.1 for {Y,’}. Consequently, Corollary 1.3 of Kurtz (1991)
implies the existence of strictly increasing, {%,"}-adapted processes C,, with
C(0) =0, C(t+h)—Ct) 2k and {C#)} stochastically bounded for all
t, h > 0, such that, defining y, = C; %, Y2(t) = Y,2(7,(t)) and X,(t) = X,(y,(¢)),
{(Y?, X,,,v,)) is relatively compact in Dgm gy gl0, ©). Defining

(4.7) Vo(t) = [X,(s =) d¥(s),
0
Proposition 4.3 implies {(Y;?, V,)} is relatively compact in Dgm g0, ). O
4.5 CoroLLARY. Suppose {(U,,Y,, X,)} is relatively compact in
Dy gml0, %) X Dyn[0,), {Y,} satisfies C2.2(1) for some 8 >0 and Z, is
given by (4.5). Then {(U,, Y, Z,)} is relatively compact in Dgi gm gt[0, ).

Proor. Let W, = (U,,Y,, X,). The idea of the proof is to define a positive

function A(r, s) which isn no'rlldecreasing in r and nonincreasing in s such that
(4.8) Co(t) =t + X h(IW,(s) = W,(s —)l,s)

s<t

satisfies the hypotheses of Proposition 4.3. Note that C, is designed so that
the successive discontinuities of W, -C, ! are separated by a deterministic
function of the size of the first discontinuity. Lemma 2.2 of Kurtz (1991) then
gives the relative compactness. The difficulty arises in ensuring that {C,(¢)} is
stochastically bounded for each ¢ For & = 1,2,..., let N*(¢) be the number of
discontinuities of W, before time ¢ satisfying 1/k <|W,(s) — W (s —)| <
1/(k — 1). The relative compactness of {W,} in Dpe, pnl0,%) X Dyyem[0, %)
ensures that {N}*(¢)} is stochastically bounded for each ¢ and that
lim, ,, sup, P{N}(s) > 0} = 0. Consequently, there exist a,(t) > 0
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independent of n such that
X 1 1
(4.9) sup, P{a,(t)N,;(t) > oF < o5

Without loss of generality, we can take a,(¢) to be nonincreasing in ¢ and k.
Define

(4.10) C,(t)=t+ i i ap(m + 1)(NE((m + 1) At) = Ni(m A 2)).
m=0k=1

Note that the first sum in (4.10) is in fact finite and that (4.9) implies by
Borel-Cantelli that only finitely many terms in the second sum exceed 1/2*.
To check the stochastic boundedness of {C,(2)}, it is enough to check the
stochastic boundedness of

(4.11) K= f ay(m)Ni(m)
k=1

for each m. We have

! a
P{K'>a+1} < Y, P{ak(m)N,f(m) > 7}
k=1

(4.12) +P{ i a,(m)Nk(m) > %}
k=l+1

! 1
< kglP{ak(m)N,f(m) > %} =

and the stochastic boundedness of {K'} follows easily from the stochastic
boundedness of the N(m). O

These relative compactness results lead to the problem of identifying the
limit under more general assumptions on the limiting behavior of {X,} than in
Theorem 2.2. First assume that (X,,Y,) = (X,Y) in Dyn[0, ©) X Dgm[0, )
[rather than in Dypm,zn[0,)] and that {Y,} satisfies C2.2(i). For all but
countably many & > 0, (X,(- — ¢), Y,) = (X(- — ¢),Y) in Dypim, pm[0, ). Con-
sequently, for each such ¢,

(4.13) [X,(s - e =) dY,(s) = [X(s —& =) d¥(s)
0 0
and hence there exists a sequence ¢, — 0 slowly enough such that
(4.14) [Xo(s = e, =) dY,(s) = [X(s —) d¥(s).
0 0

Noting that {/X, dY,} is relatively compact by Corollary 4.5, assume that
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/X, dY, = Z. Consequently,
(4.15) f'(Xn(s =) =X, (s — &, —))dY,(s) = Z(*) - f'X(s —) dY(s).
0 0

Note that the sequence on the left in (4.15) is relatively compact by an
argument similar to that used in the proof of Corollary 4.5.

Let J,(X,,) denote the M*™-valued process whose ijth component is J,( X:/),
where X/ is the ijith component of X, and let X} =X, —J,(X,). Let
Va(t) = sup, ./ X2(s) — X%(s — ¢,). Then V? = V? given by V°(t) =
sup, | X%(s) — X°(s — )| < Vkm 6. By the same type of estimate as in (2.7), to
identify the right side of (4.15) it is enough to identify the limit of

(416)  UH(0) = [(Jo(X,)(s =) = Jp(X,)(s = e =) d¥,(s)

(along a subsequence if necessary) and then to let § — 0. Let {r’,} denote the
times of discontinuity of J5(X,) with 75, = 0. Note that {r2} are just the
times when at least one component of X, has a discontinuity larger than §.
Then U? can be written

(417) Z (Yn(Ti&n + 8n) - Yn(Tfn))(Ja( Xn)(’rzan) - J&(Xn)(Tlan _))

P <t

in=

and any limit point U?® of {U?} satisfies
(4.18) U°(1) = X (Jo(X)(BY) = Jo(X)(B7 =))(Y(BD) - Y(8] -)),

B =<t

where {B?} is some subset of the times at which some component of X has a
discontinuity larger that §. Letting § — 0, we see that

U(t) = Z(¢t) — fo‘X(s —) dY(s)

= E (Y(ﬂi) - Y(Bi _))(X(ﬁi) _X(Bi _)),

B;<t

(4.19)

where {B,} is some subset of the times at which both Y and X have disconti-
nuities. From (4.17) it is clear that {8,} is empty unless some discontinuities of
Y, coalesce with discontinuities of X, from above. The following theorem
gives conditions under which no such coalescence occurs.

