The Annals of Probability
1991, Vol. 19, No. 4, 1520-1536

PERCOLATION CRITICAL EXPONENTS UNDER THE
TRIANGLE CONDITION
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Mathematical Sciences

For independent percolation models, it is shown that if the diagram-
matic “triangle condition” is satisfied, then the critical exponents 6 and B
exist and take their mean-field values, generalizing the criterion introduced
in 1984 by Aizenman and Newman for the mean-field value of y in
nonoriented percolation. The results apply to a broad class of nonoriented,
as well as oriented, weakly homogeneous models, in which the range of the
connecting bonds need not be bounded. For the nonoriented case, the
condition reduces to the finiteness at the critical point of v =
L, 470, x)7(x, y)7(y,0) [with 7(u,v) the probability that the site u is
connected to v], which was recently established by Hara and Slade for
models with sufficiently spread out connections in d > 6 dimensions. Our
analysis proceeds through the derivation of complementary differential
inequalities for the percolation order parameter M(B, h)—whose value at
h = 0+ yields the percolation density, with B parametrizing the bond, or
site, occupation probabilities and with A, A > 0, a “ghost field.” The
conclusion is that under the triangle condition, in the vicinity of the critical
point (8,,0), M(8,0+ ) = (B — B,)8 and M(B,, k) = h'/?, with = 1 and
6 =2

1. Introduction. For percolation models (with and without orientation),
the triangle condition is symptomatic of the reduction to mean-field (Bethe
lattice) critical behavior occurring in high dimensions. For nonoriented perco-
lation, the condition reduces to finiteness of the triangle diagram at the
percolation threshold: v(p,) < «. The criterion was introduced, within that
. context, in Aizenman and Newman (1984), where it was proven to imply that
the expected cluster size diverges with the mean-field power law: yx =
E(CO = (p —p,)"" as p 1 p,, with

(1.1) y=1.

That result is extended here to the critical exponents & and g, which concern
the critical behavior along other directions of approach to the critical point in
the relevant two-parameter space. Specifically, it is shown that, in models for
which the triangle condition is satisfied, § and B are also well-defined—in the
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CRITICAL EXPONENTS UNDER THE V CONDITION 1521

sense that the corresponding quantities obey upper and lower power-law
bounds—and the exponents assume their mean-field values:

(1.2) =2 and B=1.

A feature common to the two sets of results is that, under the triangle
condition, various differential inequalities which have been noted to convey
“nonperturbative” information on the critical regime can be reversed through
the insertion of factors which are nonvanishing and nonsingular in the neigh-
borhood of the critical point. In the case of (1.1), that refers to an ordinary
differential inequality for x(p). Equation (1.2) rests on some partial differen-
tial inequalities.

We shall now make the preceding statements more explicit and mention
their relations with other works. Our results apply to independent bond and
site percolation models, on general lattices, which are ‘‘ weakly homogeneous”
and either “well-connected” or ‘“uniformly long-range” (see Section 2). The
bonds may carry orientation, and they may be of any range. For simplicity of
presentation, we focus in this introduction on nearest-neighbor bond models
on Z? where the bonds (pairs of neighboring sites) are “occupied” with
probability p independently of each other.

In percolation theory [the mathematics of which is discussed in the texts of
Kesten (1982) and Grimmett (1989)], one studies the structure of the cluster
C(x) of the sites to which a site x is connected by means of the randomly
occupied lattice bonds (or sites). Note that, for oriented percolation, the
relation “x is connected to y”’ (x — y) is not symmetric, and C(x) denotes the
“forward cluster of x.”” Of particular interest are the percolation density P(p)
and, more completely, the cluster size distribution, described by

(1.3) P,(p) = prob(IC(0) = n),

with 1 <n <o and |C| the number of sites in C. A generating function for
{P,}is

(1.4a) M(p,h)= Y P(p)[l-e"], h>0,
l<n<w

with

(1.4b) M(p,0) =M(p,0+) = P(p).

