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ON SOME APPLICABLE VERSIONS OF ABSTRACT LARGE
DEVIATIONS THEOREMS

By DimiTRY IOFFE

Technion, Israel Institute of Technology

Two algorithms for calculating rate functions for a family of measures
{1} on a B-space X are considered. The first one is a relaxed version of the
Fenchel transform type theorem for convex rate functions. The second
gives conditions under which {u,} can be replaced by a more convenient
family {u*} near admissible points x € X such that rate functions for both
families coincide near x.

As an example, we apply both techniques to investigate large deviation
properties of some reaction-diffusion equations with quick random noise.

1. Large deviation theorem in the convex case. Let X be a
Hausdorff topological space and {_} a family of subprobability measures on X.

DEeFiNITION 1. (X, {u}) is called the system of large deviations (S.L.D) with
rate function L if:

ConpiTioN 1. For each open J C X,

liminfeln u,(J) = — inf L(x).
-0 xed .

ConbITION 2. For each closed F C X,

limsupeIn u (F) < — inf L(x).
xeF

e—0
ConpITION 3. For each s > 0, the set &, = {x|L(x) < s} is compact.
Note that Condition 3 implies the lower-semicontinuity of L.

REMARK. All the measures in the sequel are subprobability measures; for
the sake of brevity we refer to them from now on simply as measures.

DEFINITION 2. A family of measures {u,} is said to be exponentially tight on
X if
(Al) VR >0,3acompact K5 such that limsupeIn u (K§) < —R.

-0

We work only with exponentially tight families of measures in this article.
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1630 D. IOFFE

REMARK. The question of whether a particular family of measures satisfy-
ing a large deviation principle will also satisfy (A1) is frequently connected to
the regularity of this family and we are not going to discuss it here. However,
we point out that in a variety of concrete problems, (Al) can be established
without reference to L, as in the example below (see also [4], [5]).

Now let us see how much information about the large deviation properties
of {u.} can be achieved by observing this family only on the compact sets
appearing in Definition 2.

DerFiNITION 3. (X,{n.}) is said to be a y-truncated S.L.D. with rate func-
tion L if it satisfies Conditions 1 and 3 and also the following condition.

ConbpITION 2. For each closed subset F C X,

limsupeIn u (F) < —( me(x) A 'y)

-0

Lemma 1.1. Assume (Al) with {Ky} being a nondecreasing family of
compacts. Let a: R, — R, be such that

(1.2) «(R) <R and lim (R - a(R)) = 0.

Then the following two statements are equivalent:

® (X,{n.}) is an S.L.D. with rate function L.
(i) V R > 0, (K, {u?}) is an a(R)-truncated S.L.D. with rate function Ly,

In what is wrztten above, Ky is understood as a topological space in the
induced topology, w¥ is the restriction of u, to K and L and L g are related as
follows:

La(x) = {L(x), if L(x) <a(R), .
B + oo, otherwise,
(1.3) Lix) - { lim Lp(x),  if defined,
+ o, otherwise.

Proor. (i) = (ii): By the construction (1.3), Lebesgue sets of the functional
Ly satisfy ®f = g rary N K and are hence compact. Turning to Condition
1, pick a set J which is open in K. If inf; L;(x) = », then there is nothing
to prove. Otherwise, inf; Lp(x) < a(R). In this case, represent J as an
intersection J = o N Ky, where o is open in X. Note that from the choice of
Ky and Condition 1 for (X, {u}), it follows that ®, , C K. Indeed, assuming
the converse, one can find a point x and a nelghborhood % of x such that
% < @, gy/Kg. Then by (Al), we obtain

limsupe In u,(%) < limsupeln pu,(K§) < —R,

-0 e—0
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and by Condition 1 for the family {u,},
limi(l)mfsln w (%)= —a(R) > —R,

which is obviously a contradiction. Consequently,

infL(x) = infLy(x) < a(R).
F J

But pB(J) > p () — u(K%) and hence Condition 1 for (K, {u?}) follows.

Finally, if F is closed in K, then it is closed in the original topology of X.
Thus Condition 2' for (K g, {uF}) follows from Condition 2 for (X, {x,}) and the
inequality L > Ly A a(R).

(i) = (@): For each s > 0, ®g coincides with ®F if a(R) > s and hence
Condition 3 holds. Now if o is open in X and inf; L(x) = y < =, then for any
R such that a(R) is greater than vy, y = inf,,x_ L(x). Thus Condition 1
for (X,{u,}) follows from Condition 1 for {u*} and the inequality u (J) >
p(J N Kg)=uB(J N Ky). .

