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A NONHOMOGENEOUS MARKOV PROCESS FOR THE
ESTIMATION OF GAUSSIAN RANDOM FIELDS WITH
NONLINEAR OBSERVATIONS
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Brown University and Universitd di Roma I

We consider an estimation problem in which the signal is modelled by a
continuous Gaussian random field and is observed through smooth and
bounded nonlinear sensors. A nonhomogeneous Markov process is defined
in order to sample the conditional distribution of the signal given the
observations. At any finite time the process takes values in a finite-dimen-
sional space, although the dimension goes to infinity in time. We prove that
the empirical averages of any bounded functional continuous w.p.1 con-
verge in the mean square to the conditional expectation of the functional.

1. Introduction. In this paper the following general estimation problem
is considered. The signal is modelled by an n-dimensional continuous Gaussian
random field on a bounded and smooth domain in R¢, whose covariance is the
Green’s tensor of some uniformly elliptic differential system. In order to obtain
a measure on the space of continuous functions, the order of the system must
be greater than some constant which depends on the dimension of the space.
In particular, such a field can be the solution of a system of stochastic partial
differential equations [see Dembo and Zeitouni (1990)]. This signal is observed
through a finite set of bounded and smooth nonlinear sensors corrupted by
noise. The continuity of the signal also allows for pointwise measurements. In
order to recover information on the original signal it is then required to
compute conditional expectations of functionals of the signal given the obser-
vations or to sample from the conditional distribution of the signal given the
observations.

Due to the nonlinearity in the sensors, the conditional distribution of the
field is no longer Gaussian. Therefore estimation cannot be reduced to comput-
ing the linear regression [see Piccioni and Roma (1990)], nor is there any direct
way to sample from such a distribution. In the finite-dimensional case a
common approach has been to simulate a homogeneous Markov process whose
unique invariant distribution is the desired one [see Metropolis, Rosenbluth,
Rosenbluth, Teller and Teller (1953) and Geman and Geman (1984)]. The
same idea has been extended to infinite dimensions in the framework of
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stochastic quantization of field theory [Jona-Lasinio and Mitter (1983) and
Borkar, Chari and Mitter (1988)]. The random fields we deal with are similar
to those treated in the preceding references, with the log-likelihood interpreted
as an interaction term, but we only consider bounded interactions.

An alternative to the construction of an infinite-dimensional process is to
work with an increasing sequence of finite-dimensional subspaces of the space
of continuous functions, on each of which a Galerkin approximation to the
conditional field is constructed. Under appropriate conditions these approxima-
tions converge in distribution. In each of these subspaces one can then
simulate a finite-dimensional homogeneous Markov process in order to obtain
an approximation to the infinite-dimensional distribution.

In this paper a more refined simulation scheme is suggested. A nonhomoge-
neous Markov process is constructed which passes through this sequence of
subspaces in time. In each subspace the process evolves for a fixed interval of
time like the finite-dimensional homogeneous Markov process corresponding
to that subspace. At the end of each time interval the process moves up to the
next subspace according to a prescribed rule. We are able to show that this
process converges in distribution to the conditional field and that the empirical
averages of any bounded measurable function, continuous w.p.1, converge in
mean square to the conditional expectation of the function.

The main ingredients in obtaining such a result are the fact that the second
eigenvalue of the generator of all the finite-dimensional Markov processes can
be uniformly bounded from below together with the boundedness assumptions
on the interaction. This allows us to obtain stronger results than in the theory
of nonhomogeneous Markov processes arising in simulated annealing [see
Gidas (1985) and Holley and Stroock (1988)].

The motivation for this study comes from certain problems in image
analysis in which Gaussian random fields model prior information on the
variability of shapes [see Grenander (1970) and Amit, Grenander and Piccioni
(1990)].

The model described in the later paper considers an image as a function
from the unit square I2 € R? to the unit interval I, and assumes that the
family of images under consideration are deformations of a fixed smooth and
bounded function r,: R? —» I with support in I2 called the template. More
precisely any image r: I2 — I is given as r(x) = ro(x + U(x)), where U(x) is a
continuous mapping from I2 into R2. A Gaussian prior distribution is as-
sumed on the space of continuous mappings C(I2, R2), namely, a mean zero
Gaussian random field on I? with continuous sample paths. This prior reflects
the assumptions on the variability to be expected within the given family of
images. The zero mean implies that all images in the family will be centered in
some sense around the template image r,,.