The critical exponents mentioned previously are defined through the follow-
ing power laws in the singular behavior of M(p, h)—which are expected to
hold near the critical point (p = p,, A = 0):

(1.5) M(p,0+) = (p —p,)* forp>p,(and h = 0),
(1.6) M(p.,h) =h~1/® for (p =p,and) > 0
and

oM .
(17) E(p’o'l—)z(pc_p) forp<pc(andh=0)
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The quantity M(p, h) admits a geometric interpretation (see Section 2)
which was quite helpful in the derivation of the following pair of inequalities
[Aizenman and Barsky (1987)]:

1.8 M haM MaM M?
(1.8) —ho<p 5"‘
and

oM 2d oM

— <—M_—.
op 1-p oh

In particular, (1.8) and (1.9) yield

1.10 M- 2% M e
(1.10) =1 p" T M
which is an ordinary differential inequality along lines of constant p.

In this paper, we prove that, for models in which the triangle condition
holds, the preceding differential inequalities can be reversed throughout the
regime %= {(p, h): p <p,, h > 0}; for example, (1.10) can be supplemented
by

(1.9)

oM
oh

with ¢(p, k) a continuous function, satisfying c(p,,0) > 0. [The region %
arises here for technical reasons. However, results about £ can be extrapo-
lated to the supercritical regime {(p, h): p > p,, h > 0} by the technique of
Aizenman and Fernandez (1986).]

Inequalities (1.8) and (1.9), along with some simple monotonicity properties,
imply the coincidence of two natural notions of the critical point p,. Addition-
ally, they yield the bounds

(1.12) §>1/8+1>2.

The integration of (1.11) shows that § < 2 under the triangle condition, and
thus the two inequalities in (1.12) are saturated. More completely, the triangle
condition implies that (1.2) holds in the sense that there exist constants
C; € (0,«) such that for (p, &) in some neighborhood of (p,, 0)

oM
(1.11) M- hﬁ >c(p,h)M? for (p,h) € &,

(1.13) C,h'2 < M(p,, h) < C,h'/?, h>0
and
(1.14) Cs(p —p) <M(p,0+) <Cyp-p.), P=p,.
We mention that (1.10) and (1.11) additionally show that
oM(p,, h
Csh~1/2 < (T};:_) < Ceh12.

All that remains to make our statements concrete is to define the triangle
condition. For the models considered in this section, the following quantity is
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referred to as the open-triangle function:

(1.15a) vr(p) = sup{v(p;2):z € Z% |z| = R},

where

(1.15b) v(p;z) = Y Tp(O,x)Tp(x,y)Tp(z,y)
X,y

and 7,(x, y) denotes the probability that x is connected to y (at bond density
D). The triangle condition [for these models—see (2.8) for the general case] is

(1.16) élm ve(p,) = 0.
The “(closed-) triangle diagram” is
2 A
(1.17) v(p) = v(p;0) = IBlfl (BT, (k) dk,

where B is the Brillouin zone appropriate for the lattice; for example, B =
[0,27] and |B| = (27)? for Z¢. In nonoriented percolation models, 7,(-) [the
Fourier transform of 7,(-)] is nonnegative, and a sufficient condition for (1.16)
is (Lemma 2.1)

(1.18) v(p.) <.

Since v(p,) =lim,,, v(p)[and v(p) is increasing in pJ, condition (1.18) is
equivalent to the uniform boundedness of v(p) throughout the subcritical
regime.

REMARK 1. An explicit implication of (1.13) and (1.14) is that
(1.19) P(p,) =0,

that is, the percolation density is continuous at the critical point. In the
nonoriented case, a considerably weaker condition for (1.19) is contained in
Aizenman, Kesten and Newman (1987): that 7,(x,y) > 0 as |x —y| - .
Also, a lattice-animal argument of Newman (1986) shows that (1.19) holds if
v < 2, which is implied by the triangle condition.

REMARK 2. Our result (1.2) is closely related to the inequality

1.20 L2

. - —

( ) &5 2

of Newman (1986). Combining this inequality with (1.12) shows that when y
takes on its mean-field value (y = 1), then so do & and B. However, the
derivation of (1.20) leaves room for logarithmic deviations in the upper bounds
for M which are not present in (1.13) and (1.14).

REMARK 3. In another result concerning the triangle criterion, Nguyen
(1987) showed that the ‘“gap exponents” (characterizing the divergence of
higher moments of the cluster size) also assume their mean-field values
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(A, = 2, k > 2) when y = 1, and thus, in particular, when the triangle condi-
tion is satisfied.

REMARK 4. In (1.12), the relation between & and g is based on (1.9) and is
identical to that satisfied in some ferromagnetic spin models which also obey
(1.9). In that context, the implication was noted by Newman (1987a). The
bound on B was first derived by Chayes and Chayes (1986).

