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FUSIONS OF A PROBABILITY DISTRIBUTION

By J. Euton anp T. P. Hini!

Georgia Institute of Technology

Starting with a Borel probability measure P on X (where X is a
separable Banach space or a compact metrizable convex subset of a locally
convex topological vector space), the class Z(P), called the fusions of P,
consists of all Borel probability measures on X which can be obtained from
P by fusing parts of the mass of P, that is, by collapsing parts of the mass
of P to their respective barycenters. The class & (P) is shown to be convex,
and the ordering induced on the space of all Borel probability measures by
Q < P if and only if @ € F(P) is shown to be transitive and to imply the
convex domination ordering. If P has a finite mean, then %(P) is uni-
formly integrable and @ < P is equivalent to @ convexly dominated by P
and hence equivalent to the pair (@, P) being martingalizable. These ideas
are applied to obtain new martingale inequalities and a solution to a
cost-reward problem concerning optimal fusions of a finite-dimensional
distribution.

1. Introduction. The purpose of this paper is to introduce the notion of
a fusion of a probability distribution P and to study class properties of
fusions and their relationship to classical probabilistic concepts such as convex
domination, majorization, martingalizability and dilation.

As a simple concrete example, suppose P is the purely atomic probability
distribution with masses %, 3, 3 at @, 8 and v, respectively. Thinking of P
physically, such as the distribution of quantities of various concentrations of a
liquid solution (e.g., P represents 1 unit of saline solution of concentration «,
2 units of concentration B and 3 units of concentration v), it is clear that
many other probability distributions may be obtained irreversibly from P by
fusing parts of P. For example, if all of the components of P are mixed
together, the resulting probability distribution is a single atom of mass 1 at the
barycenter (a + 28 + 3y)/6; or, if only half of the a-atom is fused with half
the B-atom, the resulting distribution is again purely atomic, but with atoms
of masses -, %, 3 and % at @, B, y and (a + 2B)/3, respectively. Each fusion
may itself be further fused, resulting in still another distribution. What is the
class of all fusions that may be obtained as limits of repeated fusings of a given
general distribution, and what properties does this class have? This paper will
address these questions in the general settings where P is a Borel probability
measure on a separable Banach space, or on a compact metrizable convex
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422 J. ELTON AND T. P. HILL

subset of a locally convex topological vector space (l.c.t.v.s.). Special attention
is given to the real-valued and finite-dimensional cases, in which setting
several new results concerning convex domination and dilations, an answer to
a majorization question raised by Marshall and Olkin (1979) and a solution to
an applied cost-reward fusion problem are obtained.

For the reader familiar with dilations and balayage, a fusion is almost an
antibalayage. The point here is that in many physical experiments a balayage
(or unfusing) is simply impossible; the natural process of fusion is an irre-
versible one and it is in this fusion direction that the action takes place.

2. Preliminaries. Throughout this paper, X will denote either a separa-
ble Banach space or a compact metrizable convex subset of a locally convex
topological vector space and X* will denote the dual space of continuous
linear functionals (restricted to X in the latter case). For a subset A of X, I,
is the indicator function of A, A° the complement of A, co(A) the convex hull
of A, A and A the closure and interior of A, respectlvely, and /A is the
boundary A \ Aof A A sequence x, in X converges weakly to x (written
x, =, 0)if f(x,) - f(x) forall fe X* and converges strongly to x (x,, — x)
if x,, converges to x in the strong topology. If X is normed, ||x| will denote the
norm of x.

# will denote the Borel subsets of X, & the set of Borel probability
measures on (X, #), 8(x) € &£ the Dirac delta measure on {x} (single atom of
mass 1 at x), B the Borel subsets of Euclidean n-space R” and for P € &,
supp P is the support of P. For A € %, P|, is defined by P|4(B) = P(A N B).
{P,} converges weakly to P (P, —, P) means the usual weak convergence of
measures in the sense of Billingsley (1968). Throughout this paper, P will
always denote an element of &, that is, a Borel probability measure on (X, &%)
and .Z(Y) € & is the distribution of the X-valued random vector Y.

Let A & and P € &. If X is a separable Banach space, say that A has
finite first P-moment if

(2.1) fAnxn dP(x) < o;

and if X is a compact metrizable convex subset of a l.c.t.v.s., A will always be
said to have finite P-moment (this is to avoid having to state separate versions
of the same definitions and results).

ProposiTiON 2.1. If P(A) > 0 and A has a finite first P-moment, then
there is a unique element b = b(A P) € co(A) satisfying

(2.2) 5 ). FaP. Vfe X+,

f(b) = P A)
: Proor. In the case when X is a separable Banach space, condition (2.1)
implies that the identity function on A is Bochner integrable, that is, [,x dP(x)
exists [cf. Diestel and Uhl (1977), page 45] and (2.2) then follows by the
linearity of f & X*. If b were not in co(A), then by the separation version of
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the Hahn-Banach theorem [cf. Rudin (1973), page 58] there would exist an
f € X* such that f(b) < f(x) for all x € co(A), which contradicts (2.2).

For the case when X is a compact metrizable convex subset of a l.c.t.v.s.,
see Phelps [(1966), Proposition 1.1, page 4]. O

DEFINITION 2.2. The element b(A, P) in Proposition 2.1 is called the
P-barycenter of A. Say that P has a finite first moment if b(X, P) exists.

REMARKs. If X is finite-dimensional, then it is even true that b(A, P) €
co(A), but in general the closure is needed for infinite-dimensional spaces, as
can be seen by taking X =1;, A = {e}, ey, ...}, the closed nonconvex subset
consisting of all unit coordinate vectors, and P defined by P(e,) =277,
n=1,2,.... Then co(A) is the set of all finite convex combinations of the
{e;}, so b(A, P) = £ _,27"e, & co(A).

In the infinite-dimensional cases, the assumptions of metrizability and
separability are used to facilitate the discussion of weak convergence of
measures, but these assumptions are not essential to most of the key ideas in
this paper and may be eliminated by the interested reader.

3. Fusions of general probabilities. The main purpose of this section
is to define formally the notion of a fusion of a probability, analogously to the
way measurable functions are defined through indicator functions, simple
functions and limits of simple functions; and then to prove several general
properties of the class of all fusions of a given distribution.

DEFINITION 3.1. @ € & is an elementary fusion of P if thereisan A € &
with finite first P-moment and a ¢ € [0, 1] such that @ is given by

[P, if tP(A) = 0,
@ =\ Plu + tP(A)8(b(A, P)) + (1 t)Pla, otherwise.

(In alternative notation, d@ = I,. dP + tP(A)d&(b(A, P)) + (1 — t)I, dP.)

Intuitively, an elementary fusion simply takes part (a fraction ¢) of the mass
of a set A and collapses it to the barycenter of A, thereby creating (or
enlarging) an atom at that point, and decreasing proportionately the measure
of A elsewhere. As is the case in defining the basic building blocks (indicator
functions) of measurable functions, where it is usually possible to restrict from
general measurable sets to a much smaller class (e.g., to dyadic open intervals,
in the R! framework), it is also the case that in defining these basic building
blocks (elementary fusions) of fusions, it is possible to restrict to much smaller
classes of sets, for example to relatively compact or bounded sets. However, the
elementary fusions here will be taken to be the general ones (via sets with
finite first P-moments), and further restrictions to subclasses are left to the
interested reader. Note that, by definition, P is an elementary fusion of itself
(intuitively, fuse nothing, and the result is P).
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ExampiLE 3.2. If X = R! and P is the exponential distribution with mean
1, then the whole space X has finite first P-moment, so the Dirac measure at
the barycenter 1 is an elementary fusion of P. Another typical elementary
fusion of P, formed by taking A = (0,5) and ¢ = 1, is the mixed (discrete-con-
tinuous) distribution with single atom of mass (1 —e~%)/3 at (1 — 6e~%)/
(1 — e75), with density 2e*/3 on (0, 5) and with density e * on (5, «).

ExampLE 3.3. Let X = R! and let P be the Cauchy distribution. Then the
whole space does not have a P-barycenter, but every bounded measurable
subset of positive Lebesgue measure does. By taking A to be a set of the form
(0, B) with B > 1 and ¢ = 1, it is possible to construct an elementary fusion
of P with the following properties. Given ¢ > 0 and N > 0, @ coincides with
P on (—x,0), has a single atom of mass m € (3 — ¢, 3) located at b > N and
coincides with P on (B, ). (This construction will be used later to show that
without an assumption of finiteness of first moment, the fusion ordering on &
may fail to be antisymmetric; see Proposition 3.14 and the remarks following
it.)

ExampLE 3.4. Let X = CJ[0, 1], the Banach space of continuous real-valued
functions on [0, 1] equipped with the sup norm, let P be Wiener measure on X
and let A be the complement of the unit ball {x € X: ||x|| < 1} in X. Then A
has a finite first P-moment, and since P(A) > 0, it follows that A has a
P-barycenter b € C[0,1]. For fixed s € (0, 1], x(s) is a normally distributed
random variable with mean 0 and variance s. Letting f,: X — R be the
projection f,(x) = x(s), it is clear by symmetry that [,x(s) dP(x) = 0, so (2.2)
implies that b(s) = 0, hence b = 0. If @ is the elementary fusion of P formed
by taking A to be the complement of the unit ball and ¢ = 1, then @ is the
distribution of a real-valued stochastic process starting at zero, which with
probability P(A) never leaves zero and with probability 1 — P(A) looks like
Brownian motion conditioned so that all sample paths remain in the interval
[-1,1]

Next, the elementary fusions will be generalized to the notion of simple
fusions. As was the case in defining elementary fusions, there are at least
several natural directions in which to proceed. First, the composition-generali-
zation approach is taken, and then another useful approach (matrix simple
fusions) is shown to be equivalent.