4.6 THEOREM. For each n, let (X,,Y,) be an {Z,"}-adapted process with
sample paths in Dyn, gn[0,©) and let Y, be an {%,"}-semimartingale. Sup-
pose that for some 0 < § < o, C2.2(i) holds and that for all T > 0 and n > 0,
there exist random variables {yI(n)} such that
E[1AIY,(t +u) = Y()IF"] < E[vf (mIF],

(4.20)
O<u<n,0<t<T,

and lim, _,, limsup, ., E[yT(n)] = 0.
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If (X,,Y,) = (X,Y) in Dysn[0, ©) X Dgn[0, ), then Y is a semimartingale
with respect to a filtration to which X and Y are adapted and

(Xn,yn,fxn dYn) = (X,Y, [XdY)

in Dypmygmxgil0, ). If (X,,Y,) = (X,Y) in probability, then the triple con-
verges in probability.

4.7 REMARK. See Ethier and Kurtz (1986), Theorem 3.8.6 and Remark
3.8.7 for the connection of (4.20) to conditions for the relative compactness of
{Y,}. These conditions imply a type of uniform quasi-left continuity on the
sequence {Y,}. Consequently, this theorem is related to Theorem 5.1 of
Jakubowski, Mémin and Pages (1989).

Proor. We need only show that U = 0 in (4.19). The inequality in (4.20)

holds with ¢ replaced by a stopping time. Consequently, we have [with refer-
ence to (4.17)] for ¢, < m,

E[ Y 1A |(Yn('rlfsn AT +¢,) - Yn(Ti‘sn A T))l
i=1

(4.21) XLANI(X)(7in AT) = Io(Xo) (7 AT —))|]

< E § 7731(77){1 A l(JB(Xn)(Tzsn A T) - JB(Xn)(TLBn AT _))l}]
i=1

< mE[yT(n)].

Since the number of discontinuities of J5(X,) in any finite time interval is
stochastically bounded in n, it follows that U?%(¢) = 0 for each ¢ > 0. Conse-
quently, U = 0 and the theorem follows.

Noting that if a sequence {U,} is defined on a single sample space and
U, = 0, then U, — 0 in probability, we see that convergence in distribution
can be replaced by convergence in probability in the statement of the theorem.

0O

In the next theorem we weaken the assumption that the integrands con-
verge in the Skorohod topology at the cost of adding the requirement that the
limiting integrator be continuous. M[0, ) denotes the space of (equivalence
classes of) measurable E-valued functions topologized by convergence in mea-
sure.

4.7 THEOREM. For each n, let (X,,Y,) be an {%,"}-adapted process with
sample paths in Dypnygnl0,®). Suppose that {Y,} satisfies C2.2(i) for some
0 < § < » and that {X,} satisfies C4.1. If (X,,Y,) = (X,Y) in Myn[0, ) X
Dgnl0,0) and Y is continuous, then X has a version with sample paths in
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Dyn[0,0), Yis a semimartingale with respect to a filtration to which X and Y
are adapted and (X,,Y,, (X, dY,) = (X,Y, [XdY) in Myn[0, ©) X
Dgmygil0,0). If (X, Yn) - (X Y) in Mypn[0, ) X Dgpn[0, ) in probability,

then the triple converges in probability.

Proor. Let C,,v,, X,, and Y be as in Corollary 4.4 and Proposition 4.3
and set Z, = fX dY, and Z, =2, °*Yn = /X,dY,. Then ((X,,Y,,Z,,
X,Y,Z, yn)} is relatlvely compact in M km[O ®) X Dpm, g0, ) ><
DMkmemeka[O ©). If (X,Y, Z, X,Y,Z,y) is a limit point, then X = Xoy
Y=Yoy land Z = Z oy~ 1. Since Y is continuous and {Y,} converges in the
Skorohod topology, Y must be constant on any interval on which vy is
constant, which implies

(4.22) Z(t) =Zoy N (t) = [Rey (s =) dVoy Y(s) = ['X(s —) d¥(s)
0 0
and the theorem follows. O

The previous theorem still is not optimal even in the case of continuous
integrands. For example if each Y, is a standard Brownian motion and
(X,,Y,) = (X,Y)in L%[0,x) X DR[O ®), then (X, dY, = [XdY. The follow-
ing theorem comes close to covering this situation at the cost of placing strong
conditions on the relationship between X, and Y,. Of course, other approxi-
mations of X, could be used in place of X" defined next.

4.8 THEOREM. Let Y, =M, + A, + Z,, where {(M,, A,, Z,)} satisfies the
conditions of Theorem 2.7. Let H,(t) = sup, _,|X,(s)| and suppose that {H,(¢)}
is stochastically bounded for each t. Define X" by
(4.23) XMty =kt [* X,(s)ds.

t—h
Suppose that for each t > 0 and ¢ > 0,

lim hmsupP{fIX"(s =) =X, (s -)I’d[M,],

h—>0 n-ow

(4.24) ,
+ [1XE(s =) = X(s DIA(T(A) + T(2,) = o)
0
= 0.
If (X,,Y,,Z,) = (X,Y,Z) in Myn[0,©) X Dgmnl0,®), then
(4.25) U(t) = lim Xh dy

h—0

exists and (X,,Y,, (X, dY,) = (X,Y, U) in Myn[0,%) X Dgmy gm0, ). If
(X,,Y,,Z,) > (X,Y,Z) in Mynl0,%) X Dgn, pnl0,©) in probability, then

ny tns

(X,,Y,, jX dY,) — (X, Y, U) converges in probability.
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PrOOF. Since X" is locally Lipschitz, the conditions on H, ensure that
(XY,,Z,) = (X" Y,Z) in Dypnygrnygnl0,%) and hence that [X}dY, =