The reader is referred to Aizenman and Newman (1984) for comments on
the relation of the triangle criterion to the notion that the upper critical
dimension for percolation is d,, = 6, for the nonoriented case. Similar argu-
ments suggest d, . = 5 for d-dimensional percolation which is oriented in one
direction. One expects that in models with sufficiently slow decay for the
density of long bonds the triangle condition is satisfied even in low dimen-
sions—in analogy with the fact that the effective dimensionality of a ferromag-
netic spin system may be increased by long-range interaction [Fisher, Ma and
Nickel (1972) and Aizenman and Fernandez (1988)].

It may now be added [as a side benefit of the delay in the preparation of this
manuscript, whose main results were included (with more involved deriva-
tions) in the dissertation work Barsky (1987)], that the triangle condition was
recently established by Hara and Slade (1990) for nonoriented percolation
models in high dimensions. Their current results cover d > 6 for finite-range
models having sufficiently ‘“spread-out” connections, and much larger d for
the nearest-neighbor model.

2. The setup. In this section we present the general percolation models
to which our results apply, establish the notation used in the next section and
recall some useful inequalities.

The setup is that of partially oriented percolation (POP) as in Aizenman and
Barsky (1987). We denote by L the set of sites and assume it to be a lattice with
the following properties: L is equipped with a metric dist(x, y) and is invariant
under the action of a group # of translations which are isometries with the
additional property dist(T, x) = dist(Ty,y) = |T|, for all x,y € L. We write
Ay(x) for the box {y: dist(x,y) < L} and assume that V(L) = sup{|A (x)I:
x € 1} is finite.

The lattice bonds are a set, denoted by B and closed under the action of ,
of unordered and ordered pairs of sites in L. For each bond b € B, there is an
(occupation status) indicator random variable n,, n, € {0, 1}. When occupied
(n, = 1), a nonoriented bond b = {x, y} connects both x to y and y to x, while
an oriented bond b = (x,y) connects only x to y. A bond configuration is a
specification of the values of the independent random variables {n,}, c 5. In the
models discussed here, their distribution is a product probability measure,
invariant under the induced action of «, with

1 — e By, b= {x,y}

2.1 rob(n, =1) =
( ) P ( i ) 1 _e_ﬁJx_)y’ b=(x’y),
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with J, , =Jr, 7, >0 and J,_,, =dJp, ,p, > 0 for all bonds [{x, y} nonori-
ented and (x,y) onenbed] in B and each T € . We sometimes write o, ,, for
dJ, y + J,_,. The notion of cluster is as in the introduction. Such models were
ﬁrst considered by Hammersley (1957).

Each site x € L has a cluster size distribution, P,(B; x) = prob(|C(x)| = n),
which can be used to define a quantity M(B, h; x) as in (1.4) with the role of
the bond density parameter played by B (instead of p of the nearest-neighbor
models). Some fixed site 0 € L is referred to as the origin, and we write M for
M(B, h;0). When the parameters B8 and % are understood from the context, we
will write M(x) for M(B, h; x).

In the multiparameter space, {8, d, ,,dJ, _,,, h}—with h added for conve-
nience—there is a “critical manifold” (along which % = 0). We study the
critical behavior of the model as this ‘“manifold” is approached by varying
(B, h) with {J} held fixed, satisfying

(2.2) lJ| = sup{z (Jey +deny)ix € I]_} <,
y

For every such set of parameters {J/}, we find a critical value of g,
(2.3) B. = sup{B: M(B,0;0) = 0}.

The parameter % [the conjugate to n in (1.4a)] is turned into a ghost field by
the introduction of independent random site variables {m }, ,, with values in
{0, 1}, for which prob(m, = 1) = 1 — e™*. Sites x having m_ = 1 are referred
to as green, and their collection is denoted by G. For A > 0, the quantities M
and dM /dh admit the convenient geometric representations

(2.4) M(B,h;x) = prob(x = G)
and
oM oM
(2.5) —hEE(B’h;O)= Y. prob(0 > x,0 » G).

x

We use here the convention that “x — D,” for x a site and D a (possibly
random) set, means that x is connected to some site in D; x + D denotes the
complementary event.