DErFINITION 3.5. @ is a simple fusion of P if there exists a positive integer
n and probabilities {P};_, ¢ & satisfying Py =P, P, =@ and P, is an
elementary fusion of P; for each j=0,...,n — 1. (In other words, simple
fusions are just finite compositions of elementary fusions.) #(P) will denote
the class of simple fusions of P. @ is a fusion of P if there exists {P,)._, C
#(P) satisfying P, -, P; and Z(P) denotes the class of all fusions of P.
That is, Z(P) is the weak closure of the set of finite compositions of
elementary fusions of P.
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For example, if P is purely atomic with exactly two atoms, then .~(P)
consists of all purely atomic distributions having the same barycenter as P
and having only a finite number of atoms, each of which lies on the closed line
segment connecting the two atoms of P, and F(P) consists of all Borel
probability measures which have the same barycenter as P and which have
support contained in the closed line segment connecting the two atoms (Pro-
position 3.13). If P is the Cauchy distribution on R', then F(P) consists of
all Borel probabilities on R!, that is, the Cauchy distribution can be fused to
obtain every other distribution (Proposition 3.14). If P has finite first moment
and X is one-dimensional, then the notion of fusion is equivalent to a number
of classical partial orderings including convex domination, martingalizability,
dilation, smaller-in-mean-residual-life and domination of the Hardy-
Littlewood maximal functions and potential functions (Theorem 4.7). Al-
though it is possible to prove these results directly from the definitions, it is
much easier to establish an equivalent characterization of #(P), a characteri-
zation which will also facilitate the proof of the convexity of .(P) and & (P)
(Theorem 3.11), the fact that a fusion of a fusion of P is itself a fusion of P
lie., F(F(P)) = F(P)] (Theorem 3.12) and the fact that if P has a finite
barycenter, @ € F(P) if and only if (@, P) is martingalizable (Theorem 4.1).

The next main task is to show that .(P) is exactly the same as the set of
matrix-simple fusions of P (Proposition 3.10). In what follows, II, is the
set of ordered Borel n-partitions of X, that is, IT, = {(A))?_;: A, € & V i,
A;NA;=0if i #jand U], 4, = X).

DEFINITION 3.6. Q is a matrix simple fusion (m.s.f) of P if 3 n,k €N,
(A)r, € 11, and a (nonnegative) row substochastic n X k matrix (¢; )AL T

with ¢;; = 0 if b(A,;, P) does not exist, so that

k n n k
(3.1) Q=X (Z tijP(Ai))ﬁ(bj) + ) (1 - tij)PlAl’
j=1\i=1 i=1 j=1
where b, = (Z7_,¢;;b(A;, P)P(A,))/L}_1t;;P(A)) [with the convention that
6/ 0 = 0]. Notationally, such a m.s.f. @ will be written as

Q= qu((Ai);;l; (tij)?;kl,ﬁl; P)'

If £ = 1, then Q is called a column m.s.f.of P andif k = 1,n =3 and 3, = 0
lie., @ = fus(A,, Ay, (A, U AL (4, ¢y, 0); P, then @ is called a binary m.s.f.
[Technically speaking, for column and binary m.s.f.’s, the fusion proportion
matrix is a column vector and should be written as (¢, ¢,, t3)-transpose, but as
no ambiguity arises, it will be written for convenience as a row vector
(tl, t27 t3)]

_ Intuitively, to obtain a matrix fusion of P: Start with a partition of primary
sets A,..., A,; fuse part of A;, part of A, and so on all together to reduce
the measures of A,,..., A, accordingly and add a single mass point at the
weighted barycenter; then fuse part of the mass left in A, part of that in A,
and so on all together to reduce the measures of the {A} still further and add
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a second single mass point at the new weighted barycenter; and continue this a
total of £ times. In general, the new measure @ has k new atoms where P
had none.

In order to show that two fusions are the same, the following lemma will be
used often; its proof is easy and is left to the reader.

Lemma 3.7. If Q, and Q, € & have the same barycenter and if Q1lq, sy =
Qslia, by for some a,b € X, then Q, = Q,.

Recall that, by definition, every simple fusion is the composition of finitely
many elementary fusions. The analogous result for matrix simple fusions
requires proof.

LEMMA 3.8. Every matrix simple fusion is the composition of a finite
number of binary m.s. f.’s, that is, if @ is an m.s.f. of P, then there exist
Q,...,Q, € P with Q, = P, Q, = Q and such that Q, ., is a binary m.s.f. of
Q; foreachi=1,...,n — 1.

Proor. First it will be shown that every m.s.f. @ of P is the composi-
tion of a finite number of column m.s.f’s. To see this, let @ =
fus((A)]_ 15 (¢ )74, j-1; P) and assume without loss of generality that
Li_it;;>0forall j=1,...,k If £ = 1, the conclusion is trivial, since then @
is already a column m.s.f. of P, so assume k2 > 1. By induction, it is enough to
show that there exists an n X (¢ — 1) m.s.f. @, of P and a column m.s.f. @, of
@, so that @, = Q. Without loss of generality, it may also be assumed that

(3.2) Y P(A)t;; >0 forall j=1,... k.
i=1

Let @, = fus((A))}_;(¢; )4~ ; P)and let B = {by,...,b,_,}, where b; =
L it;;6(A;, PYP(A)/L}_P(A)t;;, which exists by (3.2) and the defining
requirement of ms.f. that ¢;; >0 only if b(A;, P) exists. By combining
corresponding columns, 1t may further be assumed that the {b b;} are distinct.

Let Q, = fus((A)7*; (£)r*; Q,), where (A, ..., 4,,) = (A, N
B°),...,(A, N B9, (Al N{bY,...,(A, n{bY,...,(A, Nn{b,_,}) and

(ttk)/
;=

(t)P(A /[ + Y P(A)tul,. fori=n+1,...,nk.
1

fori=1,...,n,

)

E-1
Z tij

An easy calculation using (3.1) and Lemma 3.7 shows that @, = @, which
completes the proof that every m.s.f. is the composition of a finite number of
column m.s.f.’s.

To complete the proof of the lemma, it is now enough to show that every
column m.s.f. is the composition of a finite number of binary m.s.f.’s. Let @ be
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the column m.s.f. given by @ = fus((A,)}_;;(¢)7_;; P) and then let @, =
fus((A)" ; (¢, ..., t,_1,0); P) and

Q, = fus(A, \ {b1}, {61}, (4, U {8))"; (4, £%,0); @),
where
tnP({bl} N An)
~ P({b)} NA,) + L1t P(A; \ {by)})

t*

and
LIt P(A)b(A;, P)
YT LI P(A)
Using Lemma 3.7, it is easy to check that @, = @ and since @, is a shorter

column m.s.f. than @, and @, is a binary m.s.f. of @, the proof is complete by
induction. O

The next lemma is a key step in the proof of most of the main results in this
section. It yields an easy proof that the class of simple fusions and hence the
class of all fusions (of a given probability) is convex, which in turn is used to
show that a fusion of a fusion of P is itself a fusion of P. The fact that a
binary m.s.f. is not always just a composition of two, or perhaps three,
elementary fusions may seem counterintuitive at first, but examples suggest
that in general five are needed. On the other hand, five elementary fusions
always suffice, a fact which is not used in the subsequent results in this paper
and which may be shown using an argument similar to but much more tedious
than the proof of the following weaker result.

LemMA 3.9. Every binary m.s. f. of P is a simple fusion of P.

Proor. Fix @ = fus(A,;, A,,(A; U A,)% (¢, ¢t5,0); P) and without loss of
generality, assume 0 < ¢, <#, <1 (f ¢; = 0 or ¢; = t,, then Q is already an
elementary fusion of P).

First, suppose that A, = {a;} and A, = {a,}, where a, # a, and
P(a;)P(a,) > 0 [if P(a;)P(a,) = 0 the conclusion is trivial]. It will be shown
that such a @ is always the composition of eight elementary fusions.

Let b, = b({a;, a,}, P). The proof will proceed by using elementary fusions
to fuse small masses of P to barycenters {b,}’_,, each of which has P-measure
zero and then to use these temporary atoms to fuse the desired proportions of
the masses at a,, b, and a, to obtain Q. (In the following, often x is written
instead of {x} for singleton sets.)

First, let

+

Q, = fus(ay, ay, {ay, as}’; (£1,£1,0); P),

where &, is chosen so that 0 <e&; < min{¢;,¢,} and so that b, = b(e,) =
b({b,, a,}, @) (which is the point where the next elementary fusion @, will
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place its fused mass) satisfies P(b,) = 0. This is possible since @,(b,) increases
with &, but @,(a;) decreases with &, so b; moves (continuously and one-to-
one) toward b, as ¢, increases, along the line connecting a, and b,; so for all
but countably many &,, P(b,) = 0.

(At this stage, only a small fraction of the mass desired to be fused from a,
and a, has been fused and placed at b,, which may already have positive
P-measure. Later this must also be corrected.)

Next, let

Q2 = fus(b07 Qy, {b()’ aZ}c; (82’ €2, O);Ql)’

where ¢, is chosen so that Qy(aj;) > (1 — t,)P(a,), Q,(b,) > P(b,) and, since
by = by(ey) = b({by, a,y), @,) moves toward b, as ¢, increases, ¢, is also chosen
so that P(b,) = 0.

(At this stage, a temporary small mass has been placed at the P-massless
point b, and a,, b, and a, each still have strictly more mass than @ places at
these points.)

Let

Q; = fus(bl, as {by, az}c? (&3, €3, 0)§Q2)’

where &5 is chosen so that @4(ay) > (1 — t,)P(a,) and so that by = by(e;) =
b({aq, b4}, Q3) and b, = by(e3) = b({by, a,), Q) satisfy P(b,) = P(b,) = 0, which
is possible since b; moves toward a¢; and b, toward b, as 5 increases and
since the intersection of two co-countable sets is co-countable.

