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HYDRODYNAMICAL EQUATION FOR ATTRACTIVE
PARTICLE SYSTEMS ON z¢

By C. Lanpim
Ecole Polytechnique

We prove conservation of local equilibrium, away from the shock, for
some attractive asymmetric particle systems on Z%. The method applies to
a class of particle processes which includes zero-range and simple exclusion
processes. The main point in the proof is to exploit attractiveness. The
hydrodynamic equation obtained is a first-order nonlinear partial differen-
tial equation which presents shock waves.

Introduction. The asymmetric zero-range process is one of the simplest
infinite particle systems. It describes the behavior of infinitely many indistin-
guishable particles on Z¢. The particles move according to the following law: If
a site x is occupied by & particles, the rate at which a particle leaves site x is
g(k). Once a particle leaves x, it goes to ¥ with probability P(x, ¥). It is proved
in [1] that the product measures {v,, p > 0} given by (1.2) are invariant for this
process.

On the other hand, we will consider the first-order nonlinear partial differ-
ential equation

Ip(x, t

(0.1) ~

z iz [#(Ce0)] =0,

where ¢ is a function which depends, in a simple way, on the process and
which throughout this paper will be concave. The solution of (0.1) may develop
singularities even when the initial condition is smooth. Therefore, (0.1) has to
be interpreted in a weak sense. Moreover, uniqueness of weak solutions does
not hold in general. However, we know that (0.1) has a unique entropy
solution (we refer the reader to [8] for the definition and the proof of the
existence and uniqueness of an entropy solution of this equation). This solu-
tion can be obtained as the limit when ¢ goes to 0 of the solution of the
equation

ap(x,t)

— t Z Vign [¢(p(x t))] = Ad.

The reader is referred to [8] for more details on equation (0.1).
In the last years, some authors [2-5, 7, 11] proved conservation of local
equilibrium, in the terminology of [2], for asymmetric particle processes on Z.

Received July 1989; revised May 1990.

AMS 1980 subject classification. Primary 60K35.

Key words and phrases. Infinite particle systems, hydrodynamical equations, asymmetric zero
range process.

1537

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%%
The Annals of Probability. STOR ®

WWWw.jstor.org



1538 C. LANDIM

In this article, we 1nvest1gate the hydrodynamical behavior of asymmetrlc
particle systems on Z¢. More precisely, let 7, denote the shift by @ on X = NZ°
and S, the semigroup of the zero-range process. We prove that, for some
measures u on X [see (1.4) for the measure considered in this article], there
exists a function p(v,¢), which is the entropy solution of (0.1) with initial
condition depending on u, such that
sh_lfl Tloe St = Yoy, 1y

for every (v,t) € R? X R, away from the shock, where the limit is to be
considered in the sense of weak convergence of measures and where [a]
denotes the integer part of a € R?.

The method we use to prove preservation of local equilibrium was intro-
duced in [3]. This article is divided as follows. In Section 1 we describe the
model and state the theorems. In Section 2 we present the steps we will follow
in the proofs of the theorems. In Sections 3 to 6 we prove the theorems and in
Section 7 we extend some results stated in Section 1.

1. Results and notation. Let (7,) be the zero-range process. Th1s is the
strongly continuous Markov process on X = NZ° whose generator acts on
cylindrical functions as

(1.0) Lf(m) = X g(n(x))P(x,3)[f(n*?) — f(n)],

x,yez¢
where
n(z2), ifz+#x,y,
n%%(z) ={n(x) -1, ifz=ux,
n(y) +1, ifz=y.
Throughout this article, we will make the following assumptions on g
and P.
AssumpTiON 1.1.

() The function g is nondecreasing and bounded; 0 = g(0) < g(1).
(i) P(x,y) = P(0,y — x) = p(y — x) and there exists y > d, such that

Y lyl*p(y) < =,

yez?

where, throughout this article,
d
”y”= Z:bw'
j=1

In the proofs of Theorems 3 and 4, we will need more stringent hypotheses
on the process.
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AssumPTION 1.2. There exists A € N, such that, p(y) = 0 if [yl > A. In
other words, the process is of finite range.

The existence and the construction of this Markov process, under more
general hypotheses than our assumptions, is proved in [1]. From now on, we
will denote by (S,) the semigroup of this process. Before proceeding we
introduce some notation.

NoraTioN 1.3.

(a) {r,, y € 2% will denote the shifts on X: 7,n(2) = n(z + y) for every y, z in
72, 1 in X. We extend the shift to the functions and to the measures in the
natural way: We define the function 7,f by 7,f(n) =f(7,n) and the
measure u7, by [fd(ur) = [7,fdu. We observe that Assumption 1.1
implies that S, and 7, commute.

(b) # will be the set of invariant measures for the semigroup (S,) and . the
set of probability measures invariant under {r,, y € 7.

(¢) For r in R, [r] denotes the integer part of r.

(d) G = sup,[gk + 1) — g(k)].

(e Yi = Z(z1 ..... zg)€ Zdsz(z), y=0p.0r¥a)

(f) H will be a closed cone with nonempty interior H°,

(8) P(NZ") will be the set of probabilities on X.

We introduce in X the partial order defined by 7 < ¢ if n(x) < &(x) for
every x in Z%¢. We will denote by .# the class of continuous functions on X,
which are monotone in the sense that f(n) < f(¢) whenever n < &. If p and v
are two probabilities on X, we shall say that u < v, provided that [fdu < [fdv
for all f in .#. A Feller process, with semigroup S,, is said to be attractive if
u < v implies uS, < vS, for all ¢ > 0. It is proved in [1] that the monotonicity
of g implies the attractiveness of the zero-range process. This property of the
process, as we will see later, is the crucial point in the proof of the theorems.
As in Corollary 2.2.8 of [10], if u < v, in order to prove that u = v, we only
have to show that

(1.1) (g, x2)] = v[n(xy,. .., x4)]
for every (x,,...,x,) in Z°.