/X" dY. Consequently, estimating as in (2.7), (4.24) implies the result. O

5. Stochastic differential equations. In this section we generalize
results of Slominski (1989) concerning convergence of sequences of solutions
of stochastic differential equations [see also Hoffman (1989) for results assum-
ing the limiting semimartingale is continuous]. Note that Slomifiski also
considers Stratonovich equations. Avram (1988) considered the special case of
stochastic exponentials, that is solutions of equations of the form (£ = m = 1):

(5.1) X(1) =1+ [X(s ) d¥(s).
0

For n=1,2,... let F,: Dgi0,©) = Dyunl0, ), let U, and Y, be processes
with sample paths in Dgi0,®) and Dgn[0,®), respectively, adapted to a
filtration {#,"}. Suppose Y, is a semimartingale and that F, is nonanticipat-
ing in the sense that F,(x,t) = F(x%,¢) for all ¢ > 0 and x € Dg[0, ©), where
x2%(+) = x(- A t). Let X, be adapted to {#"} and satisfy

(5.2) X,(t) = Uy(t) + ['F(X,,5 =) dY,(s).
0

In order to apply Theorem 2.2 to the study of the weak convergence of
solutions of this sequence of equations to the solution of a limiting equation

(5.3) X(t) = U0 + [F(X,s —)dY(s),
0

we need conditions under which weak convergence of the pair (X,,Y,) =
(X,Y) implies (Y,, F(X,)) = (Y, F(X)). We could, of course, simply assume
that (x,,y,) = (x,y) in Dge,gnl0,) implies (x,, y,, F,(x,) = (x,y, F(x)) in
Dy gmst=[0, ©) and under that assumption we have the following proposi-
tion.

5.1 ProposITION. Suppose that (U,, X,,Y,) satisfies (5.2), that
{(U, X,,Y,)} is relatively compact in Dgi,gpixpnl0,®), that (U,,Y,) = (U,Y)
and that {Y,} satisfies C2.2(1) for some 0 < & < ». Assume that {F,} and F
satisfy

C5.1 If (x,,y,) = (x,y) in the Skorohod topology, then
(x,,y,, F.(x,) = (x,y, F(x)) in the Skorohod topol-
ogy.

Then any limit point of the sequence {X,} satisfies (5.3).

Proor. First note that if a subsequence of {X,} converges in distribution,
then along a further subsequence, the triple will converge in distribution to a
process (U, X,Y). Theorem 2.2 then implies that (5.3) is satisfied. O
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The following lemma, a generalization of Lemma 2.1, shows that the
assumption on the sequence {F,,} is valid for many interesting examples. Let .AI
be the subset of absolutely continuous functions in A for which y(A) = |In All.
is finite.

5.2 LEMMA. Suppose that {F,} and F satisfy the following conditions:

C5.2() For each compact subset H#C Dgil0,®) and ¢ > 0,
Sup, ¢ 4 Sup, | F(x,s) — F(x, s)| - 0.

C5.2Gi) For {x,} and x in Dgl0,») and each t > 0, sup, _,|x,(s) —
x(s)| — 0 implies sup, _,|F(x,,s) — F(x,s) — 0.

C5.2(iii) For each compact subset H#C Dgi[0,) and t > 0, there
exists a continuous function w: [0,®) — [0, ©) with »(0) = 0
such that for all A €A, sup,._sup,_,/F(x-A,s)—
F(x, A(s)) < w(y(M)).

Then (x,,y,) = (x,y) in the Skorohod topology implies (x,,y,, F.(x,)) —
(x,y, F(x)) in the Skorohod topology.

Proor. If (x,,y,) = (x,y) in the Skorohod topology, then there exist
A, € A' such that y(1,) > 0 and (x,°A,,y,°A,) = (x,y) uniformly on
bounded time intervals. Consequently,

Fo(2,,4,(s)) — F(x,5)
(5.4) = Fo(2,,14(8)) = F(%,,4,(5)) + F(x,,4,(s))
—F(x,°1,,8) + F(x,°,,s) — F(x,s)
goes to zero uniformly in s on bounded intervals. O
5.3 ExaMPLES. Let g: R* X [0,%) — M*™ and A: [0, ©) — [0, ©) be continu-
ous. The following functions satisfy C5.2(ii) and C5.2(iii):

(a) F(x,t) = g(x(t),t).
(b) F(x,t) = [(h(t — s)g(x(s), s)ds.

For k=m =1,

(©) F(x,t) = sup,_, h(¢t — s)g(x(s), s).
(d) F(x,t) = sup,_, h(t — s)g(x(s) — x(s — ), 5).

One shortcoming of Proposition 5.1 is the a priori assumption that the
sequence of solutions is relatively compact [see Theorem 2.3 of Jacod, Mémin
and Métivier (1983) for general conditions on {Y,} under which the desired
relative compactness will hold]. We can avoid this assumption by localizing the
result and applying Proposition 4.3. We say that (X, 7) is a local solution of
(5.3) if there exists a filtration {%,} to which X, U and Y are adapted, Y is an
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{Z,}-semimartingale, 7 is an {%,}-stopping time and

(5.5) X(tar)=Unr) + [F(X,s-)dY(s).
0

We say that strong local uniqueness holds for (5.3) if any two local solutions
(X,, 7)), (X,, 7,) satisfy X (t) = X,(¢), t <7, A 7y, a.s. To define a notion of
weak local uniqueness (that is, uniqueness of distributions), we need to require
that the stopping time associated with the solution be a measurable function of
the solution. We say that (U, Y, X, #) is a weak local solution of (5.3) if (U,Y)
is a version of (U, Y) and (5.5) holds with (U, Y, X, 7) replaced by (U, Y, X, #).
We say that weak local uniqueness holds for (5.3) if for any two weak local
solutions (U, Y;, X;, 7)) and (U,, Yy, X,, 75) with 7, = h(X;) and 7, = hy(X,)
for measurable functions A, A, on Dgil0,%), (X, by A hy(X))) and (X5, hy A
hy(X,)) have the same distribution [see Protter (1990), Chapter V, for suffi-
cient conditions for uniqueness].