(There is still too much mass on a,, b, and a,. The next step will remove
the desired amount from a; and place it at the P-massless point b;.)

Let

Q= fus({al, b.},{ay, b1}c§ (¢ —e)/(1 - 51)’0)§Q3)’

so, in particular, @,(a,) = (1 — ¢,)P(a;) = Q(a,).

Now the same strategy will be used to remove the desired masses from b,
and a,.

Let

Q5 = fus(bz, U {bz’ az}c§ (84’ €4 O); Q4)’
where ¢, is chosen so that @,(ay) > (1 — ¢,)P(ay) and so that by = by(e,) =
b({by, by}, Qs) and by = bg(e,) = b({b,, ay}, Q) satisfy P(by) = P(bg) = 0,
which is possible, as before, since b; moves toward b, and by towards b, as ¢,

increases.
Let

QG = fU.S(bO, b2’ {bO’ b2}c; (t’ t’ 0)’Q5))

where 1 — = P(by)[P(b,) + £,P(a;) + &, P(a,)l1 — e,)7", so Qgby) =
P(b,).

(Now the remaining excess mass initially placed at b, has been moved to the
P-massless point b;. Finally, the remaining excess mass at a, will be moved to
P-massless by and then these new atoms {,}¢_; will all be combined.)
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Let
Q7 = qu(b4, ay, {b4, az}c; (S, 370);Q6)a

where 1 — s = (1 — t,)P(a,)l(1 — 6 X1 — e,)(1 — e5)1 — g,)P(a,)] "
Then

Q:(az) = (1 —t;)P(az) = Q(ay),
Q(a,) = (1 —t)P(ay) = Q(ay),
Q7(bo) = P(bo),

and the mass t;P(a,) + t,P(ay) = L%_,Q,(b;) has been distributed at P-
massless points {b,}*_; in such a way that the moment

6
t,P(a;)a, + t,P(az)a, = 3 Q;(b,)b;.
i=1

Let B = {b,, b,, b3, by, by, bg} and let
Qg = fus(B, B%(1,0); Q).
From the definition of elementary fusion, it follows that
Qs = (t,P(ay) + tyP(a3))8(bq) + (1 —t;)P(ay)d(ay)
+(1 — t3) P(a3)8(as) + Pl a7
where b, = (t,P(a)a, + tyP(ay)ay) /(¢ P(ay) + t;P(ay). Thus Qg = @,
which completes the proof if A; and A, are singletons.
It will now be shown that the general A, A, case may be reduced to the

singleton A, A, case by two elementary fusions. Let Q = fus(A,, A,,
(A, U A, (t,t,, 0); P), again with 0 < t, < ¢, < 1, and define

Q, = fus(Ay, AS;(¢,,0); P),

Q; = fus(A2 N\ {ad, (A2 N {a1})c;(t2,0)5Q1)’
where a; = b(A,, P), and

QB = fus({al} ’ {a2} ’ {al’ a2}c; (31’ Sg, 0);Q2)7

where a, = b(A, \ {a}, @), (1 —s)Qya;) = Qla;) and (1 — s5,)@x(ay,) =
Q(a,), with s; > 0, s, > 0. Since @ and Q; agree except possibly where they
place their fused masses, Lemma 3.7 implies that @ = @, which, since @ is
now in the singleton-set form treated first, completes the proof. O

PROPOSITION 3.10. @ is a simple fusion of P if and only if Q is a m.s.f.
of P.

Proor. If @ is a m.s.f. of P, then by Lemmas 3.8 and 3.9, @ is a simple
fusion of P. Conversely, since every elementary fusion is clearly a m.s.f. of the
form fus((A, A°); (¢, 0); P) and since the class of m.s.f.’s are closed under
composition (which follows easily from Lemma 3.8) and last, since every simple
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fusion is by definition a composition of a finite number of elementary fusions,
it follows that every simple fusion is a m.s.f. O

Next, Proposition 3.10 will be used to establish the convexity of #(P), the
transitivity of the fusion operation and two results concerning the class of
fusions of two-point distributions and of the Cauchy distribution.

THEOREM 3.11. ~(P) and F(P) are convex.

Proor. Since the closure of a convex set in a topological vector space is
convex [cf. Rudin (1973), page 11], by Proposition 3.10 it suffices to show that

the class of matrix simple fus1ons is convex.
Let @, = fus((A))- 1,(tu)l Li—vP) @ = fus((A Bl 1,(t”), 1, j-1 P) and
fix a € (0, 1). Define the na X (k + £) m.s.f. @ of P by

n,h n, A k+k
Q - ((Al1 12)11 1,ip=1" (tll ia, J)zl—l,i2=1,j=1’P)’
where A, , =A;, NA,,i;=1,...,n,i,=1,...,7 and

- J=1,.. .k,
b .=
i1,i9,J (]_ )lzj & j=k+1,...,k+£.

at

Then it is easy to check that @ = a@, + (1 — )Q,. O

Next it will be shown that a fusion of a fusion of P is itself a fusion of P;
that is, the fusion ordering is transitive.

THEOREM 3.12. If @ € F(P) and R € #(Q), then R € F(P), [that is,
F(F(P)) = F(P)).

Proor. Fix @ € F(P). It suffices to show that every elementary fusion of
Q is in F(P), since by induction it follows that every simple fusion of @ is in
F(P) and therefore that weak limits of simple fusions of @ are also in F(P),
since #(P) itself is weakly closed.

Let R be an arbitrary elementary fusion of @ with corresponding fusing set
A with finite @-moment and fusion proportion parameter ¢ € [0, 1] (see Defi-
nition 3.1).

If Q(LA) =0or ¢t =0, then R = @ € % (P), so further assume without loss
of generality that tQ(A) > 0. It remains only to show that R € Z(P), that is,

(3.3) QL + 1Q(A)5(b(4,Q)) + (1 - 1)Qla € F(P).

The proof of (3.3) will be based on a monotone class argument.

Case 1. X is a separable Banach space. \
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For each T € & and each A with finite 7-moment, define the elementary
fusion T, of T by

T, = Tlae + tT(A)5(b(A,T)) + (1 — t)Tla.
[Note that T, = T if T(A) = 0.]

Cram 1. If A is bounded and Q(9A) = 0, then @, € F(P).

The proof of Claim 1 will proceed in four steps.

(i) There exists {P"} ¢ A~(P) with b(A, P™) - b(A, Q).

By the definition of F(P), there exists {P"} c #(P) such that P" — , Q.
For every f € X*, [, fdP" - [, fdQ since f -1, is bounded and measurable
and has discontinuities which constitute a set of @-measure 0 [Billingsley
(1968), page 31] (note the discontinuities of f- I, are contained in JA) and
f+ 1, is bounded since f is linear and A is bounded. Thus f(/,xdP"(x)) —
f([,xdQ(x)) for all fe X*, so [yxdP™(x) =, [4xd@(x). A well-known corol-
lary of the Hahn-Banach theorem [Rudin (1973), page 65] implies that for
some sequence of convex combinations from {P"} (which shall still be called
{P™)), [4xdP™(x) - [,xdQ(x), with convergence in norm. By Theorem 3.11,
the new sequence {P"} is still contained in ./(P). By the portmanteau
theorem [e.g., Billingsley (1968), page 14], P"(A) — Q(A) since Q(3A) = 0, so
(i) follows.

Gi) If Be & is such that QWB) =0 and b(A, Q) & dB, then
8pa, pry(B) = 8y, @) B).

If b(A,Q) € B, it is an interior point of B. Thus b(A,P") is in B
eventually by (i), 80 8, 4 pr(B) = 1 = 84 \(B).

On the other hand, if 8(A,Q) & B, then it is in the interior of B¢, so,
similarly, 8,4 pr(B) = 0 = 8,4 q,(B). This proves (ii).

(iii) Let B be as in (ii). Then P}(B) — Q,(B).

Since 3(A N B) C9A U dB and d(A° N B) C3A° U IB = 9dA U dB, both of
these sets A N B and A° N B have @-measure 0. So by the definition of P
and @,, the portmanteau theorem again and (ii), statement (iii) follows.

iv) 9={Be @ QUB)=0, b(A,Q) B} is a convergence determi-
ning class for P} -, Q, [that is, if P{(B) — Q4(B) for all B € Z, then
P /;l “w QA]

Clearly, 2 is closed under finite intersections, and it is easy to see by the
separability of X that every open set is a countable union of subsets of Z (to
see this, just consider open balls centered at some point; as the radii vary, the
boundaries are disjoint), so (iv) follows by Billingsley [(1968), Theorem 2.2,
page 14], which completes the proof of Claim 1.

. Let A, be a set in & with finite @-moment and define

&, = (BCA,: Be %,Qz € F(P)).

CramM 2. ¢  is a monotone class.
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Let B, 1 B, B, € ¢, (the case B, | B is similar) and assume Q(B) # 0.
Then yIg (y) = yI5(y) ‘v?y, so [p,yd@Q(y) = [py dQ(y) (norm convergence) by
the dominated convergence theorem [Dunford and Schwartz (1958), page 151,
Corollary 16] since |ly|l is integrable on A,.

Since Q(B,) — Q(B), b(B,,Q) — b(B, Q) in norm. Now let E € & satisfy
Qz(0E) = 0. But Qz(VE) = 0 = b(B,Q) & JE = b(B,, Q) & JE eventually, as
before. Thus, as before, 8,5 g(E) = 8,5, q(E). Also

Q(B,NE) > Q(B°NE),
Q(B,NE) > QBNE),
Q(B,) > Q(B),

by the monotonicity of {B,}. Hence @p(E) — Qz(E), so the portmanteau
theorem implies Q5 —, @p, so B € €, . The case Q(B) = 0 is trivial, since
then Q(B,) = 0 and @ = Q = @ € F(P). This proves Claim 2.

Cramv 3. Let A, be a bounded set in & with @A) = 0. Then &=
{Bc A, Be #:QUB) = 0} is a field relative to A, contained in &} .