It is also proved in [1] that the set of extremal measures in £ N # is the
weakly continuous family of product measures {v,, p € [0, ®)}, such that

[6(p)]* 1
, ifk>1,
Vp['n,'r'(x) = k] = g(ll) g(k) x(p)
;(‘;‘)‘, if k=0,

where x(p) is a normalizing factor and

(1.2) ¢(p) = v,[&(n(0))].
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Therefore, every measure in .#N ./ can be written as

(13) [ wMdp),

where A is a probability measure on R,.

As is stated in the Introduction, we will prove conservation of local equilib-
rium for some initial profiles for the zero-range process under Assumption 1.1.
To state the theorems, we define the product measures Ko p and i 5 by

v, [n, n(x) = k], if x, <0,

Mo, plm, n(x) = k] = {VB[n, n(x) = k], otherwise,
(1.4)
valm, m(x) = k], ifx¢H,

* = =
I'La,B[n’ T'(x) k] {vﬁln,'n(x) =k], OtherWiSeo

In Sections 3 and 4, we will prove the following theorems. To fix ideas, we
will suppose throughout that y, > 0.

THEOREM 1. Under Assumption 1.1, suppose that ¢ given by (1.2) is
concave and that 0 < a < B < ». Then, for p, 4, given by (1.4),

].' S Vas ifvl < Uc,
0 B, g T(wy01,0,...,0) = vg, ifv; > v,
where
#(B) — ¢(a)
1.5 TN,
(1.5) TN

THEOREM 2. Under Assumption 1.1, suppose that ¢ given by (1.2) is
strictly concave, that y, > 0 and that 0 < 8 < a < ». Then, for Kg, p Siven by
1.9,

Vas if vy < v1¢'(a),
tlim Poa, 88T e0,...,00 = { Vo1 sy U V18 (@) <vp <714'(B),
Vg, if v14'(B) <v;.

ReEMARK 1.1. We shall observe that in Theorem 1, nothing is said for
v; = U, . On the other hand, in Section 7, we will see that these two theorems
can be proved for a larger class of attractive processes.

REMARK 1.2. Let (wy,...,w,) be in Z¢ and let fi,, be the product
measure given by
v[n, m(x) = k], if{x,w) <0,

(1.6) i, pln, n(x)=k] = valm, m(x) = k], otherwise,
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where ( , ) denotes the inner product in R?. With a suitable change of
variables, we obtain the following corollaries of Theorems 1 and 2.

CoROLLARY 1. Under the hypotheses of Theorem 1, but with (y,w) = 0,
instead of y; > 0,

lim i, ,Sm, _ e L:f(v —cy,w) <0,
too O il [vath vg, if (v—cy,w)>0,
where
_#(B) —b(a)

B—«a

CoROLLARY 2. Under the hypotheses of Theorem 2, but with {y,w) > 0,
instead of vy, > 0,

th_)lg by, B StT([vlt] ..... [vatD
Ve if (v,w) < ¢'(a) y,w),
= V[db’]'l((v,w)/(»y,w))’ "f ¢,(a)<7a w> < (v,w) < ¢,(B)<‘y’ w>,
Vg, if ¢'(B) vy, w) < (v, w).

REMARK 1.3. Theorems 1 and 2 and their corollaries prove conservation of
local equilibrium for some initial profiles. Indeed, if u° is the product measure
given by (1.4) or by (1.6), then they state that

3 & —_—
811_1;%/-" Ste-l”([ule"l] ..... wae™) = Yo, t)

where p is the entropy solution of (0.1) with initial condition p(v,0) =
aly, <o + Bl 5o [respectively p(v,0) = aly, vy <o) + Bliy, wy = o)

The fact that the initial measure is translation invariant in (d — 1) dimen-
sions is essential to the proof of these two theorems. Nevertheless, for the
zero-range process under Assumptions 1.1 and 1.2, we can prove conservation
of local equilibrium for measures which do not have this property. This is the
content of Theorems 3 and 4.

THEOREM 3. Under Assumptions 1.1 and 1.2, suppose that ¢ given by (1.2)
is concave, that 0 < a < B < » and that y = (y,,0,...,0) is in H®. Then, for

wi g given by (1.4),
lim u* . Sor Ve (01—, 0p,..,0,) € H,
poh @B et Ty (o) — vy, v, vy) € HY,

where

4B — @)

c Y1 ‘B_a'
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THEOREM 4. Under Assumptions 1.1 and 1.2, suppose that ¢ given by (1.2)
is strictly concave, that 0 < B < a < © and that y = (y,,0,...,0) is in H°.
Then, for u* , given by (1.4),

tll_l)Iolo I-‘—t, B StT([vlt] ..... [vat])
Va, if(vl_71¢’(a),02,...,vd)$H,
= V[¢I]—1(0), lf (Ul - 71¢’(0), Ugy.evny Ud) € aHfOrB <6< «,
Vg, if (01 = 719'(B), v, .. 'avd) €H.

ReEMARK 1.4. Once more, we shall notice that in Theorem 3 nothing is said
for (v; — v, vy, ...,V;) € 0H. On the other hand, the hypothesis that H is
nonempty can be removed. In this case, we prove the theorem by approximat-
ing the cone H by a sequence of cones H, with nonempty interiors.

REMARK 1.5. The proofs of Theorems 3 and 4 work if —y = (—%,,0,...,0)
is in H°. The important point is that either the surface dH propagates in
all directions or it diffuses in all directions. This is the case when y or —y is
in HO.