It is assumed that we observe a degraded version of the real image r at a
finite number of pixels, that is, y; = r(x;,) + n;,i = 1,..., q, where n; arei.i.d.
N(0, o). Using Bayes’ formula one obtains a posterior distribution of the field
U given an observation y. This posterior has the form of a perturbation of the
Gaussian prior with a nonlinear term given by 1/(o®)Xf (y; — ro(x; +
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U(x;))? This term can be considered as the interaction term. Clearly the
boundedness assumption on the interaction is natural in this setting due to
the assumptions on r;.

The restoration consists of sampling from the posterior distribution via a
process similar to the one described above. Any sample mapping U is applied
to the template to obtain a restored image r(x) = ro(x + U(x)).

This model for image restoration allows us to incorporate knowledge of
what we expect to find in the image, that is, variations of the template r,. In
that sense it is more powerful than restoration techniques that only employ
smoothness assumptions on the image itself. Moreover the restoration pro-
vides a transformation from the template to the true image, thus allowing for
a structural understanding of the picture. For more details see Amit,
Grenander and Piccioni (1990).

2. Continuous Gaussian random fields. We first address the issue of
which differential operators generate Gaussian random fields with continuous
sample configurations [see Dudley (1973) and Ité (1984)]. The material in this
section is known but is included to make the paper accessible to nonexperts.
For this purpose we recall some basic notions on linear random functionals.

Let (H, (-, - )) be a real separable Hilbert space. Let .#? denote the Hilbert
space of all random variables with zero mean and finite variance on some
probability space (Q, &, P). A linear random functional (LRF) ¢ on H is a
bounded linear mapping from H into .ZZ. Two LRF’s ¢ and ¢ are considered
the same if, for any f € H, ¢(f) and (f) have the same distribution. Given a
LRF ¢ and a bounded linear transformation A from H into another Hilbert
space K we define a LRF A¢ on K by A¢(h) = ¢(A*h).

If ¢(f) is Gaussian for any f < H, the LRF is called Gaussian. It is
nondegenerate if the variance of ¢(f) is nonzero for all f € H. The mapping
(f,8) = E(¢(f)¢(g)) is a bounded positive symmetric bilinear form on H.
Consequently there exists a bounded strictly positive self-adjoint linear opera-
tor C, for short a covariance, which satisfies E(¢(f)d(g)) = (Cf, g).

A Gaussian LRF is completely specified by its covariance operator. Moreover
it is easy to produce a Gaussian LRF with any prescribed covariance C. First
observe that if ¢ has cuvariance S, then A¢ has covariance ASA*. Thus if n
has covariance I, then C'/2n has covariance C. The LRF n is easily obtained
by taking a sequence {n}7_; of i.i.d. standard Gaussian random variables and
defining

&) n() = T (fem,

where e;, i = 1,..., is any complete orthonormal basis of H.

Now observe that (Cf, f)'/2 = |flc is a Hilbertian norm in H, generally
weaker than |flg = (f, f)'/2. Let V be the completion of H with respect to
| - lc. The LRF ¢ can be continuously extended to V. By taking V = C/2H
with the Hilbertian norm B(f, f) = |C~1/2ff, then V is isomorphic to the
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dual V* of V, and we have the dense continuous embeddings of Hilbert spaces
(2) V“’,' H ik V*.

Conversely, any closed Hilbertian norm B(-, - ) on a dense subspace V of H
such that B(f, f) = c(f, f) for some ¢ > 0 corresponds to a unique covari-
ance C. In fact (2) is immediately obtained by identifying H with its dual. By
the Riesz representation theorem there is an isomorphism J of V* onto V
such that B(Jn,v) = n(v) for all v € V, n € V* and the operator C = iJi* is
a covariance on H. Moreover V = C'/2H and B(f, f) = |C~1/2f]’. We call B
the energy form of the LRF.

In what follows we assume that [H{*(D)]* c V c [H™(D)]" for some posi-
tive integers m and n, D being a bounded and smooth domain in R¢. We take

n
B(u,v)= Y ¥ [ak]D%u;D"v, dx,
D

Ipl,lglsm i,j=1

where o’/ are smooth in D, and assume it to be equivalent in V to the
Sobolev norm || f|12, = E;?=1|fj|,2,, where |g|2 = ZwsmleBglz. The preceding
conditions are equivalent to the well posedness of the differential system
B(u,v) = n(v), V v € V, where n € V* [see Agmon, Douglis and Nirenberg
(1964)]. By choosing H = [ L,(D)]* the embeddings in (2) are obtained.