In order to apply Proposition 4.3, we need assumptions on the properties of
F(x) and F(x) under transformations of the time scale. Let T'[0, ) denote
the collection of nondecreasing mappings A of [0, ®) onto [0, ®) [in particular,
A0) = 0] such that A(# + ) —A(#) < h for all ¢t,h > 0. Let «+ denote the
identity map «(s) =s. We will assume that there exist mappings G,, G:
Dgi[0, ©) X T,[0, ®) = Dyun[0, ) such that F(x)eA = G,(x°A, A) and
F(x)o A = G(x0A,A) for (x,1) € Dgil0, ) X T,[0,0). We need the following
strengthening of C5.2:

C5.4(1) For each compact subset #C Dgi[0, %) X T,[0,) and ¢ > 0,
SUP(, oy . SUD; < (|G, (%, 4, 8) — G(x, A, 8)| = 0.

C5.4(Gii) For {(x,,A,)} € Dgil0,®) X T;[0,), sup,_,lx,(s) — x(s)| =
0 and sup,_,A,(s) —A(s)| = 0 for each #>0 implies
supssth(xn7 An: s) — G(x, A, S)l - 0.

We note that each of the examples in 5.3 has a representation in terms of a G
satisfying C5.4(ii) and that C5.4 implies C5.2.

5.4 THEOREM. Suppose that (U,, X,,,Y,) satisfies (6.2), (U,,Y,) = (U,Y)
in the Skorohod topology and that {Y,} satisfies C2.2(i) for some 0 <& < .
Assume that {F,} and F have representations in terms of {G,} and G satisfying
C5.4. For b > 0, define n° = inflt:|F(X,,, )| V |[F(X,,t — )| = b} and let Xxb
denote the solution of

(5.6) XU(t) = Un(8) + [Xrg,8 (s DV Fu( X35 =) 0,

that agrees with X, on [0,72). Then {(U,, X%, Y,)} is relatively compact and
any limit point (U, X%, Y) gives a local solution (X®,7) of (56.3) with 1 = n° =
inf{t:| F(X?, )| v |IF(X®,t — )| = ¢} for any c < b. If there exists a global solu-

tion X of (5.3) and weak local uniqueness holds, then ( v,X,Y,)=(U,XY).

n)on
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ProoF. By Lemma 4.1, there exist vy, such that {((U,°v,, X?<y,,Y,°v,)}
is relatively compact in Dgi pixgn[0, ©). C5.4 then implies that
(X0, ° Yn FLXD) o v,} = {X(0, ) ° ¥aG(X? ° ¥,,7,)} is relatively compact in
D0, ). The relative compactness of {(U,, X?,Y, )} then follows by Corollary .
4.5 and Proposition 4.3. The sequence {(U,, X?,Y,,n%)} will be relatively
compact in Dgky ks gml0,©) X [0,). Let (U, X° Y,n3) denote a weak limit
point. To simplify notation, assume that the original sequence converges and
(with reference to the Skorohod representation theorem) assume that the
convergence is almost sure rather than in distribution. Note that n° < nJ. It
follows that U, + [F (X% dY, » U + [F(X®) dY and since

(5.7) X8(t) = U(2) + [F (X2, 5 =) dY,(s)
0

for ¢t < 7?2, .

(5.8) X4(t) = U(t) + ['F(X,s —) dY(s)
0

for t < nS. Let ¢ < b. If n° < °, then (5.8) holds for ¢ < n°. If n° = n°, then
F(X?) has a discontinuity at n° with |F(X% n° — )l < c and |F(X? 7°)| > b. It
follows that for ¢ < d < b,

(Un("IZ)’ XYI:("’Z)’ Yn("’;l)’ Yn("’: - )’ Fn(Xrlz)’ 775)’ Fn(XrI:r 173 - )r nz)
converges to (U(n?), X%(n?), Y(n9), Y(n¢ — ),F(X® 1), F(X®% n? - ),n%) and

(5.9) X4(n) = U(n®) + ["F(X*s ~) d¥(s),

so that (5.8) holds for ¢ < n° (= n%). Consequently, (X? 7°) is a local solution
of (5.3).

Note that 7° is a measurable function of X° [say A (X?®)]. Consequently, if
weak local uniqueness holds for (5.3) and there exists a global weak solution
X, then (X?, n°) must have the same distribution as (X, hc()f ) for all ¢ and b
with ¢ < b. Since X is a global solution, h(X) — o as ¢ » «. Convergence in
distribution of (U,, X,,, Y,) follows. O

Unlike Theorem 2.2, Theorem 5.4 does not immediately hold with conver-
gence in distribution replaced by convergence in probability. In particular, we
must assume a strong uniqueness for the limiting equation (5.3) or conver-
gence in probability could fail to hold even with (U,,Y,) = (U, Y). [If X and X
are solutions of (5.3) which are not almost surely equal and {¢,} are i.i.d. with
P{¢, =1} = P{¢, = 0} = L, then take X, = £, X + (1 — £,)X]. We need the
following lemma.