REMARK 1.6. Asin Remark 1.2, if y or —vy isin H and if y can be written
as y = 6(0y,...,0,), where ¢ € Rand (ay,...,0,) € Z%, then, from Theorems
3 and 4, by a change of variables, we obtain corollaries analogous to those
obtained in that remark.

In Section 7, we will see that in dimension 2 the hypothesis that y =
(o, 05) can be weakened in order to include Lebesgue-almost all vectors
of R2,

We will prove all the theorems for dimension 2 and, when necessary, make
some comments on the proof in higher dimensions. Observe that in dimension
2, a closed cone with nonempty interior which contains (1, 0) and such that H¢
is not a cone can be written in polar coordinates as {(¢,r) € (—7, 7] X R;
hy <@ <h;},where —m <h, <O0<h;<m h,—hy,<m.

2. Preliminary lemmas.

LeEmMA 2.1. Let p be a probability on NZ°. Suppose that there are 0 < 6, <
6, < © and (a, b),(c,d) € 72 with a,b,c,d = 0 and with ged(d, b) = 1, such
that we have

either (1) w» <uty 0
l‘l’ < l'LT(a,b)’

pn =< l'l’T(c, -d)
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or (1) w2 w10,
B = UTg by
HZUT gy

and (ii) ve, < p < v,,.

Then any sequence Ty 1« has a subsequence Ty, for which there exists a dense
and countable subset D of R, such that for every v € D,

1

. 'y
lim f Nhl"‘StT([ut] 0ndt =p, forsomep,c NS
k—o TNk 0 5

Proor. Almost all the proof is omitted since it is similar to the one of
Lemma 3.1 of [3]. We will only show that the measure u, obtained in this
lemma is in . for every v € D.

Suppose that hypotheses (i) hold and fix v € D. First, we observe that by
attractiveness inequalities (i) extend to w,. For the rest of the proof, we will
denote by (j) inequalities (i) for the measure u, instead of u.

On the one hand, we know from the proof of Lemma 3.1 of [3] that
w,[n(z, 0] = u,[n(0,0)] for every z € Z. On the other hand, from the hypothe-
sis ged(b,d) = 1, it is easy to see from (j) that for every (x,y) € Z? there
exists 2,2z, € Z (which depend on x and y), such that u,[n(z},0)] <
w ln(x, )] < p [n(zy, 0)]. This proves that

(2.1) w[n(x,¥)] = u,[n(0,0)] forevery (x,y) € Z>2.

Thus, since by (j), , < p,7q, 0y according to (1.1), assertion (2.1) implies
that

(2.2) My = BT, 0y

On the other hand, since ged(b, d) = 1, there exists p,q € N, such that
pb — qd = 1. Hence, by hypothesis (j), u, < &,T(pq+qc,1)- Thus, once more
according to (1.1), equality (2.1) implies that w, = &, pg+4c,1)- This together
with equality (2.2) proves that p, € 7. O

ReMARK 2.1. From (1.3) and Lemma 2.1, for every v € D, there is a
probability measure on [6;, 8,] which will be denoted by A, such that

0,
= | v A,(dp).
po = [ oAl dP)
LEmMA 2.2.  With the notation of Lemma 2.1 and with p = p, g orp = p5 g

defined by (1.4), there exist U,v € R, such that

Ve, IfU<uy,
Ho= v, ifv >0,
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Proor. This lemma is a generalization to higher dimensions of Lemma 3.3
of [3]. We will only prove the existence of 7, since the proof for v is similar.
Suppose that u = u, 5 and that @ < B. Fix v in D. Since Kq, g < Vg, from the
attractiveness of the process, we obtain u, < v;. Hence, according to (1.1) and
in order to prove that u, = ug, we only have to show that u [7(x,y)] = B8 for
every (x,y) € Z2. This will be done by a coupling argument.

First, take 7 particles distributed according to K, g and suitably add ¢
particles on the sites {(x, y) € Z% x < 0} so that 0 + ¢ is distributed according
to v;. Then we let (n,, £,) evolve according to the Markov process on NZ* x NZ*,
whose generator L is defined on cylindrical functions by

Lf(n, &) = ¥ &(n(x))P(x,9)[f(n™?,€) ~ f(m, £)]

x,ye2?

+ X [g(n(x) + £(x)) —g(n(x))]

x,yeZ?

XP(x$y)[f(77’§x’y) _f('ﬂ, §)]

The generator L describes a process with two different kinds of particles n and
&, the first having priority over the second. This coupling was introduced in [2].
It is clear that (n,) and (n, + £,) are zero-range processes with generator given
by (1.0) and with initial distributions K4, g and vg, respectively. We will denote
by = the initial distribution on NZ* x NZ” of (n, £).

Thus, by the coupling we have just constructed and by Lemma 2.1,

po[n(x, )] = u,[n(0,0)]

. 1o
_h}enT—Nkfo ta,g[n:([vt],0)] dt

.1 .,
=B - llzlla,;kj;) 'rr[§t([vt],0)] dt.