In a similar way, for a closed set F, the estimate u (F) < u (F N Kpg) +
w (K§) together with Condition 2' for (K, {uF}) lead to Condition 2 by letting
R tend to infinity.

Now a y-truncated S.L.D. is invariant under continuous transformations.
We will state this fact without proof since it is essentially the same as in the
case of S.L.D.’s (6], Theorem 3.3.1). O

Lemma 1.4. Suppose (X,{u,}) is a y-truncated S.L.D. with rate Ly and
F. X -» Y is a continuous map. Then (Y,{v.}) is also a y-truncated S.L.D.
with rate function Ly, where {v,} is a family of measures on Y induced by F
and Ly(y) = inf, _ p-1,, Lx(x) (as usual inf on an empty set equals infinity).

LEMMA 1.5 (See also [4], Exercise 2.1.20). Let X, Y be topological
Hausdorff spaces, F: X - Y a continuous injection and {u,} a family of
measures on X satisfying (Al). Denote by {v,} the family of measures induced
by F on Y and assume that (Y,{v,}) is an S.L.D. with rate function L.

Then (X,{u}) is also an S.L.D. with rate function Ly = Ly o F.

Proor. F has a continuous inverse on each F(Kp), where {K} is again a
family of compacts in X satisfying (A1). Moreover {F(K )} is an analogous
family for {u_.}. The claim of the proposition now follows by the successive
applications of Lemma 1.5, Lemma 1.4 and again Lemma 1.5. O

ReEMARK. Note that the above lemma enables us to split the problem of
finding a rate function for a family {u,} on X into two possibly easier ones:
First to establish (A1) for {u} on X and second to inject X into some Y with a
weaker topology, for which the rate function is more or less readily calculable.

As was mentioned in the beginning of the paper we are able to refine the
following large deviation result of Baldi [2]:
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Let X be a Banach space, {u,} a family of measures on X and for each &
define a functional H® on X* (the dual of X) by

(1.6) He(x*) = lnfxexp[x*(x)]#g(dx)'

Assume
H(x*) =lim, ,,eH*®(x/¢) exists, is lower-semicontinuous

(A2) and Dom(H) = X*.

REMARK. Note that under (A2), H is a convex and proper functional.

Define L to be the Fenchel transform of H (with respect to the pairing
between the spaces X and X*). Set & = {(x, L(x))|L is subdifferential and
strictly convex in x}.

(A3) L is dense on the boundary of epi(L).

THEOREM 1.7. (From [2]). Under (A1)-(A3), (X,{u,}) is an S.L.D. with
rate function L.

REMARK. In the original paper [2] all results were stated for locally convex
spaces. Moreover, as was recently noted by Baldi [3] in the case of X a re-
flexive B-space, the claim Dom(H) = X in (A2) can be replaced by the more
familiar finite-dimensional condition that the origin belongs to the set
int(Dom(H)).

Now clearly the finer the topology of X is, the more difficult it becomes to
calculate the limit in (A2) or even to establish its existence. Similarly, the only
general way we know to establish (A3) is to check the Gateaux differentiability
of H, which can be a formidable task if X* is large.

Suppose that X is a dense subspace of another B-space Y. As usual, let {u}
be a family of measures on X and {v,} the induced family on Y. Then Lemma
1.5 enables us to refine Theorem 1.7 as follows.

THEOREM 1.7'. Assume (A1) for {n,} on X and (A2) and (A3) for {u,}
onY.

Then (X,{u}) is an S.L.D. with rate function L = Ly o I, where Ly is
given by (A2) for {v,} and I is an operator of natural embedding of X into Y.

In particular in the example below, Theorem 1.7’ enables us to make all the
calculations in an L, space as soon as exponential tightness is established.

2. The nonconvex case. Consider the following reaction—diffusion equa-
tion (R.D.E.) which we are going to discuss in greater detail later on.

duf/dt = Au® + b(u’, (¢ /e, x)),

(2.1) u®(0,x) =g(x), (t,x)e[0,T] xS
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If the random field ¢(-, - ) has sufficiently good mixing properties in ¢, then
the family of measures {u,} induced (say on C([0, T'] X S1)) by {u«*} is likely to
obey an L.D. principle. On the other hand, because (2.1) is a nonlinear
equation for {«*}, the appropriate rate function is generally nonconvex so there
is no hope of applying Theorem 1.7' directly.