Note that the complement of B relative to A, is B°NA, Now
d(B°N A, CcdB)UIA,=0dBUOIA, which has @-measure 0. Similarly,
(B UE)CiBUOIE, so & is clearly a field. It was shown in Claim 1 that
GC Y,

Cramv 4. If A, is a bounded open set with @(0A,) = 0, then ¢, contains
~ all Borel sets in A,.

Any open set B C A, is the countable union of open subsets B, of A, for
which Q(B,,) = 0, so the o-field generated by ¢ contains all open sets, hence
all Borel sets in A,. But by the monotone class theorem and Claims 2 and 3,
so does €, , which completes the proof of Claim 4.

To complete the proof of (3.3) (in the case when X is a separable Banach
space), observe that if A is a bounded set in &, A C A, for some bounded
open set A, with Q(0A,) =0 and so by Claim 4, @, € F(P). Finally, if
A € # has finite @-moment, there exist A, 1 A with A, bounded, so by
Claim 2, A € S(P), since each A, € F(P).

Cast 2. X is a compact metrizable convex subset of a locally convex t.v.s.

Since supp P is compact, it may be assumed without loss of generality that
A is relatively compact (i.e., A is compact), so each f € X* is bounded on A;
the remainder of the proof then essentially follows that of Case 1. O

ProposITION 3.13. Let P be a purely atomic measure with exactly two
atoms of mass p and 1 — p at points a; and a,, respectively. Then F(P) =
{Q € Z: suppQ C [y, ay] and (X, Q) = a1 p + ay(1 — pl}.
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(In other words, starting with a two-point distribution, one can fuse it to
obtain any distribution which has the same barycenter and all its mass in the
closed line segment [a;, a,] connecting those points.)

Proor. Without loss of generality assume 0 < p < 1, for otherwise the
conclusion is trivial. ‘

By Proposition 2.1, supp  is contained in the closed line segment [a;, a;]
for every @ € (P) (see also Theorem 3.20 below), so without loss of general-
ity assume X = R™.

Suppose Q is a purely atomic distribution with exactly n atoms a,,...,a,
satisfying
(3.4a) a, <a; < - <a,<ag,
n
(3.4b) Y a.Q({a;}) =ap +ax(l —p).
i=1

Letting p; = Q{a;), i =1,...,n,itis easily checked that @ is the m.s.f. of
P given by

Q = fus(({ar), (e} ); (t)) 0 13 P
where

. Pj(“z - aj)

v p(ag — @) ’

i a;—«a
t2j=( Li )( J 1), j=1,...,n.
1-p/\lay—a;

Then @ € F(P), since #(P) contains all m.s.f’s of P, by Proposition 3.10.
Since the probabilities @ satisfying (3.4a) and (3.4b) are weakly dense in
the set of all distributions with support in [a;, ;] and barycenter = ap; +
a,(1 — p) and F(P) is closed, the proof is complete. O

j=1,...,n,

and

PROPOSITION 3.14. Let X = R! and P be the Cauchy distribution. Then
F(P)= 2.

Proor. Applying an elementary fusion of the form in Example 3.3, first to
the positive axis and then to the negative axis, shows that for each £ > 0 and
N > 0, there is a simple fusion @ of the Cauchy distribution (in fact consisting
of a composition of only two elementary fusions) which has two atoms of
masses m,, my > 5 — ¢ located at —b; and b, respectively, where b;, b, > N.
Then, using Proposition 3.13, it is easy to see that @ can be further fused to
closely approximate any given distribution with support in [—N, N]. Taking

weak limits completes the proof. O
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REMARKS. It can now be seen that the fusion ordering is not in general
antisymmetric. Let X and P be as in Proposition 3.14. Thus if @ is the
translation of the Cauchy distribution by 1, @ € &(P) and P € #(Q) from
Proposition 3.14, yet P # @. However, if P and @ both have a finite
first moment, then it will be seen in Corollary 3.24 that @ € %(P) and Pe
F(Q) = P = Q; see also the remarks following Corollary 3.17.

Next it- shall be shown that if @ is a fusion of P, then @ is convexly
dominated by P, but the converse is in general not true (it is, however, if P
has a finite first moment; see Theorem 4.1).

DerFiNiTION 3.15. For @ and P € &, P convexly dominates @ (written
P>, Q) if [¢dP > [¢dQ for all continuous convex functions ¢ for which
both integrals exist.

_ ProrosiTion 8.16. Let @ € F(P). If () ¢ is convex and continuous on
co(supp P) and ¢ is P-integrable; or if (ii) K = co(supp P) is compact and
I ¢, | ¢ such that ¢, is continuous and convex on K (so ¢ is also convex) and
if ¢ is P-integrable, then

/¢dQs[¢dP.

CoroLLARY 3.17. If Q € F(P), then Q <, P

REMARKS. If P has a finite first moment, then Corollary 3.17 can also be
viewed as a generalization of Jensen’s inequality. Proposition 4.11 below
shows that no continuity assumption in Proposition 3.16 is necessary if X is
finite-dimensional.

A result of Mokobodzki [cf. Alfsen (1971), page 44] implies that if ¢ is
convex on a compact convex subset K of a locally convex topological vector
space and if ¢ is upper-semicontinuous, then 3 ¢, | ¢, ¢, continuous and
convex on K. But a convex Borel function on K need not be upper-semicon-
tinuous; see the remarks following Proposition 4.11. On the other hand, if ¢ is
defined on all of X and is convex and bounded above on some nonempty
convex open set, then ¢ is continuous [cf. Schaefer (1971), page 68]. And if X
is finite-dimensional, every convex function on all X is continuous. Of course
there are also many examples of discontinuous convex ¢ which satisfy (ii); for
example, ¢(x) = 0 for x € (0,1) and ¢(0) = ¢(1) =1 for K =[0,1] c R! = X.

Proor or PropPOSITION 3.16. To establish part (i), first consider elementary
fusions. Suppose @ = fus((A, A°);(¢,0); P), so dQ =I,.dP + (1 — t)I,dP +
tP(A) do(b), where b = b(A, P). If P(A) = 0, then @ = P and the conclusion
is tiivial, so suppose P(A) > 0. Then

[¢dq = fAc¢ dP + (1 — t)fA¢ dP + tP(A)$(b).
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But since b = [,xdP/P(A), Jensen’s inequality implies
#(b) < [ #(x) dP(x)/P(A),

so [¢dQ < [¢ dP. :

By induction, conclusion (i) then holds for all simple fusions @ of P.
Suppose @, —,, @, where each @, is a simple fusion of P. Assume first that
¢ > 0 and that ¢ is continuous and convex [on co(supp P)]. For M > 0, let
¢M = min(¢, M). Then [¢M dQ, — [¢M dQ by weak convergence, so

fd)MdQ < limsupfqbdQ,, sf¢>dP for all M.

Letting M — , [¢ dQ < [¢ dP follows by the monotone convergence theo-
rem.

Next let ¢ be an arbitrary convex continuous function on co(supp P). For
L <0, let ¢, = max(¢, L) which is continuous and convex. Then [(¢, +
LD dQ < [(¢, + ILD AP, so (¢, dQ < (¢, dP. Then ¢, - ¢ as L - —, so
since |¢;| < |¢| (recall L < 0) the conclusion (i) follows from the dominated
convergence theorem.

Part (ii) follows immediately from (i) and the dominated convergence theo-
rem, since ¢, < ¢, which is bounded above on K and as in case (i), it is
enough to establish the conclusion for nonnegative ¢. O

The infinite-dimensional conclusion of the next corollary will be strength-
ened later (Theorem 4.2) to uniform integrability, but will be used in its
present form to show that martingalizability implies fusion (Theorem 4.1).

CoROLLARY 3.18. If P is a Borel probability measure on a separable Banach
space X such that P has a finite first moment (i.e., [llx|| dP < «), then F(P) is
tight. Moreover, if X is finite-dimensional, then P has a finite first moment if
and only if F(P) is tight.

Proor. By Proposition 3.16, [|lx|l dQ < [llx||dP for all @ € F(P), so
QUlxll > 1) < )rlfuxu dQ <A~! [llxlldP forall @ € F(P).

Since the right-hand side does not depend on @, this shows .7 (P) is tight.

To prove the second part, suppose, without loss of generality, that X = R"
equipped with the /,-norm and assume [yxllx||dP = «. Then at least one
orthant A of R” satisfies [,llx||dP = »; suppose further, without loss of
generality, that A is the positive orthant R?. Then for all Borel subsets B
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of A,

fllxll dP(x) = jB{: x| dP(x) = /Bj{;lxj dP(x) = J{;ljij dP(x)

Jj=1
- Ele(jBde(x)) < ElujBde(x)u = nII/Bde(‘x)II,

where m; is the projection onto the jth coordinate and x; = ;(x).
Now given N, there exists an r > 0 so that P(B,) > P(A)/2 > 0 and
fB llxll dP(x) > nN, where B, ={x € R": [lx|l < r}. Then I /g, x dP(x)ll > N,
l6(B,, P)Il > N, which 1mphes that the elementary fusion @ =
fus(B,, B¢;(1,0); P) satisfies Q(x € A: [|x|]| > N) > P(A)/2, so (P) is not
tight, since N is arbitrary. O

In general (i.e., without a moment or similar condition), % (P) may not be
tight, as is seen immediately from Proposition 3.14, since if P is the Cauchy
distribution on R!, then F#(P) = &#

As the next example shows, the converse of Corollary 3.17 does not hold in
general, that is, @ may be convexly dominated by P without being in #(P) if
P does not have a first moment, even in the finite-dimensional case.