Hence, to prove the theorem, we have only to show that #[£,((v¢],0)] - 0 as
t 1o, for v sufficiently large. In order to do this, we will couple the ¢ particles
with another system of { particles. First, we label the ¢ particles with
superscript indices and we add a second superscript when we want to indicate
the coordinates of the particle. To each £* = (¢%1, £%2) particle, we associate a
{* particle. The ¢ particles move independently as translation invariant
continuous-time random walks on Z, whose holding times have rate G =
sup,[g(k + 1) — g(k)] and whose transition probabilities are

0, ifk <0,
(2.3) r(0,k) ={ ¥ p(y), ifk>0.

llyll=%

If there are n ¢-particles on the site x, we can consider that each one jumps
at rate [g(n(x) + n) — g(n(x))]/n which is at most G. On the other hand, the
Jjumps of the { particles are stochastically larger than those of the ¢ particles.
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Therefore, we can couple them in such a way that

o= - ke,

(2.4) ¥ ligk(s) — &4(s =)l < && - 2.
Let
m=Y kr(k)
0 5) k>0
(2. = Y lyllp(y),
yEZ2

which is finite by Assumption 1.1Gi). Let 7 =m + 1 and (A,) be a
continuous-time random walk on Z, with holding time rate equal to G,
transition probability given by (2.3) and with A, = 0. For v > U, we have

(2.6) m[£([v2],0)] < ( Y w[&W)],

- 2
[vt] = [3¢])" ) e vaoen, e

!

where
V(i k) ={(x,y) €2% j<x <k, lyl <x—j}
From the coupling and from (2.4), we see that

Y w&W] < X E[{(k)]

yev(ut], [vtD k>[vt]

(2.7 <K'(B - a)kZIkP[A, > [0t] + k- 1]
<K" Y E?P[A,=k],

k>[vt]

where the first inequality is obtained by the coupling, the second by Wald’s
lemma and the third by a change of variables. Thus, from (2.6) and (2.7),

A\
("‘) 1, >[0t]
t £=

and, by Assumption 1.1, the definition of 7 and (2.5), the right-hand side of
this expression converges to 0 when ¢ goes to « by standard arguments. The
proof of the existence of U when B < a is similar.

The proof for the case u = u% ; is similar. Inequality (2.6) is the unique
point where extra arguments are needed. Keeping in mind the definition of H,
let M €N, such that 1/M < (tan(k,)*A(—tan(k,))*, that is, such that
(M, 1) and (M, —1) are in H. From the definition of the measure =, w[£(x —
25,y — 2,)] < wlé(x, y)] for every (x,y) € 72, (2,, 2,) € Z2 N H. By attractive-
ness, this inequality extends for every time ¢: w[£(x — 21, ¥ — 25)] < w[é(x, )]
for every (x,y) € 7%, (2,,2,) € Z2 N H. Consider v >0 and let w < (v +
Mv)/(M + 1). A simple computation shows that for every sufficiently large ¢,

w[£,([vt],0)] <KE
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w[£,(3)] < wl[¢,(ve], 0)] for every & € V([vt],[wt]). In this way, we obtain an
inequality similar to (2.6). The rest of the proof follows in the same way. O

ProposITION 2.1. With the notation and hypotheses of Lemma 2.1, if there
exist vy and v,, such that for every initial sequence (Ty) the measures u,
obtained in the lemma satisfy

ey if v < vy,
Ho = {vez, ifv> vy,

then
Ve, ifv <u,
ifv>v,.

1’

lim — f KS T usy,0) B = {

Too T Vo,

2

Proor. Suppose that v > v,. From the attractiveness of the process and
the inequality u < v, , we know that

1 7
{? j 1S oey 0 dt, T = o}

is relatively compact. To show that vy, is the unique cluster point, we suppose
that

R T_Nf B8 Tun 0 di =
for a sequence Ty T and 4 in P(NT*). We will show that A = v,,. Applying
Lemma 2.1 to the measure p and to the sequence Ty, we obtain a subse-
quence Ty, and a dense subset D of R. Take v; < u < v, u € D. By hypothe-
sis, p, = v,. Since p < u7 g, by attractiveness, we have

1 Ty, 1 .7
— *uS,T dt < — [ MuS,r dt <v, .
TNk'/;) KOs T(qut), 0) TN,,'/;) KO T(10e),0) 0y

Letting k 1, we obtain that & = v, , which proves the lemma for v > v;. The
proof for v < v, is similar. O

REMARK 2.2. With the same hypotheses of Proposition 2.1, if the measures
u, obtained in Lemma 2.1 satisfy

v, if v > vy,
Hu Vo, if v <uwy,

then by the same arguments

1 7 ve,, if v > v,
lim T-/;) BS:Tuey,0) B = {

T—> o

ve,, if v <.
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Observe that the measures u, ; and u% ; satisfy the hypotheses of Lemma
2.1. In the next four sections, we will prove the theorems. The idea will be
always the same. First, we prove two lemmas which allow us to apply Proposi-
tion 2.1 for good v,’s and v,’s. Then we use a technical argument to obtain the
desired convergence instead of the convergence in the Cesaro sense. For the
case with diffusion, there will be another technical argument to obtain conver-
gence for every velocity.

3. Proof of Theorem 1. In this section, we will suppose that < 8 and
that ¢ given by (1.2) is concave.

We will now state the main lemma for the proof of Theorems 1 and 2.
Under the hypotheses of Lemma 2.1 and supposing that the measure u is
translation invariant in the y-direction, this lemma enables us to compute the
one-dimensional asymptotic density of particles between two macroscopic ve-
locities. We will then be able to prove, with a beautiful argument taken from
[3], that the measures {,, v € D} are indeed equal to v, for v < v, and v, for
v>v, if @ < B[y, for v <y,¢'(a)and v; for v > y,¢'(B) if B < al. The proof
of this lemma relies on a long computation on the generator and is deferred to
the Appendix. The translation by (£, 0) which appears in the statement will be
necessary later.

LEMMA 3.1. Let p be a probability on N%°, such that

(1) vy, S u <y,

either (i) un <u7y, 0
K= KT0,1)

or (') p= K71, 0
K= HKT0,1)

and (i) Tim — [ uS a0t = gy forw =u,v,
N-o Ty’o ’

where

6
ko = [ vAu(dp).