5.5 LEMMA. Assume that F has a representation in terms of a G satisfying
C5.4(ii). Suppose that there exists a global (weak) solution of (5.3) and that
strong local uniqueness holds for (5.3) for any version of (U,Y). Then any
solution of (5.3) is a measurable function of (U,Y) [that is, if X satisfies (5.3),
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then there exists a measurable mapping g: Dgiypnl0,©) = Dgil0, ) such that
X=gWU,Y)a.sl

Proor. Define (U,,Y,) by (U,(), Y,(¢)) = (U(ntl/n), Y(ntl/n)) and let
X, satisfy (5.2). Then X, is a measurable function of (U,,Y,) and hence of

(U,Y). Let n, — @ and m, — «. Then by Theorem 5.4, (U, ,U,, , X, ,X,,.

ng ng
Y, Y, ) converges in distribution to (U,U, X, X,Y,Y), where X and X
satisfy (5.3). But, strong local uniqueness implies X = X a.s. Consequently, if

d is a metric for Dg:[0, ), then
(5.10) lim E[1Ad(X,,,X,,)] =E[1Ad(X,X)] =0

and hence {X,} is a Cauchy sequence for convergence in probability. Since X, -
is a measurable function of (U, Y), the lemma follows. O

5.6 CoroLLARY. If in Theorem 5.4, we assume that (U,,Y,) converges in
probability to (U,Y), that there exists a global solution of (5.3), and that
strong local uniqueness holds for (5.3) for any version of (U,Y), then X,
converges in probability.

Proor. Let f be a bounded, continuous function on Dy:[0,») and g be a
bounded continuous function on Dgiyp=[0,©). Then since (U,, X,,Y,) =
U, X,Y),

(5.11) ,}i_IgE[f(Xn)g(UmYn)] =E[f(X)g(U,Y)].
The convergence in probability of (U,, Y,)) then implies
(5.12) lim E[f(X,)g(U,Y)] = E[f(X)g(U,Y)]

and L'-approximation of measurable functions by continuous functions im-
plies that (5.12) holds for all bounded, measurable g. Lemma 5.5 ensures the
existence of a bounded measurable g such that f(X) = g(U,Y) a.s. Conse-
quently,

lim E[(f(X,) ~ (X))
(5.13)
= lim (E[ £(X,)"] - 2E[£(X,) F(X)] + B[ f(X)"]) = 0

and convergence in probability for {X,} follows. O

Theorem 5.4 perhaps makes the theory look more simple and benign than it
really is. Example 1.2 of the Introduction reveals a pathology originally
discovered by Wong and Zakai (1965): that certain naive approximations of
semimartingale differentials lead to a lack of continuity of the corresponding
solutions of stochastic differential equations. Indeed, it was this pathology that
led McShane to develop his integral and to his proposal of a canonical form
[McShane (1975)], though these can now be recognized as special cases of the
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semimartingale integral. The Wong-Zakai pathology has also led people to pay
increased attention to Stratonovich and more generally symmetrized integrals
and their differential equations [e.g., Mackevicius (1987)].

Examples 5.7, 5.8 and 5.9, that follow, motivate Theorem 5.10, which
extends the results of Wong and Zakai. This extension is by no means the first;
however, almost all the previous ones [e.g., Nakao and Yamato (1976), Doss
(1977), Sussman (1978), Krener (1979), Ikeda and Watanabe (1981), Marcus
(1981), Konecny (1983), Protter (1985), Mackevicius (1987), Picard (1989) and
Bally (1989)) are concerned with L”, almost sure, or in probability conver-
gence, always on only one probability space. The one exception is Slominski
(1989), who deals with weak convergence. Moreover, the level of generality in
previous work is only that of Proposition 5.12 (albeit for more general approxi-
mation schemes; we have not bothered with the obvious modifications needed
to include all of the previous results), and hence Theorem 5.10 is new even on
the level of convergence in probability.

5.7 ExaMPLE. Let W, be as in Example 1.2. Then clearly {W,} does not
satisfy C2.2(i) (otherwise (W, dW, would converge to [WdW); however, if we
define Y,(¢) = W([nt] + 1)/n) and Z, = W, — Y,, then {Y,} satisfies C2.2(1)
(Y, is a martingale with respect to the filtration defined by %" = o{W(s):
s < ((nt] + 1)/n}) and Z, = 0. Furthermore, we observe that

(5.14) [2,dz, - -1,
0

(515) [Zn]t= _[erzn] =Zr?(t) - 2_/th dZn -t
0
and [noting that Z,(¢ — ) = 0 at each discontinuity of Z,]
(5.16) T,(on dz,,) = [1Z.()I 1V (s)l ds > Ct,
0

where C = E[|W(D)I|[q|W(1) — W(s)| ds). Setting H, = (Z,dZ, and I, = [Z,],
it follows that {H,} and {I,} satisfy C2.2().

5.8 EXxaMPLE. Let V be the Ornstein-Uhlenbeck process satisfying
(5.17) dV = dW — Vdt,

where W is a standard Brownian motion. Let
1 ., ¢
5.18 W.(t) = — ["V(s)ds = [ nV(n2s) ds.
(5.18) W(8) = o ["V(s) ds = [[nV(n’s)
It follows that
1 1
(5.19) W,(¢t) = ;W(nzt) - ;V(nzt)

and defining Y,(¢) = (1/n)W(n?) and Z,(t) = —(1/n)V(n%t) we see that, as
in Example 5.7, {Y, } satisfies C2.2(i) (each Y, is a standard Brownian motion)
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and Z, = 0. Again, setting H, = (Z,dZ,, K, =[Y,,Z,] and I, =[Z,], we
see that

1 n?t 1 n?t 2
5.20 H((t)=—]| 'V W(s)— — | Vi .
(5.20) (1) = o3 [T V() dW(s) = 5 [T V(s)" ds
The first term on the right of (5.20) is a martingale with quadratic variation
1 .2
2 n*t 2
(5.21) —= jo V(s)®ds,

while the second term obviously has finite variation. It follows that {H,}
satisfies C2.2(i), and H,(¢) > — it. Note, in addition, that I,(t) = —K,(¢) = ¢.