ExampLE 3.19. Let X = R? let P be the (one-dimensional) Cauchy distri-
bution supported on the x-axis and let @ be the Cauchy distribution supported
on the y-axis. Since the only convex functions ¢ for which [cdP and [cd@
both exist are those ¢ which are identically zero on both axes (and hence zero
everywhere by convexity), P trivially dominates @ convexly (and vice versa),
but clearly @ ¢ %(P) since supp @ is not contained in co(supp P) (see Theo-
rem 3.20 below).

[Observe that a two-dimensional Cauchy example was needed, since in R?, it
follows from Proposition 3.14 that @ € #(P) for all @ € &, in particular for
any @ convexly dominated by P.]

The next result generalizes the main idea behind the last example.

TueoreM 3.20. If Q € F(P), then co(supp Q) < co(supp P).

ProoF. The conclusion follows immediately from Proposition 2.1 and the
definition of fusion if @ is a simple fusion of P. The general case then follows
easily using the portmanteau theorem. O

It shall now be shown that if P and @ have finite first moments, then a
very special class of convex functions is separating, namely, the positive parts
of affine functions, or wedge functions. That is, if [a* dP = [a* dQ for all
continuous affine functions a, then P = Q. Surprisingly, these functions do
not, however, determine convex domination: fa™ dP > [a™ d@ for all affine
functions a does not imply (¢ dP > (¢ dQ for all convex functions. An
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example of this will be given in R? in the next section, answering in the
negative a differently formulated question raised by Marshall and Olkin
(1979). No such example is possible in R! [see Theorem 4.7(vii) below]. This
gives some insight into why the connection among convex domination and
dilations and fusions is so much simpler in R! than in higher dimensions.

The proof that wedge functions are separating is very easy in finite-dimen-
sions, using only the well-known fact that probability measures are deter-
mined by their values on half-spaces. In infinite dimensions, the proof will be
reduced to the finite-dimensional case by using the so-called approximation
property (AP) of Grothendiek (1955).

The following is a suitable definition of the approximation property for our
purposes.

DEeriNITION 3.21. A t.v.s. X has the AP if for every compact subset K of X
and every open neighborhood V of 0 in X, there exists T: X — X a continuous
linear operator of finite rank such that Tx — x € V for all x € K. That is, the
identity operator can be uniformly approximated on compact sets by an
operator of finite rank.

Enflo showed in a famous counterexample [Enflo (1973)] that not every
space has the AP, so one must embed the space in one which does have the AP;
this works fine for our problem, since the measure then just lives on a
subspace.

We are grateful to Steve Bellenot for suggesting the proof of the following
lemma.

Lemma 3.22. Every l.c.t.v.s. X is a subspace (in both the linear and
topological sense) of a l.c.t.v.s. with the AP.

Proor. There exists a separating family F' of continuous seminorms on X,
such that the sets {V,(¢): p € F, ¢ > 0} form a local subbase for the topology of
X, where V,(¢) = {x: p(x) <e¢}; see Rudin [(1973), page 26-27]. For p € F,
X/N, is a normed space, where N, is the closed subspace {x: p(x) = 0}. Now
any normed space may be isometrically embedded in some C({) space, where
Q is compact Hausdorff [Dunford and Schwartz (1958), page 424] and C(Q)
has the approximation property [Grothendieck (1955), page 185, Proposition
41]. Thus we have X —_ X/N, —; C(Q,), where , is the quotient map and
i, is an isometric embedding. Define y: X —I1,.,C(Q,) by ¥(x)=
(@, o m,(x)),cp- By the definition of the quotient and product topologies and
the fact that the V,’s form a local subbase for X's topology, y(X) is linearly
homeomorphic to X, so X may be considered a subspace of IT, . »C(Q,). But

it is easy to show that a product of spaces with the AP has the AP [Grothendieck
"(1955), Lemma 19, page 169]. O

By an affine function is meant a function of the form a(x) =I(x) + b,
where [ is linear.
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THEOREM 3.23. Let P and @ be tight probability measures on a l.c.t.v.s. X
[if X is a complete separable metric space, such as a separable Banach space,
tightness is automatic; see Billingsley (1986), page 10]. If P and Q both have
finite first moments, then

fa* dP = fa* dQ forall affinea = P = Q.

Proor.

Case 1. X = R!. The right derivative of the function ¢p(¢) =
[(x — )" dP(x) is —P((¢,)), and therefore the distribution of P is uniquely
determined by ¢,(¢). But since x — ¢ is affine, ¢p = ¢q, 50 P = Q.

Case 2. X = R™. It is well known that two probability measures on R” are
the same if they agree on all half spaces; see Billingsley [(1986), page 396] (the
proof uses a Fourier transform argument). A half-space is a set of the form
H = {x: l(x) < a} where [ is a nonzero real-valued linear function on R”".

Define a probability measure P, on R! by P,(B) = P(I~(B)) for B a Borel
set in R', and similarly for @,. Now P(H) = P,((—, a]) and similarly for @,
so to show P = @ it is enough to show P, = @, for all such /.

Let ¢ be any affine function on R!. Define an affine function @ on R" by
a(x) = ¢(I(x)). Now by a change of variables, [pi1d"(¢) dP,(¢) =
Jrrd T (U(x)) dP(x) = [a™ dP = [a* d@Q by hypothesis, so [¢* dP, = [¢* dQ,
for all affine ¢ in R'. By Case 1, P, = Q,.

GENERAL CASE. By Lemma 3.22, assume X has the AP. Let fe C(X),
Ifll<1 and fix &€ > 0. Choose K c X, K compact, such that P(K) > 1 —¢
and Q(K) > 1 — ¢. Since K is compact and [ is continuous, there is an open
neighborhood V of zero suchthat x e K,y —x € V= |[f(y) — f(x)| <e.Let T
be a continuous linear operator on X of finite rank such that Tx — x € V for
all x € K. Thus |[f(Tx)dP(x) — [f(x)dP(x)| < eP(K) + 2P(K*) < 3¢, and
similarly for @. But [f(Tx) dP(x) = [f(y) dP;(y), and Py = P o T~ is carried
on the range of T which is finite-dimensional. And [a*(y)dPr(y) =
Ja™(Tx) dP(x) = [a™(Tx) dQ(x) = [a™(y) dQ;(y) for all affine func-
tions @ on range T (since a o T is affine on X), so @, = P, by Case 2. Thus
|[f(x) dP(x) — [f(x)d@Q(x)| < 6e. Since &> 0 is arbitrary, [f(x)dP(x)=
Jf(x)d@Q(x) for all fe C(X),s0o P=Q. O

COROLLARY 3.24. IfQ € F(P) and P € F(Q) and either has a finite first
nioment, then P = Q.

Proor. By Corollary 3.17, fa® dP = fa* d@ for all affine functions a, so
the conclusion follows immediately by Theorem 3.23. O
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The notion of matrix simple fusion may be generalized to countable parti-
tions as follows; this generalization will be needed in the proof that martingal-
izability implies fusion (Theorem 4.1 below).

DEeFINITION 3.25. @ is a matrix countable fusion (m.c.f.) of P if P has a
finite first moment and if there exist (¢;,)7.% ;_; nonnegative with ¢, =

Lk_t;; < 1forall i and (A,)7_; a measurable partition of X, so that

i

k

Q= i (1 - ti)P|A,~ + Z 3(bj)[ f tijP(Ai)]’
i=1 j=1 i=1

where

p. = Zi-tiP(A4:)b(A;, P)

i Tt P(A;) (when the denominator # 0)

(it will be shown in a moment that this exists). Notationally, denote such a @

Q = fus((A)7; (t)7 - P).

ProPOSITION 3.26. Every matrix countable fusion of P is a fusion of P.

Proor. In order to show that every m.c.f. @ of P is in F(P), it may be
shown that @ is the weak limit of m.s.f.’s of P. First, the sum X7_,¢,;P(A,)
converges because XL 7_;P(A;) = P(X) converges. To show that
L7 1t;;P(A)Db(A;, P) converges, first consider the case where X is a separa-
ble Banach space, in which case

A

i

1

M M
_NtijP(Ai)b(Ai,P)” _;Nt,.jf deH

IA

M
t;| llxlldP < lxll dP.
igN JfA- fu

i °i°=N‘4i

Since P(U?_yA;) >0 as N — » and [lx|| is integrable, the sequence is
Cauchy, hence convergent. On the other hand, if X is a compact metrizable
convex subset of a l.c.t.v.s., for each e X*,

f(iiithij'/;'de)

i

< X t;[ f(x)IdP < ¥ P(A)I Sl
i=N A i=N

which converges to 0 as N — «. Thus the scalar series obtained by applying f
converges to a finite limit for each f € X™*, so since the original series lives in
the compact set X, the series converges.
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Next, let @, = fus((AN )bl ; P), where t) =¢; if i<n
and = 0 otherwise, and A? = A, if i <n,and =(U}_;A4,)°if i =n + 1. Let

n+l n+1
by = Zl t(PP(A})b( AL, P) | X tPP(A})
i= i=1
i=1

— Y 4, P(A)B(A, P) | T t,P(A)).
i=1

Now b — b;, since it was already proved that the numerator and denomi-
nators converge. Then

QuB) = Y (1-t)P(BNA,)+P

B0 U 4

i=1 i=n+1
k n

+ 2 X ti;P(A;)8(b7)(B).
j=1li=1

Observe that for every B, the first term obviously converges to
r7_,(1—t)P(BNA,) and the second term converges to 0. Now if b; & JB
for j =1,...,k, then 8(b7XB) - 8(b,X(B) and since the set of all such B isa
weak convergence determining class [Billingsley (1968), page 14], this com-
pletes the proof that @ € Z(P). O

4. Fusions of probabilities with finite first moments. Recall that if
Q is a fusion of P, then @ is convexly dominated by P (Corollary 3.17) and
that the converse is not true in general, even in finite-dimensional spaces
(Example 3.19). However, if P has a finite first moment [i.e., (X, P) exists]
then @ is a fusion of P if and only if @ is convexly dominated by P, as will
now be shown.