1

Then, for every % in Z,

1 [vTy]
(31 lim T—usT,m,O)( T n(x,0)| = Fv) - F(u),
- iN x=[uTy]+1

where

(3.2) F(w) = w [ o, (dp) = 71 [ b(p)Au(dp).
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REMARK 3.1.  With the notation of Lemma 2.1, if we take u,v € D, u = Ko, p
given by (1.4) and Ty, the subsequence obtained in that lemma, by Remark
2.1, the hypotheses of Lemma 3.1 are satisfied.

We can now state the following lemma.

LemmA 3.2.  With the notation of Lemma 2.1, with 0, = a, 0, = B and with
K = Ko g defined by (1.4) and v, by (1.5), for v € D, we have
v,, ifv<u,
Ko = vg, ifv>uv,.

ProorF. We know from Lemma 2.2 that there exist v and U, such that
‘m, = vg (respectively v,), provided v > T (respectively v <v). Let u € D,
v, <u <70 and take v > 7, v € D. By Remark 3.1, we can apply Lemma 3.1
with 4 = p, z and with the subsequence obtained in Lemma 2.1. Then by
attractiveness we have from (3.1)

F(v) — F(u) <B(v —u).
Thus, since v > 7,

«[*18 = pINdp) < 7, [ [6(B) = 6()IN(dp).
Since ¢ is concave,

Lo8) ~ #(0)] < [HE A2 g - )

Therefore, keeping in mind that v, = y,[[¢(B) — #(a)l/[B — a]], we obtain
u[°18 = p1r.(dp) < v, [*18 = p]r,(dp).

As we took u > v,, we get A,(dp) = 55(dp) and p, = vs. The other assertion
of the lemma is proved in the same way. O

We are now ready to prove the convergence of the Cesaro means. Indeed,
Lemma 3.2 and the attractiveness of the process allow us to extend the
convergence in the Cesaro sense in Lemma 2.1 for velocities in D, to conver-
gence for velocities in R — {v,}. The compactness of the set {u € P(NZ);
w < vg} will do the rest.

REMARK 3.2. Lemma 3.2 allows us to apply Proposition 2.1 with p =, B
Vo = Uy = U, vy, =V, and v, = vz. With this result we can prove Theorem 1.

Proor or THEOREM 1. Let v > v,. From the attractiveness of the process
and the inequality u, z < v5, we know that

{'u'a:BStT([vt],Oy > 0}
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is relatively compact. Thus, we only have to show that v, is the unique cluster
point. Take v, < u < v, a cluster point 4 and a sequence T, 7, such that

M e, 5 ST uryy,0 = -

Once more, by attractiveness, we have {i < v,. According to (1.1) and in order
to prove that i = v;, we have to show that
Aln(x,9)] =B for every (x,y) & 2.
On the other hand, since we know by Remark 3.2 that
1

Ty
lim —f Mo gS,T, dt=vg; forw=u,v
Now Ty Jo a, Bt (wt], 0) B » %

we can apply Lemma 3.1. But

(3.3) ﬂ[n(x’y)] = lil{’nﬂa,p[nTN([vTN] +x’y)]
which, by attractiveness and since p, 5 = 1, g7, 1) iS greater than or equal to
1 [vTy]
lim > #a,ﬁSTNT(x,O)[”?(Z, 0)]

N [vTy] = [uTy] z=[uTy]+1
and this last expression is equal to 8 by Lemma 3.1. O
4. Proof of Theorem 2. In this section, we will assume that 8 < a and

that ¢ given by (1.2) is strictly concave. First, we state a lemma which
corresponds to Lemma 3.2.

LEMMA 4.1.  With the notation of Lemma 2.1, with 6, = B, 0, = a and with
W = f,, g defined by (1.4), for v € D, we have
| Vas ifv < y¢'(a),
Fo 7 v ifo > nid(B).

Proor. The proof is the same as the one of Claim 1, page 280 of [3] and is
similar to the one of Lemma 3.2. O

Now, we can apply Remark 2.2 with u = u, 4, v; = v,¢'(a), vy = v,¢'(B),
vy, = v, and vy = v,. This together with Lemma 3.1 will prove Theorem 2.

Proor oF THEOREM 2. First, arguing just as in the proof of Theorem 1, we
can prove that

v,, ifv<yd'(a),
vg, ifv>y,¢'(B).

Now, we will consider the case y,¢'(a) < v < y;¢'(B). As in the proof of
Theorem 1, we know that {, 5,7, 0y ¢ = 0} is relatively compact. Let i be

(4'1) }_i_?;“a,BStT([vt],O) =
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a weak limit point and take a sequence T 1%, such that

~

(4.2) leriflm“a,BSTN"«vTNJ,O) K

Since ¢ is C! and strictly concave, there exists w, € (8, a) with y,¢'(w,) = v.
We will show that v, < /. Consider B < < w,. Since ¢ is strictly concave,
¢'(wy) < ¢'(w) and therefore v < y;¢'(w). Hence, by (4.1), with the measure
K, p instead of u, 5, we have

(43) Lim .y, ST quey, 00 = Vo

From the inequality Fop < Ma,p the attractiveness of the process, (4.2) and
(4.3), we obtain v, < [i. Lettlng o 1 w, (since {v,, p > 0} is a weakly continuous
family), we get v, < fi. In the same way, we show that & <, , which proves
the theorem for 71¢> () < v < y,¢'(B). The cases v = y,¢'(a) and v = 710 (B)
follow using the strict concavity of ¢, the inequality w7, o < u and the
attractiveness of the process. O

5. Proof of Theorem 3. In this section we will suppose that Assump-
tions 1.1 and 1.2 hold, that ¢ is concave and that « < 8. Comparing the
measure }, ; with measures which are translation invariant in one direction,
we will prove the following proposition.

