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ENTROPY AND PREFIXES !

By PauL C. SHIELDS

University of Toledo and Eétvés Lorand University

Grassberger suggested an interesting entropy estimator, namely,

nlogn

LI, L
where L7 is the shortest prefix of x;, x;, 1, ..., which is not a prefix of any
other x;,%;.1,..., for j <n. We show that this estimator is not consistent

for the general ergodic process, although it is consistent for Markov chains.
A weaker trimmed mean type result is proved for the general case, namely,
given ¢ > 0, eventually almost surely all but an ¢ fraction of the L} /log n
will be within ¢ of 1/H. A related Hausdorff dimension conjecture is shown

to be false.

1. Introduction. For our purposes a source, or stationary ergodic pro-
cess, is a shift-invariant measure u on sequences x = {x,} drawn from a finite
alphabet A. Let x? denote the finite sequence x,,,%, . 1,...,%,. If x=
X1, Xg, ... is an infinite sequence drawn from A, define

L? = L¥(x) =min{L: x/*F" 2 xf*E N 1 <j<n, j# i,

that is, L?(x) is the length of the shortest prefix of x,, x;,,..., which is not a
prefix of any other x;,x;,,,..., for j < n. Grassberger (1989) suggests the
possibility that the L” can be used to estimate the entropy rate H = H(u) of
the process and gives some heuristics to suggest that the following holds,
almost surely:

1 R ONE.
(1) o nlogn  H’

The Grassberger prefixes can be viewed as a symmetric form of the celebrated
Ziv-Lempel algorithm, which defines prefixes by looking only backwards, that
is,

Li(x) = min{L: x[*E~1 # xf* 711 <j < i}

As it is known that T 2L, ~ n/(H log n) [Ziv and Lempel (1977)], it is plausi-
ble that (1) might be true.

In this paper we show that the conjecture (1) is .true for a limited class of
processes, that it is not true in general and that a weaker form of the
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conjecture is true for ergodic processes. These results are summarized in the
following theorems.

THEOREM 1. The limit result (1) is true for i.i.d. processes, for mixing
Markov processes and for entropy-zero processes. '

THEOREM 2. There are very weak Bernoulli (i.e., finitely determined)
processes for which the conjecture (1) is false, even in probability.

THEOREM 3. IfH > 0, then, for every ¢ > 0 and almost every x, there is an
integer N = N(x, ¢) such that, for n > N, all but en of the numbers L7}(x)/
log n are within ¢ of (1/H).

The very weak Bernoulli, or finitely determined, processes are precisely the
stationary codings of i.i.d. processes [Ornstein (1974)].

As noted by Grassberger, his conjecture is related to a conjecture about
Hausdorff dimension. For stationary ergodic processes, this conjecture has the
following form: Select n infinite sequences x(1) = {x(1);}, x(2) = {x(2)}},...,
x(n) = {x(n);} independently, using the measure p that defines the process.
Define

Lr = min{L: x(i)f # ()i, 1<j<n,j# i}.
The Hausdorff dimension conjecture is that, almost surely,

, LTl 1
(2) . nlogn H’

This conjecture is also false; the counterexample we construct in Section 2 also
serves as a counterexample for the Hausdorff dimension conjecture. By suit-
ably modifying our methods, Theorem 3 and Theorem 1 can be extended to
this case.

2. Positive results. We first prove Theorem 3, then use it to establish
Theorem 1. Our proof of Theorem 3 will be based on two lemmas, Lemmas 1
and 3, stated later. The proof of the lower bound result, Lemma 1, uses the
covering idea contained in Ornstein and Weiss (1990a); see also the recent
results of Ornstein and Weiss (1990b) about partitions of a sequence into
distinct blocks. The proof of the upper bound result, Lemma 3, uses a
return-time result from Ornstein and Weiss (1990Db).

For i < n, define W,” = W,*(x) = x/*L¥®~1 g0 that W;* is the shortest
prefix of x;, x;,,... which is not a prefix of x;,x;,,,..., for j<n, j# i. Of
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course, W, has length L(W;*) = L? = L}(x). We use the following two prop-
erties of the W,” to prove Theorem 3.

(P1) For fixed n, the W, are distinct.

(P2) Given i <n and 1 <L <L?, there is a j<n, j+i, such that
i+L=1 _ pj+L-1
/ .

x;

Our first lemma makes use of property (P1). For H, ¢ > 0, define
B(x,n,e) ={i: L*(x) < (1 —¢e)(logn)/H,1 <i <n}.

Our goal is to show that this collection of ‘“too short’”’ blocks cannot be too
large, relative to n.

LEMMA 1. If € > 0, then for almost every x there is an integer N = N(x, €)
such that if n > N then |%(x,n,€)| < en.