Throughout this section, X is either a separable Banach space or a compact
metrizable convex subset of a l.c.t.v.s., and P is a Borel probability measure on
X. Recall that for @, P € &, the ordered pair (@, P) is martingalizable if
there exists an X-valued martingale (Z,, Z,) with #(Z,) = @ and .£(Z,) = P
and that a dilation on X is a Markov kernel u from X to X such that for all
continuous affine functions ¢ on X, ¢(x) = [¢(r)u(dr, x) [cf. Phelps (1966)
for details]. The main result of this section is the following theorem.

THEOREM 4.1. If P and Q are Borel measures on X, where X is a separable
Banach space or a compact metrizable convex subset of a locally convex
topological vector space, and if P has a finite first moment, then the following
are equivalent:

(i) Q is a fusion of P;
(i) @ <, P;
(iii) (@, P) is martingalizable;
(iv) there exists a dilation u of X with P = u@.



FUSIONS OF A PROBABILITY 441

ReEMARKS. The equivalences of (ii), (iii) and (iv), assuming P has a finite
barycenter, have been proved in part by Hardy, Littlewood and Pélya (1929,
1959) for one-dimensional spaces, by Blackwell (1953), Stein and Sherman for
finite-dimensional spaces and Cartier, Fell and Meyer (1964) and Strassen
(1965) in various infinite-dimensional settings [see Phelps (1966)]. (Another
equivalent condition, which will not be dealt with in this paper, is the Loomis
strong ordering [Phelps (1966), page 112], which has applications in the theory
of group representations.) The main task here will be to show the equivalence
of (i) with (ii)-(Giv).

Proor or THEOREM 4.1. By the definitions of dilation and martingalizable,
it is clear that

(4.1) (iii) & (iv).
Next observe that
(4.2) (i) = (ii) « (iii) if X is a separable Banach space,

where the first implication is by Corollary 3.17 and the equivalence follows
from Theorem 8 of Strassen (1965), observing that his argument applies to the
separable Banach space case as well (as he states) and that his argument
shows that only continuous convex functions need be considered.

Similarly,

(i) = (ii) « (iv)

(4.3)
if X is a compact metrizable convex subset of al.c.t.v.s.,

where the first implication again follows by Corollary 3.17 and the equivalence
is Cartier’s result [e.g., Phelps (1966), page 112; note that there X is not
assumed to be metrizable].

From (4.1), (4.2) and (4.3), it follows that the proof will be complete once it
is shown that (iii) = (i). This will be proved first in the Banach space setting
and then in the l.c.t.v.s. setting, although there is much overlap in the ideas.

BANACH sPACE case. Let (Y7, Y,) be a martingale taking values in a separa-
ble Banach space X, with underlying probability space (Q, .#, u) such that
w(Y; € B) = Q(B) and u(Y, € B) = P(B) for all Borel subsets B of X.

Fix ¢ > 0 and let (wj);-‘;l be a Borel partition of X with diam co(vrj) < ¢ for
all j. Let A, =Y;%w,) and B, =Y, =) for i = 1,2,..., and observe that
(A;)?_; and (B,)7_, each are .#measurable partitions of (2. Choose N so large
that

. P(IG‘W) 'Q(.G"Tz’) >1-—c¢g,

and let b, = b(m; P) (= [, xdP/P(m)), i = 1,2,..., and note that b, € co(m;)
by Proposition 2.1.
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Let ¢;; = u(A; N B;)/u(B,) if u(B;) > 0 (and = 0 otherwise) and note that
w(B;) = P(’IT) and t, = ZN_ 1ti; < 1. Let @ be the matrlx countable fusion
(Definition 3.25) of P glven by Q = fus((m)7-1; (¢; )7 j-1; P) and note that
the associated barycenters of @ are

Z?=1tijp(77'i)bi

a; = — , Jj=12,...,N.
J Zi=1tijP(7Ti)
Then
(4.4) gltijp(wi) = gly,(Aj NB;)=u(4,),
SO

a;= —_—
Y n(A;)

By (4.4) and the definitions of (;), (A,) and ¢,,
> N
Q(B)= X (1-t,)P(BNm) + ¥ 8(a,)(B)u(A)).
i=1 j=1

Let
_ fAjY1 du _ fAjYz du
/ n(A;) r(A;)
(where the second equality follows by the martingale property) and observe
that G; € co(w;), since Y,(w) € m; when w € A;. Then

® fAjnBind/-L w(A; N B;) fAjnBiY2d/.L ~ f ,U«(AjﬂBi)~

a;= ing(A]T— ) igl n(4;)  w(4;nBy) i u(4,) 7

a

where
s fAjnB,-Yz dp
U w(A;nBy) T
Furthermore, note that b, ;j 18 in co(rr,), since Y,(w) € m; when o € B,.
Since diam co(rr;) < &, ld; — a;ll < Z7_(u(A; N B)/u(A; ))Ilb - bl < Ze
and since @; € E(WJ),

dist(a , co( )) < 2e.

Denote @ = QE to indicate the dependence on ¢. *

Let f be a bounded uniformly continuous real-valued function on X and
suppose If(x) — f(y)| < d(e) whenever ||x — y|| < 3¢; thus d(¢) » 0 as ¢ = 0.

Compute

[£dQ = [f(¥))du = 2 f f(Y)du+f f(Y1) dp

1N+11
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and

N 0

[£d@. = [ f(au(A)+ ¥ (1—t) [ f(x)P(dx).

Jj=1 i=1 ™,

But
/. f(Y1)dp S”f"w#«( G Aj) <eéllfll
J=N+14, Jj=N+1

and

<Y (1) P(m)lfl < ell L,

1=

S (1 1) [ £(x)P(dx)
=1 m;

where the last inequality follows since

i i A.NB, € €
1 — ti - Z tLJ — Z I'L( J l) < _ )
j=N+1 j=N+1 r(B;) r(B;) P(m;)

Finally

N N
Y [ f(Y)du -
Jj=1"4; j=1

N
< X sup lf(Yy(w)) - f(a))lu(4;) <d,
J=1weEA;
since [|[Yy(w) — a;ll < 8¢ for w € A;, which follows because Yy(w) € co(m;) for
w €A,
Since d » 0 as ¢ —» 0,

[fdQ, > [fdQ ase -0,

which holds for all uniformly continuous bounded f. By Proposition 3.26,
Q. € F(P), which is tight by Corollary 3.18. This implies that @, —, @, so
Q € #(P) by the portmanteau theorem, which completes the proof that
(iii) = (i) in the Banach space case.

LOCALLY CONVEX TOPOLOGICAL VECTOR SPACE CASE. Let (Y], Y,) be a martin-
gale in a compact metrizable convex subset X of a l.c.t.v.s., with underlying
probability space (Q, .#, u), so that u(Y; € B) = Q(B) and y,(Y2 € B) = P(B)
for all Borel subsets B of X.

Let U be an arbitrary convex neighborhood of 0, let W be a convex
nelghborhood of 0suchthat W= —Wand W+ W+ W+ Wc U and let V be
an open convex neighborhood of 0 with V ¢ W [cf. Rudin (1973), Chapter 1].

Since X is compact, there is a Borel partition (7,) ; of X with 7, ¢V + x;
for some x, ..., x; € X. Define (A))]L,, (B[, (b, )L v (a; )Nland(tu N ie
as in the Banach space case and observe that since V is convex, b, € co(m,) C
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W+ «x, foreach i = 1,..., N, and that in this case, Zf;ltij = 1. Let @ be the
matrix simple fusion of P given by @ = fus((m)X.1; (¢, )):¥,_; P) and let

6 - fA,Y1 dp _ fAJdeM
! n(A;) n(4;)

where again the second equality follows by the martingale property. So

a,;= —— b,
Too w4y Y

where the b, ,; are defined as in the Banach space case. Observe that again
b, ; € co(m;) for each j and i, s0 b,; € W+ x; and d; € co(m;) ¢ W + x;.
Now let f be a continuous real-valued function on X; then [fd@ =
):f;lfAjf(Yl) dp and [fd@ =X, f(a)u(A;). But b, —b,; € W+x; —
W+x)=W-W=W+ W, since W= —W. Thus

a,—a,= 3 MAOB) g
! 7o m(4)) ' Y

is a convex combination of elements of W+ W, so a; —a;, € W+ W, since
this set is convex. Thus a,e W+ W+a,c W+ W+ W+x;, so Y(o) -
a;,€W+x)-(W+W+W+x)=W+W+W+WcU for all €A,
Since f is uniformly continuous on X (by the compactness of X), for each
e > 0, there exists an open neighborhood U, of 0 such that x —y € U, =
If(x) — f()| < e. Thus |[fdQ — [fdQ.| < erLl/,L(Aj) < g, which proves that
Q. >, @, 50 Qe F(P). O

&

REMARKS. Actually the implication (i) = (iii) follows directly (without
Strassen’s and Cartier’s results) from the following fact which is not difficult
to prove: If {@,} is uniformly integrable (see Theorem 4.2 below), if @, —, @
and if (@, P) is martingalizable for all n, then (@, P) is martingalizable.

It has recently been shown by the authors that if P and @ are finite (i.e.,
not necessarily probability) measures on X (where again X is a separable
Banach space or a compact metrizable convex subset of a lc.t.v.s.), then
[¢ dQ < [¢ dP for all nonnegative continuous convex functions if and only if
there is a fusion P of P which majorizes Q. This result is new even in the
finite-dimensional case and the proofs use a new geometric argument similar
in spirit to those of Hardy, Littlewood and Pélya (1929).