Let us insert an admissible deterministic function ¢ into the nonlinear term
b(+) to obtain an auxiliary family of equations

ous? /ot = Au=?® + b( ¢, £(t /e, x)),
u4(0,x) = g(x), (&%) €[0,T] x S

(2.1), is already a linear equation and the Fenchel transform technique of the
previous section has a good chance of being successful. Assume that we have
managed to calculate the rate function L? for the induced family {u?}. We
want to find some conditions under which the conclusion that L(9) = L*(8) is
the rate function for the original family {u,} is justified. The general setting
goes as follows. )

Let X be a B-space, {u,} a family of measures on X which is assumed to
satisfy (A1) and {K} an appropriate family of compacts. Suppose further that
V x € U g, (K5, one can define an augmented family of measures {u?} which
is comparable with {u,} near x in the following sense.

V p > 0 and V %neighborhoods of x 3 %{- and %§-neighborhoods of x
such that for ¢ sufficiently small,

(2.2) k(%) = we(2f) — exp(—p/e),
(2.3) wi(Z) =z u (%5) — exp(—p/¢).

LEMMA 2.4. In the above notation, assume that (X,{u*}) is a S.L.D. with
rate function L* for each x € U g, (K. Set

25) L(x) = L*(x), ifxe RL>JOKR,

+ oo, otherwise.

(2.1)4

Then the lower-semicontinuity of L implies a L.D. principle for {u_} on X
with L as a rate function.

Proor. Lower bound: Obviously we have to prove Condition 1 only for the
case J N U g, oKy # &. But for each x which lies in J N U g, (K and for
each p > 0, one can pick a neighborhood %* such that by (2.2) and by the
L.D. assumption on {u%},

(=p) Vv limiglfe Inp,(J) > limiglfe In p%(%*)

\%

~infL* 2 ~L*(x) = ~L(x).

Because the above is true for all p > 0 and x € J, the claim follows.
Now Condition 3 for L is an immediate consequence of the lower bound,
exponential tightness and lower-semicontinuity.
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Upper bound: Let F € X be closed. Set y = infy L. If y = 0, Condition 2 is
trivially satisfied. Otherwise, pick 0 < a < y. Note that
(2.6) limsupeln u (F) < (—2a) V limsupelnp (FNK,,).

-0 e—0

Next we construct an open covering of the compact F N K,, as follows: For
each x € F N K,,, choose first a neighborhood %, such that Z, n {y|L*(y) <
a} = &. Then x will be covered by 7, where 7 satisfies (2.3) with %, on the
left side. Let 7?,..., % be a finite subcovering. We then have
limsupe In p,(F N K,,) < sup limsupe In p (%*)

e—0 i -0

< (—p) V sup limsupe In{ p¥}, (@xi) <(-p) Ve,
i -0
where the second inequality is exactly (2.3) and the last one follows by the L.D.
principle for the family {u%}, i = 1,...,n. Combining this with (2.6) and
letting p tend to infinity we obtain that for any o < 1y,
limsupeln u (F) < —a.
-0

Therefore Condition 2 follows.

At first glance, the main obstacle in the use of the above lemma is the
a priori lower-semicontinuity of L. In fact it can be verified even without
actual calculation of L* using only the L.D. assumption on {u*} and some
regularity conditions. Namely, let us forget for a moment about {u,} and
consider a B-space X with {K} a nondecreasing family of compacts on X.
Suppose again that for any x € M = U, Ky, the family of measures {u*} is
defined. Let the following two conditions hold:

If x € M/Kp, then 3 %neighborhood of x such that
limsupe In u*(%)< — R.

e—0

Denote by B(y;d) the ball with radius d and center in y. Then
VxeM,r>0and p>0,38>0and F > 0such that
(2.8) whenever ||y — x|l < 8, y € M and ¢ is small enough,
wi(B(x;r)) = pl(B(x;7)) — exp(—p/e). 0
LEMMA 2.9. Assume that (2.7), (2.8) are satisfied and (X,{u*}) is an

S.L.D. with rate function L* for each x € M. Then the functional L given by
(2.5) is lower-semicontinuous.

(2.7)

PrOOF. Assume that {x,} is a sequence of points in X and x, — x. We
have to show that L(x) < liminf, ,,L(x,). Obviously it is enough to consider
only x, € M. Let us distinguish between the two cases x € M and x & M.

x € M: Pick a ball B(x;r). Then condition (2.8) implies the existence of
7 > 0 such that for n sufficiently large,

(-p) v limi;lfe In ui(B(x,r)) = limsupe In u*( B(x,7)).

e—0
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But

limsupe In p*»(B(x,,7)) = —L*(x,) ifx, € B(x,7),

-0

which will be the case for sufficiently large n. Thus we have Vp > 0 and r > 0,

(2.10) (-p) v (- inf L7) = - limsupL*~(s,).