ProposITION 5.1. Under the hypotheses of Theorem 3,

}E‘:O#t,sstf([ult],[uzt]) =v, if(v;-v,v,) €H.
ProoF. Once again, we have only to show that v, is the unique cluster

pomt of the sequence (1% 58,7, wy))s=0- L€t A be a cluster point. Since
< u% g by attractlveness

(5 1) v < .

Let (rk deens J =1,2, be two sequences, such that, rl|h,, rZth, and
tanr] € @ For Jj=1,2, let (u}),cn be two sequences of product measures
where uj is given by

piln, n(x) = 1]
vg[m, n(x) = 1], if(—l)”l(x1 sin(ry}) — x, cos(r{)) = 0,
v,[n, n(x) = 1], otherwise.

We have that u¥ ; < p,i, for k sufficiently large and for j = 1,2. Fix j = 1.
Since we know by Corollary 1 that

tli_I};P«lkStT([ult1,[v2t1) = v, provided [(v; — v,)sin(r}) — vy cos(r})] <0,

we obtain
i < v, if[(v; —v.)sin(r}) — vycos(rf)] < 0.
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Letting & 1, we obtain

(5.2) i <v, if[(v, —v,)sinh; —vycos hy] <O.

In the same way, with the measure u? instead of u} we can show that
(5.3) g <v, if[—(v; —uv,)sin hy + vycos hy] < 0.

Finally, (5.1), (5.2) and (5.3) together prove the proposition. O

To complete the proof of the theorem, we will follow the steps of Section 3.
Initially, we observe that the hypotheses of Lemmas 2.1 and 2.2 hold. As we do
not have the one-dimensional translation invariance of the measure u? ;, we
cannot compute the asymptotic density of particles between two macroscopic
velocities anymore. Nevertheless, we can state a lemma which almost gives the
asymptotic density.

LEMMA 5.1.  Let u be a probability on Nz2, such that, fora,b,c,d > 0 and
ged(d,d) =1,

(1) v01 < [ 1 Voz,

either (i) m <u7q o)
M < UTq by
B S BT, —q)
or (") m = w70,
K 2 KT, by
M= KT —a)
and (iii) lim ifTNuStqut] odt=p, forw=u,v,
N Ty’o ’
where

0
tu = [ VA u(dp).

1
Then, for every (£,7) in Z% and for R sufficiently large,
[vTN]

> n(x,y))

x=[uTy]+1

R
limsup ) T—MSTNT(,z’y-)
y=—-R °N
< (2R + 1)[F(v) —F(u)] + K,,
[UTN]

> n(x,y))

x=[uTy]+1
> (2R + 1)[F(v) - F(u)] + K,

where F is given by (3.2) and the constants depend only on A, 0,, h,, h,
and ¢.

(5.4)

R
lim inf Z T_“STNT(JE’J")
y=—-R *N
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As in Lemma 3.1, the proof relies on a long computation on the generator.
This time it strongly uses the assumption that y, = 0 and that the process is
of finite range. The proof is deferred to the Appendix. The important fact is
that the constants appearing in formula (5.4) do not depend on R. In higher
dimensions, the constants are multiplied by (2R + 1)?~2 and the rest of the
proof follows as in dimension 2. This allows us to prove Lemma 3.2 by letting
R 1 in our setting (i.e., with u%, ; instead of u, g). Therefore, we can apply
Proposition 2.1 with p = %, g, vo = vy = v, ¥y, = ¥, and v, = v, to obtain

T—>x

o 1or .
lim ?j; K 8SiTque, 08t = vg if v > v,.

Then, to replace the convergence in the Cesaro sense by the desired one, we
follow the proof of Theorem 1 until formula (3.3), where we have
Aln(x, )] = limp, o[ nr([vTy] + %, 5)]
> ! lim !
T (2R +1) N ([vTn] - [uTy])

[UTN]

R
X > > lf';,ﬁSTNT(x—RM,y)[ﬂ(zpZz)]
z;=[uTyl+1 23=—R

for every R € N sufficiently large and where M € N is such that 1/M <
(tan(k ))*A(—tan(h,))*. By Lemma 5.1 and Proposition 2.1, the right-hand
side of the last inequality is bounded below by

K
B+2R+1'

So, letting R 7, we obtain that a[n(x,y)] = B8 for every (x,y) € Z2 which
proves that

tli_l)gu";’ﬁstf([vt],o) =y, ifv>uv,.

To complete the proof of the theorem, it is not hard to see (since H is a cone)
that if (v, — v,,v,) € H® there exists v, > v,, such that
o, g8t (ot a) 2 Ha, 85T (uge1, 00
and the right-hand side of this inequality converges to v.
6. Proof of Theorem 4. In this section, we will suppose that Assump-
tions 1.1 and 1.2 hold, that ¢ is strictly concave and that 8 < a. As in the last
section, we first state a proposition.

ProPOSITION 6.1. Under the hypotheses of Theorem 4,
li w“t,BStT([vlt],[vzt]) =v, if (v — 714 (a),v,) € H.

t—

The proof is the same as the one of Proposition 5.1.
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As in the last section, we can prove Lemma 4.1 in our setting using Lemma
5.1 instead of Lemma 3.1. Then, applying Remark 2.2 with p = u¥, 5, v, =
v1¢4'(B) and v, = v, we obtain that

. 1 T . /
Hm Tfo Fo,pSeTqun,0dt = vg if v > v,¢'(B).

T—- o

Then, repeating the arguments used at the end of Section 5, we obtain
lim 1% 68,7 o ey = v I (V1 = 714(B),02) € HO.

Finally, arguing as in the proof of Theorem 2, we complete the proof of
Theorem 4.