" THEOREM 4.2. If P is a Borel probability measure on a separable Banach
space, then P has a finite first moment if and only if F(P) is uniformly
integrable. More generally, if ¢: [0,%) - [0,0) is convex, nonconstant
and nondecreasing, then [¢(|x|) dP < » if and only if F(P) is uniformly
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d-integrable, that is,

(4.5) lim sup #(llxll) dQ = 0.
A=» g F(p) llxll>A

Proor. Since ¢ is not constant, there exist ¢ > 0 and a > 0 such that

(4.6) ¢(B) =cp forall B =>a.
Thus the ¢-integrability of P implies that P has a finite first moment.

To see (4.5), let @ € F(P); by Theorem 4.1 there exists a martingale
(Y,,Y,) having marginal distributions (@, P). Thus (¢(||Y;ID, ¢(IY,ID) is a
submartingale, so

4.7 o(ll4ll) < o(lIY,ll),

(4.7 L(qun»A (I /;(l Ratel

since {¢(||Y;l]) > A} is Y;-measurable. Next observe that Prob(¢(||Y;|) > A) <
ATES(IY,I) < ATE@(Y,ID. Since ¢(|Y,I) is integrable, for all ¢ > 0 there
exists a 6 > 0 satisfying

[YID>

(4.8) f¢(||Y2||) < ¢ for all measurable S with Prob(S) < 6.
S
Take A so large that A “1E¢(||Y,|) < 6, so
$(IlY)) < [ $(IY,l) <e,

(4.9)
o(llY;1ID>A

/t-l>(||Y1I|)>A
where the first inequality follows by (4.7) and the second by (4.8). Now (4.5)
follows from (4.6) and (4.9). The converse is easy, since P € Z(P). O

In the Banach space case, a quantitative version of the uniform integrabil-
ity of #(P) is possible; see Theorem 4.6 below.

A quantitative version of the uniform ¢-integrability of & (P) as a conse-
quence of ¢-integrability of P is also possible, by generalizing Definition 4.3
below to the ¢-characteristic of P [cf. van der Vecht (1986), page 47]; the proof
of the corresponding analog of Theorem 2.6 is essentially the same.

DErINITION 4.3. For a Borel probability measure P with finite first mo-
ment on a separable Banach space, the characteristic of P, rp, is the function
rp: [0,0) — [0, ®) given by

x| dP/P(llxll = A), if P(llx|l=A) >0,
r,(A) = fIIxIIzA /P ) ( )

A, , if P(llxll > A) = 0.

In other words, rp(A) = E(|Y|||[IY]| = A), where Y is an X-valued random
variable with distribution P. Van der Vecht (1986) has generalizations, an
inversion formula and properties and applications of this function in the
R!-framework.
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LEMMA 4.4 [van der Vecht (1986), page 49]. Let S be the supremum of a
nonnegative (real-valued) submartingale with last term Y [i.e., E(Y|F;) > Y,
a.s. V t]. Then Prob(S = r(A)) < Prob(Y > A)V A > 0.

(This bound is referred to in van der Vecht as the Blackwell-Dubins bound,
since it stems from a result of Blackwell and Dubins [cf. van der Vecht (1986),
page 39] relating such a bound to the Hardy-Littlewood maximal functions of
stopped martingales.)

THEOREM 4.5. Let (Z,, Z,) be a nonnegative submartingale on a probability
space (Q, &, w). Then

/ Z,du s/ Zy,du forall A > 0.
Zy>r(d) Zy=> A

Proor. First observe that for every nonnegative random variable Z and
real number b,

(410) [Zdw <[ Zdu forevery B & with u(B) <u(Z2b).
B Z=b
Then calculate

/ Zld,us/ szysf szu,s/ Z,du,
Z,>r(A) Z,=r(A) Z\NVZy=r(N) Zy>A

where the first inequality follows from the submartingale property, the second

since Z, is nonnegative and the range of integration is larger, and the third by

(4.10) and Lemma 4.4. O

THEOREM 4.6. Let P be a Borel probability measure with finite first moment
on a separable Banach space. Then for all @ in #(P) and all A > 0,

[ lsld@<[ lxldP.
Il =rp(A) llall = A

Proor. Since @ € F(P),
[ o(lxl) dQ(x) < ] &(llxl) dP(x) for all increasing convex ¢: R —> R,

which follows by Corollary 3.17 since all such ¢ are continuous and ¢ o [I(-)l is
convex. Using only the one-dimensional version of {Strassen (1965), Theorem
9], it follows that (@, P) is submartingalizable, so the conclusion follows easily
from Theorem 4.5. O ’

. If X=R! and P has a finite first moment, a number of additional condi-
tions are known to be equivalent to fusions; the next theorem lists some of
these. Recall that the Hardy-Littlewood maximal function Hp of P is Hp =
A/(1 - t)[F~Ys)ds for 0 <t <1 (where F~' is the generalized inverse
distribution function of P given by F~(s) = inf{x: P(—®, x] > s} for s € [0, 1]
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and the potential function Up of P is Up(¢) = — [lx — t|P(dx) [see van der
Vecht (1986) for properties and applications of these functions]. Also, @ € &
is said to be smaller in mean residual life than P if [(x —t)"Q(dx) <
[(x — t)*P(dx) for all real ¢. [This ordering has applications in queueing
theory; see Stoyan (1983).]

THEOREM 4.7. If X =R! and P € & has finite first moment, then the
following are equivalent:

(i) Q is a fusion of P;

() @ <, P;

(iii) (Q, P) is martingalizable;

(iv) there exists a dilation w of X with P = u@;

(v) Hy < Hp and b(X, P) = b(X, Q);

(vi) Uy = Up and b(X, P) = b(X, @),
(vil) @ is smaller in mean residual life than P and b(X, P) = b(X, Q);
(viii) [(x V )Q(dx) < [(x V t)P(dx) for all t, and b(X, P) = b(X, @);

(ix) 1 Q(—oo,tldt < [* P(—x,t]dt for all ¢, and b(X, P) = b(X, Q).

Proor. The equivalence of (i)-(iv) follows from the infinite-dimensional
result (Theorem 4.1); (iii) « (vi) follows from Chacon and Walsh [cf. van der
Vecht (1986), page 69]; (v) « (vi) is attributed in van der Vecht [(1986), page
69] to Gilat; and (ii) < (vii) « (viii) « (ix) are in Stoyan [(1983), pages 8-9]. O

ReEMARKS. In the case where P has support in [0,%) and nonzero first
moment, the above conditions are also equivalent to ‘“the Lorenz transform of
Q@ is pointwise less than or equal to the Lorenz transform of P and the
barycenters are equal,” where the Lorenz transform of P, Lp, is Lp(t) =
(b(X, P) Y F~s)ds.

The Lorenz ordering has numerous applications in economics as a measure
of the distribution of wealth in populations, and many of the other orderings
above have extensive application in their finitistic versions; the reader is
referred to Marshall and Olkin (1979) and Tong (1980) for the majorization
analogs and applications.

If X =R}, the above results can be used to obtain the following sharp
envelope for distribution functions in & (P).

THEOREM 4.8. Suppose X = R! and that P € & has a finite first moment
m. Then for all @ € F(P),

P((—2,mp(x))) < Q((—»,x]) < P((~=, Mp(x)]),
where for any random variable Y with -2 (Y)=P,
mp(x) = inf{y: E(YIY > y) >x} and Mp(x) = sup{y: E(YIY <y) <«}.

Moreover these bounds are attained whenever P has no atoms at mp(x) and
Mp(x), respectively.
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Proor. Fix @ € Z(P). By Theorem 4.7, there exists a martingale (Z,, Z,)
with A(Z)) = @, -£(Z,) = P. The desired inequality then follows easily by
Lemma 4.4 (together with an easy calculation to show that the bounds are
attained in the nonatomic case). O

ExampLE 4.9. Let X = R! and P be Lebesgue measure on [0, 1]. Then if F
is the distribution function of @ € %(P), F satisfies:

D) O0<F(x)<2xif0<x <3
() 2x - 1<Fx)<lif3<x <1,

and these bounds are sharp and attained.

REMARKS. A version of Theorem 4.8 which is sharp for all P may be
obtained by simply taking the P-masses at mp(x) and Mp(x) into account;
this is left as an exercise for the interested reader. It should also be noted that
the envelope for #(P) given in Theorem 4.8 is pointwise; as can be seen in
Example 4.9, the distribution F(x) = 2x for x € [0, 1] does not represent a @
in #(P), since its mean is not 1.

A question raised by Marshall and Olkin (1979) (page 433, converse to B2) is
equivalent to the question of whether equivalence of (ii) and (vii) in Theorem
4.7 generalizes to higher dimensions. In other words, are wedge functions
(positive parts of affine functions) a determining class of functions for convex
domination in R™ for n > 1? The next example shows that they are not, even
though they are a separating class for & (Theorem 3.23).

ExampLE 4.10. Let X = R% P = (6(-2,0) + 800, —2) + 6(2,2) +
35(0,0))/6 and @ = (6(—1,-1) + 8(0,1) + 8(1,0)/3, let c(x,y) =y VO,
co(x,y) =x Vv 0 and ¢ = max{c,, ¢,}. (Note that ¢, and ¢, are wedge functions,
but that c is not.) An easy calculation shows that [cdP = + < 2= [cdQ@, but it
will now be shown that (wdP > [wdQ for all wedge functions w. Note that if
w is a wedge function, w(x,y) = (ax + by + ¢)* for some choice of parameters
a,b,c. Let f(a,b,c) = [(ax + by + ¢)*[dP(x, y) — dQ(x, y)]. It will be shown
that f(a,b,c) > 0 for all a, b, c. It is enough to show this for |a| + |b] + |c| =
1, since f is positively homogeneous. Let &/= {(x,,y,), i = 1,...,7} be the
atoms of P union the atoms of Q. For each subset S of {1,2,...,7} and
e = {4, 4, €5} With each ¢, = 1 or —1, consider the region of parameter space

Rs .= {(a,b,c):ax; +by; +c>0fori €S,
ax; + by, +c<0fori & S,e0a >0,e,0>0,e5c>0
and e,a + 56 + g5¢ = 1}.