On occasion we will want to specify that the site x is connected in the
complement of a subset A C L (i.e., by a path of occupied bonds none of which
have endpoints in A) to a site y or a set D. We refer to these events by “x — y
off A” or “x - D off A” and denote by C,«(x) the corresponding (forward)
cluster of x. The similar notation “x — D off [y, z]” is used to denote the
event that x is connected to D by a path of occupied bonds using neither {y, 2}
nor (y, 2).

We modify the triangle condition as follows. The open triangle diagram is
now defined to be

(2.6) ve(B) =sup{v(B;T): T € #, |T| > R},
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with
(2.7 v(B;T) = sup{g:ya-ﬁ(w, x)75(%,¥)75(Tw, y): w € l]_}.
The triangle condition is
(2.8) lim v4(8,) = 0.
For nonoriented percolation, the condition may be stated in a simpler form.

The more useful portion of the equivalence statement is seen in the following
lemma.

LEMMA 2.1.  For nonoriented, translation-invariant percolation models on
72, v(B,) < = implies vi(B,) = 0 as R — .

Proor. If v(B,) < », then g (0, x) is square-summable over Z¢, and
hence it has a Fourier transform T, (k)—which exists as an L, function on the

torus [0,27]%. By the positivity of 7(-) [proven in Aizenman and Newman
(1984)] we can write

(2.9) v(B:) = 2m)°

Hence v(B,) < « implies actually that [#,(k)]* € L,(0,27]%) and

2p(k)" dk.

(2.10) v(By;T) = 25 (k)’eT O gl
1

(qu)d [0, 2
By the Riemann-Lebesgue lemma, the quantity in (2.10) tends to zero as
IT| > . O

At one point of the analysis we require the model (L, {J}) to be well-con-
nected in the sense defined next, unless it has bonds of unbounded range.

DerFINITION. A POP model is well-connected with respect to a translation T
if the following holds for some L = L(T') < «: Given any pair of paths (made
of bonds in B, with oriented bonds being used only in the appropriate orienta-
tion) which connect pairs of sites w — x and Tx — z with z € A ;(x)°, there
exists a path connecting w — z which differs from the union of the first two
paths only within A;(x). The model is said to be well-connected if, for each
R < =, it is well-connected with respect to each of a pair of translations 7', and
T, with |T\|,|T,l, T 1T,| > R.

To see, for example, that d-dimensional percolation with oriented bonds in
only one direction is well-connected, consider translations along the axis of
orientation.

The well-connectedness assumption is not necessary for models having
enough long-range connections. For example, it can be avoided if it is known
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that for each R < » there exists a translation T with |T| > R such that
inflJ, 7, + J, . * € 1} > 0. The next definition provides a simple general-
ization of this situation that is particularly appropriate to lattices which can be
tiled by a finite cell (of N sites).

DEFINITION. A POP model is said to be uniformly long-range if, for some
N < « and every R < «, there exist N distinct translations T,,...,Ty € &
with |T;| > R and inflE . \J, 7., + J, 7.0 x €1} > 0.

It is assumed throughout that the models have the following property,
which is certainly satisfied by indecomposable models on lattices with finite
tiles.

DEFINITION. A POP model is weakly homogeneous if there exists a contin-
uous function p = w(B) € (0,») such that, for ~ sufficiently small,

(2.11) pM(B, h;0) < M(B,h;x) < nM(B,h;0).

REMARK. Our argument requires (2.11) only for those sites x which can be
reached from 0.

In proving the differential inequality (1.11) on which the results of this
paper are based, we will make use of the following *“diagrammatic inequalities.”

ProrosiTION 2.2. Forany A,D cl and x,y,z €,

(2.12) prob(x — D offA) > prob(x = D) — ). prob(x — u)prob(uz — D),

ucA

(2.13) prob(x >y, x —» D) < Y prob(x — v)prob(v = y)prob(v — D)
v

and
prob(x =y, x > 2z, x » D)

(2.14) < ¥ prob(x - v, x -+ D)prob(v — y)prob(v - z).
v

Inequalities (2.12) and (2.13) are just a POP version of the diagrammatic
bounds of Aizenman and Newman (1984), and (2.14) is easily derived from
(2.13) by conditioning on the ‘“‘self-determined” set of sites connected to D.
Such diagrammatic bounds have nowadays a fairly direct derivation [Durrett
(1985)] enabled by the advent of the inequalities of van den Berg and Kesten
(1985) and van den Berg and Fiebig (1987).