5.9 ExampLE. Let {U,, £ > 0} be a finite, irreducible Markov chain with
transition matrix P = ((p,;)). Let 7 = (7, ..., my) give the stationary distri-
bution and let f be a function satisfying

(5.22) Y f(m)m,, = 0.
Define
[nt]
(5.23) W.(¢) = 7= X f(Uy).
k=1

Letting Pg(i) = £ ;8(j)p;;, by (5.22) there exists a function A such that
Ph — h = f. Substituting in (5.23), we obtain

[nt]
W.(¢) = ﬁkgl(Ph(Uk) -h(U,))

(5.24) 1 [ntl 1
= _nkgl(Ph(qu) - h(Uk)) + W(Ph(U[nt]) - Ph(Uo))

=Y,(t) + Z,(¢).

As in Examples 5.7 and 5.8, {Y,,} is a sequence of martingales satisfying C2.2(i)
which, by the martingale central limit theorem [see, e.g., Ethier and Kurtz
(1986), Theorem 7.1.4], converges in distribution to ¢ W, where

[nt]

o =lim, ..~ ¥ (Ph(Up-y) - (V)Y
np_
(5.25)
= ¥ mpi;(PR() = h()))*.
,J
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Again Z, = 0,[Z,] = Ct, [Z, dZ, = — 1Ct and [Y,, Z,] = Dt, where
1 [ne]
C=lim,..— ¥ (Ph(U,) = Ph(Uj-y))’
(5.26) k=1
= .Z."Tipij(Ph(j) - Ph(i))z,
t,J
[nt]

D=lim,..— ¥ (Ph(Us_y) = h(Uy))(Ph(U,) ~ Ph(Uj;_,))
(5.27) k=1
= ¥ mpi;(Ph(i) — h(j))(Ph(j) - Ph(i))®

i,J

and {/Z, dZ,} and {[Z,, ]} satisfy C2.2(1).
Clearly Theorem 5.4 does not apply directly to
(5.28) X, (t) = U(t) + [O‘F(X,,,s ) dW,(s)
for {W,} as in any of the above examples; however, if we specialize to

X,(2) = X,(0) + [F(X,(s -)) dW,(s)
(5.29) 0
= X,(0) + [[F(X,(s =) d¥,(s) + [F(X,(s =) dZy(s),

we can apply Theorem 5.4 to obtain the following extension of the classical
results of Wong and Zakai (1965).

5.10 THEOREM. Let Y, and Z, be {#,"}-semimartingales and let X,(0) be
F-measurable. Let F: R* - M*™ in (5.29) be bounded and have bounded
first and second order derivatives. Define H, = (HE")) and K, = (K?")) by

(5.30) HE'(t) = ['2B(s -) dZ}(s)
0

and

(5.81) KBr(t) = [YF, Z1],.

Suppose that {Y,} and {H,} satisfy C2.2(i) and that (X,(0),Y,,Z,,H,, K,) =
(X(0),Y,0, H, K). Then {(X,(0),Y,,Z,,H,, K,, X,)} is relatively compact and

’ n?

any limit point (X(0),Y,0, H, K, X) satisfies

X(t) = X(0) + [O’F(X(s -)) dY(s)
(5.32) t
+ L [[uF(X(s =) Fu( X(s ) d(H"(s) = K*(5)),

a, B,y
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where 9, denotes the partial derivative with respect to the ath variable and Fj
denotes the Bth column of F.

5.11 REMARK. (a) The boundedness assumptions on F and its derivatives
may be dropped to obtain a localized result with a statement analogous to that

of Theorem 5.4.
(b) The theorem can be extended to equations of the form

(533) X,(£) = Up(t) + [F(X,(s =) d¥,(s) + [[F(Xo(s =)) dZ,(s),
by writing U, = ¥, + Z_ and forming the system
U (U0) . I 0 Y.(s)
(Xn(t)) ) (Un(O)) * fo[o F(X,(s —)]d(yn(s))
¢l I 0 Z,(s)
+fo[0 F(Xn(s—)]d(zn(s))'
(c) Note that since Z, = 0, sup,_,/Z,(s) —Z, (s —) =0 and H and K

must be continuous. We are not, however, assuming that Y is continuous.
(d) Let I57(¢) = [Z8, Z)],. Since

(5.34)

(28, 23], = ZE() Z3(t) - 2£(0)Z3(0)
(559 — [28(s =) dz}(s) - [Z3(s ) dZE(s),
0 0

it follows that IP” = —(H# + H"). Since IP? is nondecreasing and con-
verges in distribution to a continuous process, it follows that {I##} satisfies
C2.2(3i) (at least for any finite 8) and, by estimating the increments of I?* by
the increments of I?? and I, that {15} satisfies C2.2(3i).

(e) Since

(5.36) |KEV(t+h) — K& ()| < 3([YE],,n + [22)0n — [¥F], - [22].),

it follows that {K,} satisfies C2.2(i).

Proor. The result is obtained by integrating the second term on the right
of (5.28) by parts. Note that by It6’s formula

(53T) Fip(X,(0)) = Fig(X,(0)) + £ [0, Fp(Xo(s =) dXi(s) + RIE(D),

where the increments of R:# are dominated by a linear combination of the
increments of [Y,*] and [ZZ] [which implies that {R,} satisfies C2.2(1)]. Inte-
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grating by parts, we obtain
[[Fis(Xo(s =) d2E(s)
= Fip(X.(2))Z5() — F;5(X,(9))Z7(0)

- [o "0, Fp(X,(s —))ZE(s —) dX2(s)

- ;225 =) dR@) = T [[0Fip(Xu(5 )
(5.38) xd[ Xz, 28], + R, 28],

=1(t) = L [[a.Fg(X(s =) Fu Xols =)) 285 =) dZ}(5)
= T [[Fa(Xo(s =) Ful Xo(s ) a([¥7, 221, + [21, 28].)