Note that {(a, b,c): lal + [b]l + || =1} = Ug  Rg,, so it is enough to show
f=0on each Rg,. Now Ry, is a convex polyhedron and f is an affine
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function of a, b, ¢ when restricted to R s,e» S0 f takes its minimum on some
vertex of Rg .. The vertices consist of points (a, b, c) such that two of the
inequalities in the definition of Rg , are replaced by equalities. These corre-
spond to wedge functions whose corner line /: ax + by + ¢ = 0 passes through
(at least) two points of 27, or else passes through (at least) one point of &7 and
also either a = 0 or b = 0 [¢c = 0 corresponds to the line passing through (0, 0)
which is a point of 7], or else two of a, b, ¢ are zero. It is obvious for most of
these finitely many cases that f> 0 and very easy (but a little tedious) to
compute that f > 0 in the other cases; the details are omitted.

The analog of this example in the majorization framework of Marshall and
Olkin is as follows. Let

Y — [0 0 0 -2 0 2}

0 0 O 0 -2 2/
The question of Marshall and Olkin is whether or not AX majorized by AY for
all 1 X 2 matrices A implies X is majorized by Y. Since Zec(y,) =2 <4 =
Y c(x;), where x; and y; are the column vectors of X and Y and c is the
convex function in Example 4.10, X is not majorized by Y [Marshall and
Olkin (1979), page 433, Theorem B1]. However, for every 1 X 2 matrix A, AX
is majorized by AY; this is equivalent to the domination of @ by P above for

wedge functions, or may be easily proved directly.

The last result in this section shows that if X is finite-dimensional, the
continuity hypotheses in Proposition 3.16 and Corollary 3.17 may be dropped.

ProrosiTiON 4.11. Let K be a closed convex subset of R™. Then:

() if n is a probability measure on K with barycenter b, then ¢(b) <
Jd(x)u(dx) for all convex Borel w-integrable functions ¢: K — R;

(ii) if there is a dilation p of X so w = pv, where w,v are probability
measures on K having barycenters, then [¢ dv < [¢ du for all convex Borel
w-integrable functions ¢: K — R.

Proor. Let S be the minimum closed affine subspace of R™ such that
w(S) =1, that is, the affine hull of supp(w). [By affine subspaces we mean
x,yeS=ax+1—-a)ye S forall « € R]

,Note that S is the affine hull of S N K. Now u(K N S) = 1, so by Proposi-
tion 2.1, b€ SN K, since b = [ sxu(dx) and since KN S is closed and
convex.

If b is an interior point of K N S relative to S, then ¢(b) = f(b) for some
affine (automatically continuous) functional f: S — R for which f< ¢ on S.
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This is because there is always a nonvertical supporting hyperplane at (b, $(b))
on the epigraph of ¢ [Stoer and Witzgall (1970), page 142]. Thus

#(b) = f(b) = fs f(x)n(dx) < fs o (%) p(dx)

as claimed.

If b is a boundary point of K N S relative to S, then there is a supporting
closed hyperplane H (relative to S) for K N S at b. Here, H is a proper affine
subspace of S [Stoer and Witzgall (1970), page 103; they call the supporting
plane nonsingular if it does not contain K N S and has nonempty intersection
with the interior of K N S; its existence follows from the fact that b is a
boundary point relative to the affine hull of S N K, which for us is just S as
we have noted].

Since one side of H, say H~, contains no point of K N S, u(H~) = 0. Now if
w(H*) > 0, then

b= [ wn(dx) + [ xu(dz) = p(H")u + p(H)v,

where u € H*, v € H (the fact that u € H* follows from the fact that H* is
convex and we are in finite dimensions, so it does not matter that H* is not
closed). But since b € H, this would imply ©u € H also, a contradiction.

Thus w(H*) = 0 also, so w(H) = 1. But this contradicts the minimality of
S, so b cannot be a boundary point of K N S (relative S). This proves (i). To
prove (i), u(B) = [p(x, B)v(dx), where x = [yp(x,dy) ¥V x. By (1), ¢(x) <
[o(¥)p(x,dy) V x, so

Jo(x)v(dx) < [ [6(y)p(x,dy)v(dx) = [$(y)n(dy). =

REMARKS. An example of Choquet [Alfsen (1971), page 20] shows that (i)
can fail in infinite dimensions, even for a bounded affine ¢ of the second Baire
class, on a compact convex K.

However, (ii) holds in a general Hausdroff l.c.t.v.s., K compact and convex,
for all upper-semicontinuous ¢: K — R [Alfsen (1971), page 45]. Even in R?, a
convex Borel function on a compact convex set need not be upper-semicontinu-
ous, so this result does not include our result (ii). (To see this, consider the
following modification of an example of Stoer and Witzgall [(1970), page 137].
Let K={(x,y)€R% 0<x<1, y2<x} and let f: K> R be defined by
£(0,0) = 0 and f(x,y) = y%/x for x > 0. Then f is convex, but not upper-
semicontinuous at (0, 0).)

Recall from Theorem 4.7 that if P (on X = R!) has a finite first moment,
then @ is a fusion of P if and only if (@, P) is martingalizable. Since the
notion of martingale entails existence of first moments, it might be asked
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whether relaxing this requirement, but preserving the fairness of the pair
yields an equivalent condition to fusion in the general (nonintegrable P) case.
That this is not the case [see Gilat (1977) for definition of the fair process
generalization of martingale] can be seen by letting P be Cauchy and @ = &(0)
[which is in #(P) = & by Proposition 3.14] and noting that (@, P) is not a
fair pair in the sense of Gilat, since the conditional moment of Z, given Z, = 0
does not exist.

5. Optimal distributions and fusions for cost-reward problems.
Many ideal physical laws describe linear mixtures of fusions or various types;
one such law for mixtures of concentrations was given in the Introduction, and
another is Raoult’s law of physical chemistry [cf. Barrow (1979), page
279]—““the vapor pressure of the component of an ideal solution is propor-
tional to the mole factor of the component.” The main purpose of this section
is to apply some of the above fusion results to an applied problem related to
such physical laws.

Suppose x represents a variable quality (such as concentration or vapor
pressure) of a substance which mixes linearly, and further suppose that it
costs c(x) to produce one unit of quality x, which then may be sold for r(x).
Which distribution should production of this substance follow and how should
it then be mixed in order to maximize the average profit? In other words, if
production is according to distribution P and P is then fused to @, what are
the choices for P and for @ € % (P), which will maximize the average profit
rdQ — [cdP?

Throughout this section, it will be assumed that X is a compact convex
subset of R™ (although clearly analogs of these results are possible for the
infinite-dimensional case).

DeFiNITION 5.1.  For Borel functions r, c: X = R, (Q, P) is (r, c)-optimal if
/rdQ — [cdP = sup{/rd@ — [cdP: P € #,Q € F(P)).

The first result covers the relatively easy case when the cost function c is
lower-semicontinuous and convex: It simply says that optimality in this case is
attained by producing everything deterministically at some optimal level x*
and not fusing at all.

THEOREM 5.2. Suppose r: X — R is upper-semicontinuous and c: X = R is
lower-semicontinuous and convex. Then (8(x*), 8(x*)) is (r, ¢)-optimal, where
x* is any vector satisfying r(x*) — c(x*) = max{r(x) — c(x): x € X}.

Proor. Fix P € & and @ € %(P). Then

[rd@ - [cdP < [rd@ - [cdQ = [(r-c)dQ

<r(x*) —c(x*) = frd&(x*) - fcda(x*),



452 J. ELTON AND T. P. HILL

where the first inequality follows by Theorems 4.1 and 4.11(i) [since @ €
F(P)], the second inequality follows since @ is a probability distribution and
the existence of such an x* follows since r — ¢ is upper semicontinuous. O

DeFINITION 5.3. For a function f: X —» R, let f denote the convex closure
of f,thatis, f(x) = sup{g(x)lg: X - R, g is convex and g < f}.

THEOREM 5.4. Suppose r,c: X > R are upper- and lower-semicontinuous,
respectively. Then (8(x*),L7{a;8(x})) is (r,c)-optimal, where x* is any
point in X satisfying r(x*) — &x*) = max{r(x) — #x): x € X}; and
{(x¥, &(x}))}-, are any extreme points of the convex set {(x,y) eR**L: x €
X,y € R,y > &x)} which satisfy L3iia(xF,(x)) = (2%, H(x*)) for some
{e)i*12 0, L a; = 1.

ProoF. First observe that since X is compact and r — ¢ is upper-semicon-
tinuous, that an x* exists which maximizes r — ¢. By Caratheodory’s theorem,
any point (x*,&(x*)) € R**! can be written as a convex combination of at
most n + 1 extreme points of the set {(x,y) e R x e X,y € R,y = &(x)},
so there exist {a;}7*' = 0, L7 ja; = 1 and {x¥)}*! satisfying

n+1

Yy aj(xj‘,é(xj‘)) = (x*, &(x%)).

Jj=1

Fix P € & and Q € F(P). Then
frdQ—[cdps[rdQ—fadPsr(x*) — &(x*)

n+1

= [rds(z*) - 21, a;(xF)

n+1

= [rds(x*) - 21 a;e(xf)

n+1
= [rds(z*) - [cd( Y aja(x;.*)),

1

xF x* xy
Fic. 1. (n=1 o = &*—x¥)/af —x), P=a;8x}) + Q- a)sx}) and Q =8(x*) €
F(P).



FUSIONS OF A PROBABILITY 453

where the first inequality follows since ¢ < ¢, the second by Theorem 5.2 and
the second equality since for extreme points x7, c(x}) = é(x7). Since x* is the
barycenter of the measure P =L} a j5(x}“s, clearly 8(x*) € &(P), which
completes the proof. O

A typical construction of an (r, c)-optimal pair (@, P) in the one-dimen-
sional case is shown in Figure 1.
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