3. Complementary differential inequalities. The main result of this
section is the derivation of the following differential inequality for the percola-
tion models discussed in Section 2.
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ProrosITION 3.1.  Suppose a POP model with B, < » is either finite-range
and well-connected, or is uniformly long-range. Then, throughout the regime
R={(B,h): B<PB, h =0}, foreach R < o,

oM 28M oM
(81) M~ hp > e(B)[1 ~ F(B) Va(B)] M~ — ga(B)AM -,

where e (+ 0), f and g are some model-dependent functions with 1/ep, f
and gp uniformly bounded in a neighborhood of B,.

Inequality (3.1) is complementary to (1.10). The method presented in this
section allows also the reversal of the other inequalities cited in the introduc-
tion. Specifically, one may prove

3.9 oM ” MaM
("') %2812(3)[ _f(ﬂ)vR(Bc)] E’
with ¢ and f’ having the same properties as ¢ and f. Although these
results are similar to the bound [with a different definition for vgz(8,)] of
Aizenman and Newman (1984),

P/)
(3.3) % =B - a(Bl

the additional subtractions required for 2 # 0 make the present discussion
more involved. For completeness of the treatment of oriented percolation, (3.3)
should be extended to POP models. The derivation of (3.2) and the extension
of (3.3) are omitted here since they require no new ideas, and (3.1) suffices for
our main result.

The proof of Proposition 3.1 starts from an identity. We then proceed in two
steps. The first involves a ““regularization” which amounts to the separation of
points to which explicit reference is being made. In the second step, the
regularized quantity is shown to be of the order of a product of simple
functions, up to a correction which is small provided the triangle diagram,
opened by the separation induced in step 1, is smaller than f= 1/3u*.

As is explained in Aizenman and Barsky (1987), the quantity on the
left-hand side in (3.1) admits the representation (with & = e* — 1)

oM
M - fzﬁ = prob(0 is connected to more than one green site)
(3.4) = ) prob(0 — x, x is doubly connected tec G, 0 » G off {x})
= ) prob(&(x)),
x

where “x is doubly connected to G’ means that x is connected to a pair of
distinct sites in G by two disjoint paths of occupied bonds.
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38.1. Ultraviolet regularization. The point x plays a triple role for the
event &(x)—once as a site to which 0 is connected, and twice as a site
connected to G. In the following point-split quantity &, these roles are played
by three different sites:

&(x,y,z) =theevent “0 — x,0 » G and there exist
(3.5) path-disjoint connections of y and z to a pair
of distinct sites in G.”

The following lemma is a regularized lower bound for the quantity described in
(8.4). We refer to it as ultraviolet regularization because the scale of the
point-splitting is, in the critical regime, much smaller than the correlation
length. Such a statement is needed here only for finite-range models, since for
the other case we have the explicit lower bound presented in Lemma 3.3.

LemMma 3.2. In a finite-range POP model which is well-connected with
respect to T, and T, there exist continuous c; = c¢(B, T}, Ty) > 0, such that

~OM oM oM
h— > i

_ 2
on = an el

(3.6) M~ i

co Y, prob(&,(x, Tyx, Tox)) — c;hM

Proor. Let L denote the maximum of the lengths appearing in the
definitions of the well-connectedness w.r.t. T; and T,, and let r denote the
range of the model [i.e., r = sup{dist(x, y): {x,y} € B or (x,y) € B}]. We first
show that

prob(&,(x, Tyx, Tox))
(3.7) <&, Y prob(&(x')) + &AM prob(0 - x,0 » G)

x': dist(x, ') <L
+ éyh? prob(0 = x,0 » G),

for some é, = é,(L, B), & = é(L, B), €5 = Ex(L) > 0.

Defining K to be the random variable which counts the number of green
sites in A (x), we first consider those configurations for which &(x, T';x, T,x)
occurs and K = 0. We wish to show that any such configuration can be locally
modified to yield a configuration which makes a contribution to the last term
in (3.4). The first step in the modification is to ‘“thin”’ the connection 0 — x by
changing (from occupied to vacant) the occupation status of all bonds in
C(0) N Ay, ,(x) except for a minimal set which is necessary to preserve the
connection 0 — x. Call the reduced cluster of the origin C’(0) and note that
C'(0) N A (x) consists of disjoint paths of bonds which are traversed by the
connection 0 — x in some definite order. For each i, i = 1,2, we can use
well-connectedness w.r.t. T; to obtain a minimal set of bonds B; in A;(x)
which, when changed from vacant to occupied, connect 0 to one of the green
sites in A ;(x)° which were reached from T;x; observe that each B, is a path of
bonds which originates at some site x; in C'(0) N A (x). By Lemma 3.5 of
Aizenman and Barsky (1987), there must then exist for the (thrice) modified
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configuration, a site x’ with the properties that 0 - x’, 0 » G off {x'} and x’ is
doubly connected to G. It is readily seen that x’ is either x; or x,, whichever
site is encountered first in C’(0).