=) - L [ "0, Fp(X(s =) Foy(Xul(s —))

Xd(HP(s) + K}B(s) + I7%(s)),

where m, = 0. Substituting (5.38) into (5.29), the theorem follows from
Theorem 5.4. O

Much of the work on approximation of solutions of stochastic differential
equations has been concerned with linear interpolations of the integrator. The
next result shows that Theorem 5.10 applies to these approximations.

5.12 PROPOSITION. For each n, let V, be an {#,"}-semimartingale and {r}}
be a sequence of {&,"}-stopping times with 7§ = 0 and lim, 7} = ©. Sup-
pose that lim , _,  sup, 77, — 7 = 0. Define the linear interpolation

" Tl’el+1 —t - Tl'el n
(5'39) Vn(t) = ﬁvn("'l?) + ﬁvn(7k+1)1 Tp <L <Tpi1
E+1 ~ Tk Te+1 — Tk
and define
(5.40) Y. () = Vn(TI';+1) = Vn("'l';+1)7 Tr <E<Tpip
and
Z,(t) = V,(t) - Y,(2)
(5.41) T —t
= ———(Vi(t}) = Vu(7Ps1)), TR SE<7TP.
Tek+1 Tk

Define H, and K, as in Theorem 5.10. Suppose that V, = Y, where Y is
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continuous and that {V,} satisfies C2.2(i) for some & € (0,]. (In particular,
this last statement holds if V, =Y for all n.) Then Y, = Y and Z, = 0, {Y,}
and {H,)} satisfy C2.2(i) for some & € (0, ], and

(5.42) H, - -3(([Y*,Y"]),
(5.43) K,= —(([Y*,Y"]).

Proor. Let 7,(t) = min{r}: 77 > ¢}. Then 7,(¢) is an {#;"}-stopping time
for each ¢t and V,, Y, and Z, are adapted to the filtration {£"} given by
& = F % The proof that {Y,} satisfies C2.2()) is essentially the same as the
proof that {Y,} satisfies C2.2(i) in Example 3.7. The fact that Y, = Y follows
from the convergence of V,, and Proposition 3.6.5 of Ethier and Kurtz (1986).
The convergence of Z, follows from the continuity of Y and the continuous
mapping theorem.

Note that
1 (7',2‘“/\t—7',;‘/\t)2
-5 PR
(Tk+1 - Tk)
X(Vf(‘r,?“) - Vf(’rl’el))(‘,ny(’r}?+l) - V(1))

1
(5.44) = ) ) (Vf("lgﬂ) - Vf("z))(vny(ﬁ?ﬂ) - Vny("llal))

Thy1 St

HP (1)

1
=~ E[Yf’ YnY]t

— 5 (FEOw@ - [¥26 - axao) - [T )Xo

and (5.42) follows by Theorem 2.2. A similar calculation gives (5.43). The fact
that {H,} satisfies C2.2(i) follows from the monotonicity and convergence of
HPFF and the fact that the total variation of HZ” can be estimated in terms of
the total variation of H?? and H)”. O

6. Technical results.

Uniform approximation by step functions. Let E be a metric space with
metric r. Let {6,} be a sequence of independent random variables, uniformly
distributed on the interval [%, 1]. Fix £ > 0 and for z € D[0, ), define 7y(2) =
0 and 7, ,(2) = inf{t > 7,(2): r(z(®), 2(1,(2)) V r(z(t - ), 2(7,(2))) = £6,} and
set y,(2) = 2(7,(2)). Finally, define I(2) by I (2X¢) = v,(2) for 7,(2) <t <
74+ 1(2). Note that r(z(2), I.(2)(t)) < ¢ for all ¢. Let U, = {u: u = r(z(2), 2(0))
or r(z(t —),2(0)) for some ¢ such that 2(¢) # z(¢ — )} and defining m(¢) =
sup, ., r(2(s), 2(0)), let U, = {m(#): m is not strictly increasing at ¢}. U, and
U, are countable, so with probability 1, 6, & U; U U,. Let z, -z and
assume that £0, & U; U U,. Either m is strictly increasing at 7,(2) or
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r(z(r(2) — ), 2(0)) < &6, < r(z(7,(2)), 2(0)) and it follows that r,(z,) — 7,(2).
Either z is continuous at 7,(2) or r(z(7(z) — ), 2(0)) < €6, < r(z(r4(2)), 2(0)),
and it follows that vy,(z,) — y(2). In general, if z, —» z in the Skorohod
topology, ¢, — t and z,(¢,) — 2(¢), then z,(¢t, + - ) > 2(t + -) in the Skoro-
hod topology. Consequently, z, — z implies z,(r,(z,) + - ) > 2(r(2) + - ) a.s.
An induction argument then shows that z, — z implies 7,(z,) - 7,(2) and
vi(2,) = v,(2) as. for all k. With these observations, we can prove the
following lemma.

6.1 LEMMA. Let I, be defined as before. If z,, — z in the Skorohod topology
on Dgl0,»), then (z,,1.(z,)) - (2,1(2)) a.s. in the Skorohod topology on
Dy, 5[0, »).

To carry out the proof, we need the following [see Proposition 3.6.5 of
Ethier and Kurtz (1986); note that the third condition in that proposition is
implied by the other two].