Observe that the preceding setting includes the following two relevant
examples:

1. B(u,v) = (Pu,v), where P is a symmetric uniformly elliptic system of
differential operators of order 2m with Dirichlet boundary conditions. In
this case V = [HJ*(D)]".

2. B(u,v) = (Qu,Qu), where @ is a uniformly elliptic system of differential
operators of order m (even) with Dirichlet boundary conditions (not neces-
sarily symmetric). By elliptic regularity [see Agmon, Douglis and Nirenberg
(1964)], V in this case is [H{*/%(D) N H™(D)]". In this case the corre-
sponding field can be considered as a weak solution of the stochastic partial
differential equation @¢ = n, with n as in (1) [see Dembo and Zeitouni
(1990) and Piccioni (1987)].

The following kind of Sobolev embedding theorem will allow us to realize
LRF’s defined on L,(D) as D indexed Gaussian random fields [see Adams
(1975)].

ProposITION 1. For any m > m% = [d/2 + 1] the space H™(D) is continu-
ously embedded into a space C*(D) for some 0 < a < 1, that is, there exists a
constant k > 0 depending only on the domain D such that

sup —————— | <«lgln
syep = ’

(3) (suplg(x)l) + ( 8(x) ~ ()

xeD

for all g € H™(D).
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From (3) it is immediately seen that the linear functional 8, corresponding
to the evaluation of the jth component at a point x € D is bounded on V, so it
lies in the dual V*, for any m > m7;. Given a LRF ¢ with energy form B we
can therefore define an n-dimensional random vector field X indexed by x € D
as

X(x) = ((32),...,4(81))-

The field X has continuous sample configurations. To establish this let us
recall the Kolmogorov criterion for random fields [see, e.g., Karatzas and
Shreve (1988), Chapters 2, 2.9 and 4.11].

PrOPOSITION 2. Let X*x), k = 1,2,..., be n-dimensional random fields
indexed by D € R®. Assume there exist positive constants v, c and B such that
(4) E(IX(k)(x) — X‘k)(y)l") <clx _y|d+B’

for all x,y € D and for all k. Then X® have continuous versions and they are
tight in [C(D)]".

ReEMARK. In the Gaussian case there are much weaker conditions for
continuity. In fact d is not needed in the exponent [see Dudley (1973),
Theorem 2.10]. However, tightness requires control of the random constant
multiplying the modulus of continuity.

For Gaussian fields we have an easy way of estimating the right-hand side
of (4), since for any positive integer [/,

EX(x) - X" <n' Y, B(X,(x) - ;)"

Jj=1
ten! »
néll,) Y [var(X;(2) - X,()]".
L
Now set
G.i(x,9) = E(X(x) X,(3)) = 8(J5%).
Then we get
E|X(x) - X(y)*
n'(20)! »
= ;l“) Z [ (x’x) - 2ij(xay) + ij(y,y)]l
J=
(6) n‘(20)! »

= 21! J§1[(ij(x,x) - ij(x’y))l

+(G;(5,5) — G;;(y, x))l] .
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Now since G,(x, - ) = J(8]) € V, it is Hélder continuous and its Hélder norm
is bounded by «||J(87)l|,,. Moreover, by (3) {8,, x € D} is contained in a ball of
radius « in V* so that the Hélder norm of G,(x, - ) is uniformly bounded in x
by «?||J|l. Therefore, by taking ! large enough we get (4). We have therefore
proved the following.

THEOREM 1. Let B(-,-) be a Hilbertian norm equivalent to the Sobolev
norm in a subspace [H{*(D)I* ¢V c[H™(D)]* with m > m* =[d/2 + 1]
Let J be defined by

B(Jn,v) = n(v),

for n € V* and v € V. Let G, ;(x,y) = 8J(J8}) for 1 <i,j <n. Then there
exists a Gaussian random field {X(x): x € D} with E(X(x), X,(y)) = G, ;(x,y)
and with C(D) sample configurations.

Because of the preceding theorem we may call X the random field with
energy B on V. Its covariance matrix G(x, y) is nothing but the Gieen’s tensor
of the boundary value problem B(u,v) = n(v), v € V.