Thus there is a map associating to each configuration in the set
&(x, Tix, Tox) N {K = 0} a configuration in U .. gigyx »y<2&(x) N {K = 0}
This map [which changes the configuration only in A;_,(x)] is neither mea-
sure-preserving nor surjective. However, it changes the probability density by
a factor nowhere greater than A(L, B, x), the ratio of the maximum probability
to the minimum probability of bond configurations in A; ., (x), and it is at
most k — to-1, where (L, x) is the number of bond configurations in A; ().
It thus follows that

prob(&,(x, Tyx, Tox) N (K = 0})
(38) <ML,B,x)x(L,x) ¥ prob(&(x)).

x': dist(x, ") <L
To obtain the two remaining terms on the right-hand side of (3.7), which
will be shown in Section 4 to be of lower order, we investigate the situations
where &(x, T x, Tyx) occurs and either K = 1 or K > 2. In the first case, at
least one of the two sites T,x and T,x must be connected to a green site
outside A, ,,(x), so

prob(&,(x, Tyx, Tox) N {K = 1})
(3.9) < |AL(x)I(1 — e7*)[prob(0 - x,0 » G, T;x > G)
+prob(0 - x,0 » G, T,x — G)].
Similarly, one has

prob(&,(x, Tyx, Tox) N {K > 2}
(3.10) (= T, Ty . )
< |AL(x)*(1 — e~*) " prob(0 - x, 0 » G).

The van den Berg-Fiebig inequality can now be used to further simplify the
right-hand side of (3.9):

(3.11) prob(0 - x,0 » G, T;x - G) < M(T,x)prob(0 - x,0 » G).

The combination of inequalities (3.8)-(3.11) yields (38.7) with ¢, =
sup{A(L, B, x)x(L, x): x € 1}, &, = 2u(B)V(L) and é, = V(L)?. Summing over
sites x in (3.7) and applying (2.5) yields

9 Y prob(&(x"))
x x':dist(x,x')<L
(3.12) oM oM
x
The desired inequality (3.6), with ¢, = [6,V(L)]™Y, ¢, = ¢4é; and c, = cyé,,
now follows from (3.12) and (3.4). O
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The next result relates the probabilities of the events & and &, in a way
which is useful for models with sufficiently long bonds.

LeEmMMA 3.3. In any POP model, for every three sites x, y and z,
(3.13) prob(&(x)) = B, s, . Prob(&(x,y,2)).

Proor. The event &(x) has probability no smaller than the event that the
two connections from x to G must first visit the particular pair of sites y and
z. For compactness of notation, we write the union of the bonds {x,y} and
(x,) as [x, y], and we interpret n, ,, = 1 (resp., n, ,; = 0) to mean n, , +
Ny =1 (resp., Ny = Nx,y) = = 0). Thus,

prob(£(x)) > prob(0 —» x, 0 » G off [x,y] and [x, 2], n(, ,; =1, n} ;=1
and there exist path-disjoint connections of ¥ and z to a
pair of distinct sites in G).

As the occupation states of the bonds from x to y and z are independent of
the event that “0 — x, 0 » G off [x, y] and [x, z] and there exist path-disjoint
connections of y and z to a pair of distinct sites in G,”” we have

prob(n, ,; = 1) prob(n, ,, = 1)

prob(n,, ;) = 0) prob(ny,, ., = 0)

Xprob(0 - x, 0 » G off [x,y] and [x, 2], n, ;= 0, ,; =
0 and there exist path-disjoint connections of y and z to a
pair of distinct sites in G)

= (exp[B(Jx,y + Jx_,y)] — 1)

X (exp[B(,,. + J..)] — 1)prob(&(«,y,2)),
from which (3.13) trivially follows. O

prob(&£(x)) =

3.2. Factorization. We now turn to the proof of (3.1) starting from the
point-split expressions provided by Lemmas 3.2 and 3.3.