B(x;r) n—oo

By the lower-semicontinuity of L%,

. . <) _ 7=
i) 0
Therefore shrinking r to zero and letting p tend to infinity in (2.10), we arrive
at the desired result.

x & M: In this case, the sequence {x,} is eventually in K% for each R.
Hence by (2.7) and the L.D. property, L**(x,) > R for arbitrarily large R and
n large enough. O

3. Example: Random perturbation of R.D.E. We turn now to the
system (2.1). Set U= C(0,T]x S!) and denote by u,,u? the measures
induced on U by u® and u* %, respectively. For brevity we make the following
assumptions (for a discussion of the more general case see [7]):

AssUMPTION 1. ¢ is a step random field such that £(¢, x) = 1,(x) on each of
the time intervals [k — 1, k] and {7,(-)} is a family of i.i.d. Gaussian processes
on S! with zero mean and continuous correlation function.

AssuMPTION 2. b(-) is bounded along with its derivative, [|bll, |l < m and
g € W(S1Y). Now foreach t €[0,T], $ € W-2([0,T] x SV and ¢(0, - ) = g(-)
define B}, as the correlation operator of the process b(¢(t, - )ny(-). Then By
acts on L,(S"). Define the inverse #; = (B})~'/? in the usual way (see [6].
Finally define the functional L? by

2 if defined (in the
LMl (2 - as)| a distributional
(3.1) L%(9) = Ej(; 4’(0_1: - ) L, t, distributional sense)
and ¢(0’ .) =g(.),
+ o, otherwise.

Then the large deviation result is:
Lemma 3.2. (U,{n.}) is an S.L.D. with rate function L given by
¢ .
(3.3) L($) = {L (@), ifdefined,

+ o, otherwise.
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First of all we establish:

LEMMA 3.4. The families {u,}, (1%} are exponentially tight on U.

We defer the proof of this lemma until the next section but note that this
already enables us to use Theorem 1.7". Next we calculate the rate function for
the family {u?}.

LemMa 3.5. (U,{u?) is an S.L.D. with rate function L?.

Proor. Denote by G(x) the heat kernel for the operator a/9t) — A),

t € R, and x € S'. Denote further by * the usual convolution on S! and by
o the following operation:

t
aoB(t,x) = j;fla(t —s,x —y)B(s,y) dyds, a,B € Ly([0,T] X Sh).
Then u®% = G * g + G o[b($)&(- /&, - )]. Because {u?} is exponentially tight on

U, it suffices to prove the proposition only in L,(0,T] X S1). Pick a function
B € Ly([0,T] x S1) and compute

He(B) = I Bewp| [At, ), (6, D) at)
T
='/‘;<B(t7‘)7G*g>dt

+In Eexp(joT<[Goﬁ]b($)(t, ), €(t/e, ) dt),

where { -, - ) denotes the scalar product in L,(SY) and &(¢,-) =T — ¢, - ).
Hence the generalized Cramér transform H ¢ is given by

HY(B) = ffw(t, ), G+ g) dt

1 .7 R n
+}i_r3})elnEexp(;j; <[Gog]b(¢)(t,.),g(t/g,.pdt).

To calculate the second term above, dgnot(:, by w(-) the uniform modulus of
continuity (in ¢) of the function [G - Blb(¢) = F. If ¢; is some point in the
interval [e(k — 1), ek], then

1 .7 |t 1T/e
F e {5 o= T 0w
T/e

+2 L 03, m),

(3.6)

where 05(-) satisfies [05(r)lz=sy <7 for r > 0. Now for any two random
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variables » and g with finite exponential moments,

pIn Eexp(=/p) — (p/q)In E exp(—q 4/p)

(3.7) <In Eexp(=+ g) < (1/p)n E exp(p=) + (1/9)In Eexp(qg),

where p and g are Holder conjugate numbers. Therefore, picking » and 4 as
the first and second terms, respectively, in (3.6) and letting g tend to infinity,
we obtain

(3.8) H*(B) = fo"’w(t, ), G * gy dt + %ffwg(aoﬁ),c;om dt.