3. The finite-dimensional approximations. We now introduce the fi-
nite-dimensional approximations we are interested in. For a general reference
on this type of approximation in numerical analysis of partial differential
equations, see Raviart and Thomas (1983). For any positive integer A, let V,
be a finite-dimensional subspace of V and let B,(-, ‘) be the restriction of
B(-,-)toV, X V,. Since any n € V* restricted to V}, is bounded, again by the
Riesz representation theorem there exists a unique J,n € V, such that
B(J,m,v;,) = n(vy,) for all v, €V,.

Next let us define the random field {X*)(x), x € D} with covariance matrix

E(XM(x) X{M(y)) = GP(x,5) = 8](J,82),

for 1 <i, j < n. Such a field exists by the general theorem on the existence of
Gaussian random fields with given covariance. In fact let {¢{*}, & = 1,...,d,,
be an orthonormal basis of V), with respect to B(-, - ), and set I, to be the
mapping from R% into V, defined by I,(u) = L¢% ,u,¢{". Then we can write

(6) XM(x) = [I,(EM)](x),

where £® = (¢M,...,¢%)) is a mean zero Gaussian random vector with
N ool an
identity covariance matrix.

THEOREM 2. Let the random field X be defined as in Theorem 1 and the
fields X as in (6). (X and X are not necessarily defined on the same
probability space.) Suppose U%_,V, is dense in V. Then X, X® all have
continuous sample paths and the distribution of X* converges weakly to the
distribution of X in [C(D)]*, as h — .
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ProoF. From the equality B(J,n — Jn,v,) = 0, for all v, €V, and n €
V*, we see that J,n is nothing but the projection of Jn onto V,. Thus oJ,
converges strongly to J which implies that the finite-dimensional distributions
of X converge to those of X. Moreover the norms ||J,| are uniformly
bounded by some positive constant C. Consequently

|G;‘:z)(x,x) - G};z)(x’y)l
1<j<n x yeD x -y

G (x,2) = GIP(x,9)|

< sup sup J
l<j<n x,y,2eD lz _yl

< k sup |J,(87)llm < kCsuplldilly+ < 2C.
xeD xeD
From Proposition 2, the inequality (5) and the preceding estimate it follows
that the X™® are tight in [C(D)]*. O

4. The observation model. Let us now specify the statistical properties
of the observed variables Yj,..., Y,. The weak convergence we have estab-
lished will enable us to approximate the conditional distribution of the signal
field given the observation.

Assume that there exists a jointly continuous function Q(y; f) such that

P(Y<SAX =f) = [ 79 Dp(dy),

where p is a o-finite Borel measure on RY. In addition, we assume that for
any value of y, @(y; -) is bounded from above and below and has two Frechet
derivatives uniformly bounded in norm on [C(D)]". The simplest example is

when Y, =g(X)+n,, i=1,...,q9, where g, i =1,...,q, are continuous
functionals on [C(D)]” with bounded continuous first and second derivatives,
and n;,i=1,...,q, are independent standard Gaussian random variables.

Let X and X® be as in Theorem 2. Let Py and Py be their respective
probability distributions and set A(y; f) = exp(—Q(y; f)). Let
A(y; f)Px(df) A(y; ) Pxw(df)
JA(y; f) Px(df) [ACy; £)Pxe(df)
Then Py is the regular conditional probability distribution of X given y.
Observe that Py remains unchanged if p is replaced by any measure 5 such
that [e=90:15(dy) = 1 for any f. Let u, denote the Gaussian measure on
R with mean zero and identity covariance and define
exp(~ Q(y; Tu(£™)e™))

(k)
Zy

Py(df) = and Pym(df) =

pr(dE®) = T CIR
where Z{" is the appropriate normalizing constant. Then Pyu) = p,, ° I; ! and
Pxa = u3 » It Since A(y; f) is bounded continuous and bounded away from
zero, the following corollary to Theorem 2 is easily established.



ESTIMATION OF GAUSSIAN RANDOM FIELDS 1671

CoroLLARY 1. For any y € RY, the sequence of measures Py converges
weakly to Py in [C(D)]".

In the sequel y is considered fixed and we omit the dependence of @ and
Z™ on y. Moreover, since uJ, is not changed by adding to @ a constant which
depends only on y, we can assume without loss of generality that @ is
nonnegative.