7. Extensions.

ReEMARK 7.1. Remark 5.1 of [3] is also valid in our context for all four
theorems. On the other hand, Remark 5.3 of the same reference applies only
for the first two theorems.

REMARK 7.2. As we have said in Section 1, in dimension 2 the hypothesis of
Theorems 3 and 4 that y = 6(ay, 0,) where (0, 0,) € 7% and ¢ € R can be
weakened. Suppose we are under the hypotheses of Theorem 3 but with
y = (y1,72) € R2 N HY, such that y,/y, is a real of nonconstant type (see [9],
page 24 for the definition). Under this hypothesis, we can adapt the proofs of
the theorem. We will leave the details to the reader and just point out the main
steps. To fix ideas, suppose that y,,y, > 0 and a < B. Since vy,/y, is of
nonconstant type, we can obtain a sequence ((p%, p%)), € 7%, such that
ged(pt, p3) = 1 and

1
(p%)’a;’

p§ Y2

| 2

(7.1)

where a,, 1.

Suppose p5/p¥ — v/, > 0. Then we choose gf and g%, such that p*qk —
piaf =1, 1/2 <p*/q* <1, j = 1,2. The fact that q%/q* > pt/p* will be
important in the proof. This says that (y,, y,) is not in the cone generated by
the vectors (p¥, p%) and (g%, g%).

The first step in the proof is to change variables with the linear transforma-
tion T}, which sends (p¥%, p%) to (1,0) and (g%, g£) to (0, 1). By the construction
of (p%, p%) and (g%, %), T, sends Z2 onto 72 T,(n,) will be called in what
follows the transformed process. It is clear that the transformed process
satisfies Assumptions 1.1 and 1.2. At this stage, we follow the proof of
Theorem 3 for the transformed process until Lemma 5.1. With the hypotheses
of this lemma, we can prove that, for every (£, 7) in Z2 and for R sufficiently
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large
R [vTN]
liminf } —TT-/'LSTN7(£,5') Y n(xy)
y=-R °N x=[uTy]+1

> (2R + 1)[F(v) — F(u)] +K,

where F is given by (3.2) with ¥ instead of y,, if we denote by 7% the first
coordinate of T, (y). This enables us to prove, with the very arguments used in
Section 5, that

o . ?(B) — ¢(a) _
}1_1)10101»3';,37([:;1?],0) =y ifv> TY{%

where [}, ; is the measure u% ; transformed by T),.

The proof of this result is similar to the one of Lemma 5.1. Nevertheless, it
strongly uses that T,(y) is in the fourth quadrant and that the first quadrant
is contained in T},(H°). Returning to the original process, we have that

S é(B) — ¢(a)

: _ : k k _ ok
(7.2) th_l)lolc#'ﬂ;,BT(p{'[vt],p%[vt]) =g if v — (%71 —4q; 72) = Vp.

Let
Ax = (a571 — atr2)(P1, P3).
From (7.2), we obtain that
(B) — ¢(a) A
B—a
Indeed, fix £ in N and let (v,, v,) be in R, such that
#(B) — ¢(a)
B—a
Since H°® is open, there exists if > vk, such that (v,,v,) — 0k(p%, pk) =
(wy, w,) still belongs to H°. A simple computation shows that

. — . 0
(7.3) MMl o7quewap = ¥ 1 (01, 02) — » €H.

(v1,0) — A, = (vy,0,) — vg(pf,pg) €H°.

o, 6T(uitllvat) = Fa, BT(vbt1od, bt1ph) T Quat)+ xy, wat] + )2
where ki, k; €Z and |k;| V |ky] <1+ (p* v p%). Since H is a cone and
(wy, wy) € HY (w, ] + kq,[wyt] + ky) € HO for all sufficiently large ¢. On the
other hand, u% 47, ., = uh g for every (2, 2,) € H N Z2. Therefore,
o, pTquitl [oatD = Fa, pT(obt1ot, obe1nhys
?nd)by (7.2), the right-hand side of this expression converges to v,, proving
7.3).

To conclude the proof of the theorem, we only have to show that A, —
(y1, v9) and this is done using (7.1) and the fact that a,, 1.

The proof of Theorem 4 under the hypothesis that y,/y; is a real of
nonconstant type is the same. We also know from [9] that the reals of constant
type are of Lebesgue measure 0.
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APPENDIX

Proor oF LEMMA 3.1. Suppose that the hypotheses (ii) are satisfied. Let
[vz]

G(t) = l‘l'StT(y,O)|: Z "7(-"‘?, 0)]
x=[ut]+1

(8.1) +([ut] +1- ut)MStT(y’o)[n([ut]’O)]

+(vt = [vt])uS,7,, [ m([vE] + 1,0)].

Then, since the last two terms are positive and bounded above by 6,, the limit
of the left-hand side of (3.1) is equal to lim G(Ty)/Ty. For ut,vt & Z, G is
differentiable in ¢ and for every s € R,, G(s) = [§G'(¢)d¢t. So, we have to
compute

[vz]

. Ty
1 dt{uS L ,0
lglnj;) {I-‘« tT(y,0) [ Z n(x )}

x=[ut]l+1
+vp,S,‘r(y,0)[n([vt] +1,0)] - uuStT(y’o)[n([ut],O)]

(8.2) + (vt - [vt]);LStT(y,o)L[n([vt] + 1’0)]

+([ut] +1 - ut)uS,T(y'O)L[n([ut],O)] .
First, by hypothesis (iii), the second and the third terms of (8.2) converge to
02 0,
oy [1(0,0)] — un,[1(0,0)] = v ["pA(dp) — u [ “pA,(dp).