To see that the Fenchel transform of H? is given exactly by (3.1), note that for
9 € Wh%([0,T] x SY),

[oTw(t, '),0>dt=[0T<B(t, ),G*9(0, ) dt
(3.9)

A

T . 00 N
—[ (G B, — + AS) dt.
0 ot

(8.8) clearly implies (A2), so to complete the proof we have to verify (A3).
But the latter condition readily follows from the fact that H? is Gateaux
differentiable (hence L? is strictly convex in any point where it is subdifferen-
tiable) and the Brondsed—Rockafellar theorem [9], which ensures that the set
{(8, L*(9))|L? is subdifferentiable in 9} is dense in 9 epi(L?). O

We conclude the proof of Lemma 3.2 by showing that the families {u}, {u?}
actually satisfy the conditions of Lemma 2.4 and Lemma 2.9.

LeMMa 3.10. Denote by || - lu the norm in the space U (= C([0,T] x S1).
Then there exists an exponentially bounded family of random variables {D,}
such that whenever {u* %}, {u®?} are defined the following inequalities hold:

(3.11) lu® — ¢lly < [mD, exp(mD,) + 1]llu>* - ¢llv,
(3.12) lue? — ¢lly < [1 + mTD,]llu® - ¢llu,
(3.13) lus? — ¢lly < llu>? = ¢lly + [1 + mD,]ll¢ — ¢lu.

ProoF oF LEMMA 3.2. The inequalities (3.11)-(3.13) are readily translated
into the conditions (2.2), (2.3) and (2.8), respectively. On the other hand, in the
course of proving Lemma 3.4, we will see that all of the families {u* 4} are
exponentially tight with the same family of compacts {Kg}. This implies the
missing condition (2.7). Therefore, Lemma 2.4 applies. O
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Proor oF LEmMMA 3.10. Set 2°=u®—u*? and v® =u>% — u>? From
(2.1), (2.1), and (2.1);, we obtain the following equation for z¢ and v*:

(8.14) 0z°/0t = Az® + [b(u®) — b(p)]&E(t/e, x), z°(0, -) = 0;
9z /0t = Az® + [b(u™*) — b($)]&(2/¢, x)
(3.15) +0'(u? — 0(u® — u™?))E(t/e, x)2°,
2°(0,:)=0 and 0<6<1;
(8.16)  av°/ot = Av° + [b(¢) — b(D)]&(t/e,x),  v(0,-) = 0.

Set D, = [Tll&(¢/e, *llcesty dt. From the proof of Lemma 3.3, it becomes
apparent that the family {D,} is exponentially bounded. Then from (3.14), we
obtain ||2°ly < mTD,|lu® — ¢lly and hence (3.12). In a similar way, (3.16)
implies that |[v®|ly < mTD,ll¢ — ¥lly and this gives us (3.13). On the other
hand, from (3.15) and the Feynman-Kac formula, it follows that |z°|ly <
mTD, exp(mTD,)|lu®? — ¢lly and therefore (3.11) holds. O

4. Proof of Lemma 3.3. Denote by |- [l;,2 and || - |2, respectively, the
norms in the Sobolev spaces W2([0, T'] X S') and W2(S*). The following two
facts play the principal role in our verification of (A1) for the family {u,}.

1. Consider the equation

ou
(4.1) o "Autf, u(0,) =g().

Suppose that fe L%([0,T] x S!) and g € W2%(S'). Then there exists a
unique weak solution % of (4.1) which belongs to W2([0, T'] X S1). More-
over

r 1/2
lZll,2 < const.[llgllz + (j; j:glfz dxdt) ] (from [1]).

2. WL2([0,T] x S1) is compactly embedded into C([0, T'] X S1). This follows
from the results of [10].

Combining 1 and 2 we see that the proof reduces to the verification of the
exponential boundness of the family {C, = []/s1&(¢/¢, x)? dx dt}. We will do
even more and establish the exponential boundness of the family {D,} defined
above. The latter will follow if we show that V R > 0, 3 N such that

1 1
(42) lim —';ln P —’; E ”nk“C(Sl) > NR < —R.
n-—oo 1

We set [, = [In,llccs). The proof of (4.2) is based on the estimate of Fernique
and Shepp for the tail of the distribution of the suprema of a gaussian process
[81: VA>d 3 m(A): P{l, > 2} < exp(—22/2A) as soon as z > m(A), where
d = sup, c g1 En3(x). What we actually need is the finiteness of the exponen-
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tial moment E exp(l,) = A < ». Now for any N, we have
(4.3) P{% Z': I, > N} < [Eexp(l,)]"e " = exp(—n(N — In A)).
Setting Np = R + In A in (4.3) we obtain (4.2), thereby proving the lemma.
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