5. The finite-dimensional Markov processes. In this section for each
fixed » a Markov process of Langevin type whose invariant distribution is
Pgw is introduced.

Let W, ,, h =1,..., be a sequence of independent scalar standard Brown-
ian motions. Denote by W™ the vector (W, ,...,W, ;) and set @ W(¢®) =
Q(¢™ - ™), Consider the Langevin equation

(7 dx{M(z) = (—-MPxM(z) - VQW(x{M(2))) dt + V2 dW™.

Under our hypotheses this equation has a unique solution for any initial point
z and defines a Feller process whose unique invariant measure is uj. Its
generator is the closure of

(8) L™y(x) = Ag(x) — (MPx + VQM(x)) - Vy(x), ¢ € C5(R™)

[see Ethier and Kurtz (1986)].

In order to estimate the rate of convergence of the transition probabilities to
the invariant distribution we consider the semigroup generated by L* on the
Hilbert space Ly(u3). Through integration by parts we get

(9) (L(h)df’ ¢)L2([.L%) = (L(h)lp’ ¢)Lz(p.%) = _fV(lf ' V¢ d/""% = _é)(h)(lp’ ¢),

for ,¢ € C*(R?). L™ is a symmetric dissipative operator and has a self-
adjoint closure on Ly(u}) which generates a C,-semigroup {T*} of self-
adjoint contractions, such that T\ f(2) = Ef(x{")(2)). It is clear that 0 is an
eigenvalue of L™ and that 1 is its eigenvector. Let P,y = [(x)ul(dx). Then
we have

(T = Py)olLy) < e MMy, Py lr,i < e’)“L(h))tlllfle(,L{,),
where
(10) A(L™®) = inf{EM(y, ¥); Py = 0, [Ylryuyy = 1, 4 € Cy(R™)}.

We will obtain a lower bound for A(L®) which is independent of A.

Observe that if Q(f) =0, then A(L™) becomes the Ornstein-Uhlenbeck
(OU) operator in R?* for which the spectral gap is 1 [see Reed and Simon
(1972), page 142]. Now we are ready to prove the following lemma.

LEMMA 1. Let 2= max{Q(f), f € [C(D)]"}. Then A\(L™) >\ = e~ 2
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Proor. For any function ¢ € C;(R*) such that [¢(x)uj(dx) =0, let
& = [¢(x)u,(dx). Observe that

f(d)(x)) wh(dx) = Z(h) f(d,(x))? —Q(h)(x)#h(dx)
< W [($(x) - §)"e= 9", (dx)
1 2
< i [ ((2) = 6)*wa(dx)
1
< Wf|v¢(x)|2ﬂh(dx)

< e?[IV(x)wi(dr).

The second inequality follows from the fact that @ is positive. The third
follows from the fact that the spectral gap of the OU operator is 1. O

In the preceding discussion it is not essential that the Markov process be a
diffusion. For example, we could replace the generator (8) by

(11) L®y(x) = Z® [[4(2) = $(2)]ky(x, 2)ui(d2),

where 0 < k_, <k,(x,2) <e®"® is a symmetric continuous function on
R% X R%:_ In this case

1
EWW, ) = FZP [ [[6(2) = w(x)*ki(x, 2)wi(dz) wi(dx)

k
> mm(lt//|Lz(m.> (Ph‘/’)z)’

from which we get that A(L™) > k. /e. The operator (11) is the generator
of a jump process with transition probability q,(x, dz) = k,(x, 2)u}(dz) /K ,(x)
and jump intensities A(x) = Z®K,(x). Such a process can be simulated by
picking a sample z from u, ati.i.d. mean 1 exponentlal times and accepting it
as a new state with probability %,(x, 2)e?" =) x being the current state. In
particular the choice

ky(x,2) = exp(@™(x) A QM(2))

resembles the Metropolis algorithm [see Metropolis, Rosenbluth, Rosenbluth,
Teller and Teller (1953)] since the probability of acceptance is then

exp(—[Q™M(2) — QW(x)]™).

6. The multilevel Markov process. In this section we are going to
present our main result, which is Theorem 4. In order to do so, more stringent
assumptions on the finite-dimensional approximations are needed. We will
consider only Galerkin approximations, assuming that the subspaces V, are
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increasing. To keep notation simple, let us also assume d, = A. Then it is
possible to choose a sequence ¢, € V, orthonormal with respect to the scalar
product B such that V, = span{e,, ..., ¢,}.