Let
q(2) = Y, p(z,x) forzeZ.
xe”Z
For the first term of (8.2), we proceed in the following way. First, we compute
[v]
(83) /“LStT(y,O) E 77(x, 0) :
x=[ut]+1
Then, using the hypothesis that u = u7, ;, we project every term appearing
in the computation on the sites {(x, y); y = 0}. At this point we see that (8.3) is
equal to

[v]
Y (T + T )uSmole(n(zonlatz-2)

x=[ut]+1 *z<[ut] z>[vt]

—1S,7y, 0l 8(n(x,0))]q(z — x)}.

Since by Assumption 1.1 ¥|zlg(2) < , we can add to the sum X, _,, the
terms ¥ ., and to the sum ¥, ,,, the terms L, _,,, without changing the
limit. After this, we change the variables x by x’ = x — [ut] (x — [vt]) and
2’ =z — [ut] (z — [vt]). We now reverse the order of the sum and the limit
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using the dominated convergence theorem. Finally, we let N 7« and use the
hypothesis u,, = 1,7, ¢, for w = u, v, to obtain that the limit of the first term
in (8.2) is equal to

(84) (ru[e(n(0,0)] - nlg(n(0,0)]) T PIY>2]1- T P[-Y=>2]),

220 z>0

where Y is a r.v,, such that P[Y = z] = g(2). Thus, (8.4) is equal to

'Yl[/-"u[g("(o’o))] - ﬂv[g(n(o: 0))]]

We handled the last two terms of (8.2) in the same way and we prove that they
converge to 0 which concludes the proof. O

Proor orF LEMMA 5.1. Suppose we are under hypotheses (ii). As in the
proof of Lemma 3.1, we define

R [vt]
G(¢) = Z {ﬂStT(az,y)[ Z n(x,y)]

y=-R x=[ut]+1

+([ut] + 1 - ut)puS,rz 5[ n([ut], y)]

+ (vt - [Ut])ﬂst”'(f,y)[”l([vt] + 1,.)’)]}-

We observe that the difference between G(Ty)/Ty and the left-hand side of
(5.4) converges to 0 when N goes to ». Computing G'(#), we obtain an
expression similar to (8.2). As in the proof of Lemma 3.1, the terms corre-
sponding to the second and third terms in the expression (8.2) converge by
hypothesis (iii) to

(8.5) (2R + 1)[vp,[1(0,0)] — up,[n(0,0)]].
For the corresponding first term, we proceed in the following way. Initially, we
compute

R [ve]

#StT(az,y)L[ Z Z n(x,y)l

y=—R x=[ut]+1

and obtain
[vt] R
WSren L L |Z(E + T |
xy=[utl+1 x9=—R | y:€Z ‘ y, <[ut] y1=2[vt]+1
[vz]
(8.6) + X )y
yo2{-R,..., R} y,=[ut]+1

{g("?(ypyz))l’(xl — Y1 %2 — ¥2)
_g("‘l(xv xz))P(y1 —X1,Y2 — xz)}
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Let
r(z) = X p(x,2).

x€Z

Since y, = 0,

Y ar(z)= Y, zp(x,2)=0.

z€Z (x,2)ez?

Let ¢ be sufficiently large. For the first two terms in the brackets in (8.6), we
change variables. Then, since the process is of finite range, we observe that
there are only a finite number of terms different from 0 in the sums.
Therefore, we can exchange the order of the sums and the limit. Letting N 1 o,
we see that they converge to

(8.7) (2R + 1)y [p,[2(n(0,0))] — n,g[n(0,0)]].

For the last term in the brackets in (8.6), we divide it in two sums: the first
with the terms R + 1 <y, < R + A and the second with the terms —R — A <
Y2 < —R — 1. We will only consider the first one, since the second is handled
in the same way. Once more, we divide the remaining sum into three other
sums, the first one with the terms [u¢] + 1 < x; < [ut] + A, the second one
with [ut] + A + 1 <x; <[vt] — A and the last one with [vt] - A + 1 <x, <
[vt]. The absolute values of the first and the last sums are bounded by
2¢4(0,) A2, There remains a sum, which, after changing variables, is equal to

[vt]-A 0 A
1Si7 iz, 5 )y )y Y [g(n(x1, 95 + R))r(xy — y5)
x;=[utl+A+1 x3=—-A+1 y,=1
—&(n(xy, %y + R))r(y, — x2)]
Let M € N, such that, 1/M < (tan k)" A(—tan h,)*. We now use hypothesis
(i) to control this sum and obtain that it is bounded above by

[ut]-A 0 A
18,7z, 5 )y M )y [g("(xl + AM, R))r(x; — y3)
x;=[ut]+A+1 x3=—A+1 y,=1
_g("l(x1 - AM, R))r(y2 - x2)]
and below by

[vt]-A 0 A
/"'StT(f,&) Z Z Z [g('ﬂ(xl — AM, R))r(x2 - ¥2)

x;=[ut]+A+1 x3=—A+1 y,=1

—g(n(x, + AM, R))r(y, — xz)]

Then, computing the two last sums, integrating, taking the limit and using the
fact that y, = X, ¢2r(2) + £, ,2r(z) = 0, we obtain that the absolute value
of the remaining sum is less that 2A42M¢(0,). Hence, the limsup of the
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corresponding first term in (8.2) is at most
(2R + 1)y1[n,[£(n(0,0))] - n,g[(n(0,0))]]
+ 8¢(0,) A% + 4A’M(6,)
and the lim inf is at least
(2R + 1)y1[1,&[(n(0,0))] — 1,g[(n(0,0))]] — 84(6,) A® — 4A’M(6,).

For the corresponding last two terms in (8.2), we can show that they converge
to 0 using the fact that the process is of finite range and hypotheses (ii) and
(iii). This in addition to (8.5), (8.7) and (8.8) proves the lemma. O

(8.8)
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