LEmMA 3.4. For every pair of translations T, T, € & with |T,|, IT,l,
|T T, = R, and for all B < B,,

1 oM
(3.14) Z prob(&,(x, Tyx, Tox)) = i 3u? vR(Bc) M?2— T

Proor. The main technique used here is an inclusion-exclusion argument.
Various terms will be generated and then bounded. Only the leading term and
the first of the corrections are treated in detail; the remaining terms are left
for the reader.

Observe that one way in which the event &(x, T x, T,x) may occur is if Tyx
is connected to G in the complement of the C(0) and C (T, x). Partitioning
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this subevent of &(x, T,x, T,x) according to these clusters, and using indepen-
dence, we have

prob(&,(x, Tyx, Tyx))

(3.15) = Y, prob(A=C(0),ANnG=0)
) A,B:zcA
X prob(B = Cu(Tyx), BN G + @)prob(Tyx — G off AU B).
From (2.4) and (2.12), it follows that

prob(Tox — G off AU B) > M(Tyx) — Y, prob(Tox - u)M(u),
u€AUB

and a similar bound exists for
Y. prob(B = C,(Tyx), BN G # @) = prob(T;x — G off A).

B
Using these inequalities in (3.15), one obtains
(3.16) prob(&(x, Tyx, Tyx)) = 1 — 11 — TIIA — IIIB,
with

I =M(T,x)M(Tyx)prob(0 - x,0 » G),
II=M(T,x) Y, M(u)prob(A =C(0),ANG=0)
u,A:x,ucA
Xprob(Tix — u),
IMA= )  M(u)prob(A=C(0),ANnG=0)
u,A:x,ucA
Xprob(T,;x — G off A)prob(Tyx — u)
and
IIIB = Y M(u)prob(A =C(0), ANG= Q)
u,A,B:x€A,ucsB
X prob(B = Cp(Tyx), BN G + B)prob(Tex — u).
The leading term can be bounded and summed [see (2.11) and (2.5)] to yield
oM

1 2
(317) gl(x,Tlx,sz) > ?M %,

which is proportional to the important factor in the original upper bound
(1.10).

The sums of terms II, ITTA and IIIB will lead to the triangle corrections that
appear in the lower bound (3.14), and they have similar treatments. We will
bound ¥ II, and indicate how ¥ ,IIIA and X IIIB are to be handled. For II,
one notes that by the tree-diagram bound (2.14),

Y, prob(A=C(0),ANnG=0)
A:x,ucA

< Y prob(0 - v, 0 » G)prob(v — u)prob(v - x),
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and thus
Y I(x, Tyx, Tyx)
x

< ¥ M(T,x)M(u)prob(0 — v,0 + G)prob(v — u)
X,u,v
Xprob(v — x)prob(T;x — u)

< (uM)* Y prob(0 - v,0 +» G)prob(T'v - u')

x,u',v

(3.18)

X prob(v — x)prob(x — u')

oM
< V(B;Tfl)(uM)z—a—h—.

Since prob(T,x —» G off A) < uM, it follows that ¥ IIIA has a similar
upper bound with T, replaced by T,. To bound ¥ ,IIIB, one begins by using
the tree-diagram bound (2.13) and concludes with

5 0M
(3.19) Y, NIB(x,Tyx, Tox) < v(B; Ti 'Ty)(nM) T
The estimates (3.17)-(3.19) on the (sums of) terms in the decomposition
(3.16) of prob(&(x, y, z))—along with the inequality v(B; ) < vz(B,)—imply
the desired lower bound (3.14). O

3.3. Proof of the main inequality.

Proor oF ProprosiTiON 3.1. In the finite-range case, for a given R we first
pick a pair of translations T, and T, with |T,|,|T,l, |T{'T,| > R, for which
the model is well-connected. With such a choice, Lemmas 3.2 and 3.4 yield

oM 1 oM
M—iia-’—{ = Cy —5—3[.L2VR(BC) Mzﬁ
7
(320) oM oM

2
c,hM ah cyh T
from which the desired result (8.1) follows with e = co/u2, f = 3u* and
&r = (c; +¢c5).