Now we define a nonhomogeneous Markov process x, with state space
Us_,R". Let c be a positive constant to be determined below and define a
sequence of times ¢, = c(h — 1), h = 1,... . For any time ¢ let A, = [t/c] + 1.
Now define

x,=xM(wy), 0=t <t<ty,
xt=x,(’_z)th(xth_,wh), th5t<th+1,h= 1,2,...,
where w,, h = 0,1,..., arei.i.d. standard Gaussian variables. The process {x,}

adds a component at each of the times ¢,. The process I(x,) = I,(x,) is a
process in [C(D)]". Let m,_,, be the operator from L,(R" u}) to
L,(R"=1, uy _)) defined as

Thorn FEneeos €nmr) = [FEn o €umn ) Ba(dER)-
For s < t define the transition operator

U(t,s) f(2) = E(f(x,)lx, = 2),

f being a bounded and measurable function on R": Setting & = h, and
h = h, it is easily seen that

(12) U(t,s) = Tt(k’i)l—swk,k+1Tt(k’i:Ptk+l 77h—1,hTt(ft)h'
Set &; = |g;licpyy, for any j = 1,... . Note that since V is compactly embed-

ded in [C(D)]*, the sequence & ; converges to zero as j — .

THEOREM 3. If c > Z/A, then:

(a) The distribution of I(x,) converges weakly to Py as t — «.

(b) For any bounded measurable functional F whose set of discontinuities is
of P probability zero on [C(D)]", the process

1
L(F) =  [[(F(I(x,)) = PX(F)) du

converges in the mean square to zero.

Proor. (a) Let s,t,k, h be as in (12). Let T; = Té’;)l—t,» forj=k+1,...,
h—1,T,=T%® _, and T, = T} . Since P,T; = P; and since Tym;, 4.1

tpt1—8
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m;i_1,;P; = P;, we write

U(t,s) — Py,
= Tk"’k,k+1Tk+1“7k+1,k+2 “Th-1,hTh - P,
=(T, - Pk)“"'k,k+1(Tk+1 — Py “"'h—1,h(Th - P,)
h-1
+ 2 P i (Tjsy = Pyya)
j=k

X1, j+2(Tjva = Piva) o Tho1,w(Th — Py)

=(T, - Pk)‘"’k,k+1(Tk+1 —Pyiq) “Th—1,h(Th - P,)

h-1

+ X (P o1 = Pied)(Thar — Pria)
j=k
X1, 542 " Th-1,0(Th — Pp),

from which we obtain

(2, 8) = Py
< ”Tk - Pk" ”‘Tfk,k.;.l” ”Tk+1 - Pk+1” e ”‘Tfh_]_,h” ”Th - Ph”
(13) h—1
+ Z IIPj""j,j+1 - Pj+1” ||Tj+1 - Rj+1”
j=k

X||7Tj+1,j+2" e "Trh—l,h” "Th - Ph”.

Let us estimate the various norms. Let f € L,(R’, ©¥). Then
1 . 2
171, om0 < 5575 [ [1F(€970, )| mi(dg;)
X exp(—QU™V(£Y D)), _,(d£¥ =)

< e?[| £(£9)['u,(d£?)

e?? 012 o ,
=75 JIF(ED)|" exp(—QU(£9))u,(d )
= e2.@|f |f2(Rj,”,3.').

Thus |I7;_, ;|| < e for any j. Moreover by Lemma 1, ||T; — P|| < e™*%+17%),
forj=k+1,...,h = 1,IT, — P,ll < e **7% and ||T, — P,ll < e *%+17%), Fi-
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nally we want to estimate || P;m; ;,; — P;,ll. This expression can be bounded
as follows. Let f &€ Ly(uJ,,) such that |fl.,z,,) = 1. Then

|(Pj”'j,j+1 - Piy) f|

ff(f(j“))(exp( —QU(£V))

1
_<_'Z(—j—)'

—exp(— QU D(£UF D)), (dEUHD)

1 1

tZ® T ZGD

|Pjs 1 fl
< 26”’([ |(exp(— QU+ (£, 0))
2 1/2
—exp(—Q(f+1>(§(j+l))))| I_Lj+1(d§:(j+1)))
2 To\1/2
< 2e29(f|(Q(j+1)(§(j),0) — Q(j+1)(§(j+1)))| Mj+1(d§(j+1)))