6.2 LEemMA. For an arbitrary metric space (E',r'), v, = v in the Skorohod
topology on Dy[0, ) if and only if the following conditions hold.

C6.2(1) Ift, - ¢t,then lim, . r'(v,(¢,),v(t)) A r'(v,(t,),v(t —))=0.

C6.2(ii) Ifs,=>t,,s,,t, > tandv,(t,) = v(t), thenv,(s,) — v(t).

ProoF oF LEMMA 6.1. Suppose z, = z in Dg[0,) and ¢, — ¢. If 7,(2) <
t <74,42), then I(2) is continuous at ¢, I.(z,)t,) = y,(2) = L(2Xt)
and C6.2(i) and (i) follow for {(z,, I,(z,))} by the analogous conditions for
{z,}. If ¢t =1,(2), we can assume that either z is continuous at 7,(z) or
r(z(r(2) =), 2(r,_(2))) < €8,_; < r(z(1,(2)), 2(7,_(2))). The convergence of
Te—1(2,), T1(2,), v, —((2,) and y,(z,) implies C6.2(i) and (ii) for {I.(z,)}, and if
z is continuous at 7,(z), C6.2(i) and (ii) follow for {(z,, I.(z,)}. If r(z(r,(2) —),
2(r,_((2)) < €6, _; < r(z(7,(2)), 2(,_(2))), then, with probability 1, for n
sufficiently large the same inequality holds with z replaced by z,. Conse-
quently, if ¢, > 7,(z,) and ¢, — 7,(2), then 2,(¢,) and I.(z,X¢,) both con-
verge to v,(2), and if ¢, <7,(z,) and ¢, > ¢, then z,(¢,) converges to
2(r(2) =) and I(z,)Xt,) converges to vy,_(2) = I.(2)(r,(z) — ). C6.2(1) and
(ii) follow for {(z,, I.(z,))}. O

Uniform tightness. Jakubowski, Mémin and Pages (1989) and Slomifski
(1989) develop their results under a uniform tightness condition. We discuss
this condition for a sequence of one-dimensional semimartingales {Y,} satisfy-
ing Y,(0) = 0. The results following are essentially contained in Lemma 3.1 of
Jakubowski, Mémin and Pages (1989).

Let &#, denote the collection of cadlag {%,"}-adapted, R-valued processes
satisfying |H,(¢)] < 1 for all ¢ > 0. Then {Y,} is uniformly tight if for each
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t>0,
(6.1) {[O’H,,(s ~)dY,(s): H, € #,,n = 1,2,...}

is stochastically bounded.

Assume that {Y,} is uniformly tight. Let J, denote the collection of
{#;"}-stopping times. For 7 € 7, and ¢ > 0, let H, = (o ,). Then the integral
in (6.1) gives Y, (¢ A 7) and we see that for each ¢t > 0, {Y,(t A 7): 7 € F,,
n=1,2,...} is stochastically bounded. Considering the collection of stopping
times of the form 7 = inf{s: |Y,(s)| > ¢}, it follows that {sup,_ Y, (s)l: n =

2, ...} is stochastically bounded. Recalling that

(62) [¥,): = Y,(0)" = [2¥,(s =) d¥,(s)

and using tke stochastic boundedness of the suprema, we see that {[Y,],:
n =1,2,...}is stochastically bounded.

The stochastic boundedness of the quadratic variations ensures that the
uniform tightness of {Y,} implies uniform tightness of {Y,%} for each 0 < & < .
Fix 0 <8 < and let Y2 = M? + A% be the canonical decomposition of Y,?
[Protter (1990), Section IIL5]. Then the discontinuities of M2 and A5 are
bounded by 28 and E[[Y?]]= E[[M?],]+ E[[A%],] for any stopping time 7
(with the possibility of « = ) [Protter (1990), Section IV.2]. Let yS =
inf{s: [Y?], > c}. Fix ¢ and for 2 = 1,2,..., let {t*} be a partition of [0, £] with
lim,, . max,(t¥, , — t¥) = 0. Define
(6.3) Hy = Z sign( E[ A%(tk,; A v7) — A(tF A ¥OIF] )X o

i A 'sttzk+1 A’

The first term on the right of

(6.4) f H}(s —)dY(s) = f Ht(s —)dM}(s) + f H:(s —) dA3(s)
= Uy (u) + Vi (u)

satisfies

(6.5) E[sup Uk(s)?| < 4E[M,'f(t A ‘y’f)zl <4(c+ (25)2)’

so {Uk(t): k,n =1,2,...} is stochastically bounded which, by the stochastic
boundedness of (6.1) (with Y, replaced by Y;?), implies the stochastic bounded-
ness of {(V*(¢): k,m = 1,2,...}. But the predictability of A% implies

T: nvs(A7)
=lim, . ), mg’n(E[A's (k1 A yg) = AS(2F A yn)lg'”])
( (tl+1 A ')’n) Ai(tzk ‘A ‘Yn))
- lim, . V*(¢)

[see Dellacherie and Meyer (1982), page 423] so (T, (Ats )} is stochastically
bounded for each c. But the stochastic boundedness of {[Y?],} for each ¢

(6.6)
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implies that for each & > 0, there exists a ¢ such that P{y’ <t} <¢ and
hence there exists an a > 0 such that P{T(A%) > a} < P(T, , , (A%) > a} +
P{yt < t} < 2¢, verifying the stochastic boundedness of {T(A2 )} and C2.2(3Gi).
C2.2(iii) is immediate, so C2.2(i) holds.

If there exists a 6 for which {J/,(Y,)} is stochastically bounded and C2.2(i)
holds, then {Y;?} satisfies C4.1 and Lemma 4.1 implies {Y,} is uniformly tight.
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