In the uniformly long-range case we have to rework slightly the argument of
Lemma 3.4, because now the choice of the translations T, and T, will depend
(in a mild way) on the site x. First, it is elementary to show that for each R
there are two collections of N translations, {T,,} and {T, ;}, such that
Ty |, 1Ty I, IT; Ty ;| = R for each 1 <i < n, and

Kp = 32{{1;?3.§N{J[x,Tux]J[x,Tz,jx]}} > 0.
Lemma 3.3 can now be used to point-split the event &.(x)—with
y=T,,x and 2 =T, ;x, where i and j are x-dependent, chosen so that
Jix, 1y 2101215 21 = Kr (.8, by maximizing the product). One obtains bounds
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similar to (3.18) and (3.19) with the triangle factors v (g, - ) appearing in those
expressions replaced by N v(B,). Thus,

oh = o’
and so (3.1) holds with e = KpB%2/u? f=38Nu*and g =0.0

oM 1 oM
(8-21) M~ h— > cp(B) 7~ 3u'N va(Bo) | M

4. Implications of the triangle condition. We now turn to the impli-
cations of the differential inequality derived in the previous section. Following
is the main result.

ProOPOSITION 4.1. In any weakly homogeneous POP model (which is either
finite-range and well-connected or else uniformly long-range), if the triangle
condition (2.8) is satisfied, then there exist constants C; € (0, ) such that, for
small h > 0,

(41) (jlhl/2 = M(Bm h) = CZh1/2
and, in the vicinity of B,
(4.2) C3(B = B.)+ <FAB) <Cy(B —Bc)+>

where P{B) = M(B,0+ ) and x,= max{x, 0}.

ReEMARK. The new results in the conclusion of Proposition 4.1 are the
upper bounds [the lower bounds in (4.2) and (4.1) were proven in Chayes and
Chayes (1986) and Aizenman and Barsky (1987), correspondingly].

Proor or ProprosITION 4.1 (The upper bounds). We begin by dividing both
sides of inequality (3.1) by M to obtain

h oM
(4.3) IZER(B)[]‘_f(B)vR(Bc)][l_O(ﬁ)]M:ﬁ;'

By the concavity of M in h, lim, ((M/h) =9dM/dh(= x(B) for B < B,),
which diverges [continuously by Aizenman and Newman (1984)] as B 1 8..
Thus, in the neighborhood of the critical point (8., 0), the A /M correction can
be neglected. Taking R sufficiently large [and using the assumption that the
triangle condition (2.8) is satisfied], we obtain the simple inequality

ad
2 2
(4.4) ahM < const.?,

which holds in the vicinity of the critical point: (B, B,) X (0, k) for some
hy > 0 and B, < B,-
The integration of (4.4) yields

(4.5) M(B,h) — M(B,0+) < const. h!/2,
for 0<h <h, and B € (B, B.). For all B <B,, M(B,0+ ) =0 and hence
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M(B, h) < const. h!/2. By the continuity (in B) of M(B, h), for h > 0 [see, e.g.,
Aizenman and Barsky (1987)], the latter implies the upper bound in (4.1).
Seeking an upper bound on M(B,0+ ), for B > B,, one may at first be
discouraged by the fact that the ‘““corrected inequalities”’ derived here are
rather useless in the region {8 > B,, h > 0}. A similar situation was encoun-
tered in Aizenman and Fernandez (1986), where the problem was resolved by
means of certain ‘‘extrapolation principles” [derived there from a Burgers
inequality like (1.9)]. These methods were applied to percolation models in
Aizenman and Barsky (1987), where Proposition 6.2(ii) states that if

(4.6) M(B, +t,h) <ch*llnh|®(1+ O(h))

alongaray t =ah, h > 0,with ¢ > 0,0 <a <1and w > 0, then
M(B,+t,0+)

(4.7)

< (/=)™ gasa-oIn(|J|ME)|* /(1 + O(t)),

for ¢ > 0. [Furthermore, (4.7) is valid also along any other ray ¢ = a'h.] Thus,
the upper bound of (4.1) implies directly the one in (4.2). For completeness, we
mention that there is another extrapolation principle for percolation [Newman
(1987b)] which alternatively could be used here. O

COROLLARY 4.2. Under the hypotheses of Proposition 4.1, the limits
Inh

(4.8) S = }lliil;l) M M(B. %)
and

A In M(B,0
(4.9) g = lim L%L_)

BLB. In(B—B,)

exist, and the critical exponents they define take on their “mean-field’’ values

(4.10) B=1 and 6=2.
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