1/2
~ 2 .
< 232'@-@(f§]2+1|‘Pj+1|[C(5)]n:“'j+1(d§(1+1)))
25
< 2e*%%¢;, 4,

where 2 denotes the uniform bound on the norm of the derivative of Q.
Tying these estimates together we get

h—h
IU(t,s) — Pl < (%)™ e ¢9

hy

+2e299 Y sj(eg)h’—j exp(—A(t = ¢;))
Jj=hg+1
<eZexp((—8(h, — h,) + Ac))
(14) ok
+2exp((22+ Ac))2 Y, ¢ exp(—8(h, —J))
Jj=hs+1
=eZexp((—8(h, — h,) + Ac))
he—hy—1
+2exp(22+1c)2 L &p_p,je %,

j=1

where 8 = Ac — 2> 0. Since &, converges to zero and the series e % is
summable, the above sum converges to zero as ¢ — s — «. Therefore

(15) IU(t,s) — P, l<A(t—s), 0<s<t<o,

where A(7) > 0as 7 > .
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Finally let F®)(¢®) = (FoI,X¢™) where F is a bounded measurable
functional whose set of discontinuities is of Py probability zero on [C(D)]".
Setting s = 0 in (15) we get

JIE(F®*(x,)lxy = 2) — P, F*%u,(dz) - 0,

as t > . Since PxwF = P, F™® and Py converges weakly to P} we have
proved that

lim EF*)(x,) = P}(F).

t—oo

(b) To prove the last statement let |F|, = K and write

E(L¥(F)) < ZE(;ft((Fo I)(x,) — P, F*) du)
(16) °

1 2
+ 2(7f0t(PhuF("u) — P3(F)) du) .

The second term in (16) goes to zero as ¢ — « since the integrand goes to zero
as u — «. As for the first integral we write

1 . 2
E(-t—fo((FoI)(xu) — P, F#) du)
2 t rt
= 7 [ [E{((FoD(x,) - P, FO)
X((FeI)(x,) = P, F*)} dsdu
a7 = [[E{((F-I)(x,) - P, F®)

XE((FoI)(x,) — P, F*

xu)} dsdu

[ [ [U(u,0)((F# = P, F®0)G)(x) sl dx) ds du
07u

2eQ ¢

IA

JPUu,0)((F* - P, F*0)G*) ds du,

where

Gs(h“)(‘f) - E((F° I)(xs) - PhsF(hs)

X, = §)
= U(s, u)(F(hs) - PhsF(hs))(f).
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Now write the last term in (17) as

[ f Py(U(u,0) - P, )((F* — P, F®0)G%0) ds du
(18) )
_2./(‘)1’ F(hu) huF(hu))Gs(hu)) dsdu,

and estimate the integrands:
P(U(u,0) - P, )((F* — P, F")G{*)

<U(x,0) - P, Il|(F# - P, F#2)GEHo|

< 4K?|U(u,0) - P, |I.

By (15) this expression goes to zero as u — o; hence the first integral in (18)
converges to zero as ¢t — «. In addition

|ph F® — P, F0)Geto)

=| B, ((F® - P, F*)(U(s,u) - P, )F®*»)

< 2K?|U(s,u) — P, |.
Again by (15), the second integral in (18) will be bounded by

%2'[(:]:A(s —u)dsdu = tizj;tj;)t_uA(v) dvdu

< tizfotfotA(v) dvdu = %fOtA(v) dv,

so that it goes to zero as ¢ — «, since A(v) - 0 as v —» ». Consequently (16)
goes to zeroas £ — «. O

ReEMARK. To illustrate a simple application of the preceding result let us
consider a concrete example arising in Grenander (1970). Fix a point z € D C
R? and let S be a measurable set in R" with boundary of Lebesgue measure
zero. We approximate Py(X(2) € S) with (1/8)f{15(x, - ¢(2)) du. The func-
tion f— 15(f(2)) is bounded and measurable on [C(D)]" and its set of
discontinuities is A = {f: f(z) € dS}. Since the conditional distribution of
X(2) given y is absolutely continuous with respect to a Gaussian measure it
does not change the boundary of S so that Py(A) = 0. Therefore the preced-
ing approximation is convergent.
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