Proor. To exploit property (P1) we need to gain control over the number
of words of a given length. Such control is provided by entropy through the
Shannon-McMillan theorem; we need to know a uniform version of a
variable-length form of this theorem. Let 3 be a positive number to be
specified later. The Shannon-McMillan theorem gives an integer m and a
collection &€, € A™ such that the following hold:

@ w€,)=1-35/2;
b) |€,] < 2mEH+d),

We think of <€,, as the “building blocks” of the process because, by the
ergodic theorem, most sufficiently long blocks are mostly made up of these
blocks. This fact, together with property (P1), will enable us to count the
number of too-short blocks. To do this, we first define what we mean by
“mostly made up of.” For each & > m, define &, to be the set

{xf:|{xitmte €, 1<i<k-m+1}|> 1A -8)(k-—m+1)},

that is, ¢, is the collection of k-blocks all but a §-fraction of whose m-sub-
blocks come from the collection ¢,,. The size of the collections ¢, can be
controlled by suitable choice of §, for [as noted in Lemma 1 of Ornstein and
Weiss (1990a)] it is easy to see that § can be chosen, independently of %, so
that

(3) |&,| < QrH*e™,

Fix m and & so that (a), (b) and (3) hold, for £ > m. The ergodic theorem
and wu(€,) =1 —8/2 imply that, for almost every sequence x, the initial
segment x} will belong to &, for all sufficiently large k; hence we can choose
K such that the set

g ={x:xk e g, k> K)
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has measure greater than 1 — /2. The ergodic theorem then tells us that,
almost surely, T'x € & for all but fewer than a limiting 8-fraction of the
indices i, where T denotes the shift operator. This fact, in the ““almost
uniform’’ version we need, is stated as follows.

LeEmMA 2. For almost every x there is an integer N(x) such that if n > N(x),
then, for all but dn indices i < n, the i-fold shift T'x belongs to .

Now we proceed to complete the proof of Lemma 1. For a given sequence x
and integer n, an index i < n will be called good if L} > K and W," € &
Since the prefixes W," are all distinct, there are at most |AI¥ indices i < n
such that L? < K. Combining this with Lemma 2, we see that if n is large
enough and & is small enough, the set of nongood indices will have cardinality
at most en /2.

Fix £ > K and consider the set of good indices i for which L} = k. There
are at most 2°7*¢ such indices because the W," are distinct members of the
collection &, which has cardinality at most 2***". Hence there are at most
(constant)2?#+¢" good indices i for which K < L? <¢J. Thus, if n is suffi-
ciently large and ¢ is sufficiently small, there will be at most £7 /2 good indices
i for which L" < (1 — e)log n)/H. This, combined with the bound on the
number of nongood indices of the preceding paragraph, completes the proof of
Lemma 1. O

Next we prove an upper bound result by using the fact that, except for the
final letter, each W appears at least twice, which is property (P2). If a
too-long block appears twice, then it has too short return-time; recent return-
time results [Ornstein and Weiss (1990b)] will show that this can only happen
rarely. Fix 0 < ¢ < H and let

% L) > 1 log n
(x,n,s)—{z. T(x) > tH .

,1<i< n}
LemMa 3. For almost every x there is an integer N = N(x, €) such that if
n > N, then |%(x,n, )| <en.

Proor. Define the return-time function
(4) Ry(x) =inf{m > k: 221} = x¥}.

Then lim,(log R,(x))/k = H, as., [Ornstein and Weiss (1990b)], so there is a
K such that if £ > K, then (log R,(x))/k > H — ¢, except for a set B of
sequences of measure less than ¢/3. Therefore, for almost every x there is an
integer N(x) such that if n > N(x), then T~ 'x € B for at most ¢n/2 indices
t1<n.

If i € =x,n,e) and k =L? — 1, then there is a j <n, j#1i,
such that x/**~! =x/**~1 by property (P2). Thus either R(T"" %) <n
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or R,(T’"%) < n. Therefore, if L? > 1 + (log n)/(H — &), then either
Ti~x € B or T/~ 'x € B. This shows that if n > N(x), then |%(x,n,¢)| <
2en /2, which establishes the lemma.

Theorem 3 follows easily from Lemmas 1 and 3. To establish the stronger
result, Theorem 1, for the Markov case, it is enough to show that the
return-time R,(x) can be too short only on a set of exponentially small
probability; such results are already known, for example, Arratia and Waterman
(1989). Our proof of Lemma 1 can be extended easily to the zero entropy case,
hence Theorem 1 holds in that case also. O

3. The counterexample. Let Q = {0,1}? be the set of doubly infinite
binary sequences and let A denote the measure on () defined by coin-tossing,
that is, A(la}]) = 27", where [a’}] denotes the cylinder set determined by a7,
a; €{0,1}. Given ¢ > 0, we construct a binary, ergodic process u with the
following properties.

(A1) There is a measurable, shift-invariant function F: Q — Q such that
w(A) = A(F~A) for all cylinder sets A.

(A2) There an increasing sequence n, of positive integers such that if
y = F(x), then, with probability greater than 1 — 2%, there is an i, 0 < i <

n, — n¥y/* such that y,,; = 0,0 <j < n}/*.

(A3) prob(x, # F(x),) < e.

The process u provides a counterexample to (1). Property (Al) says that
is a stationary coding of an i.i.d. process, hence u must be very weak Bernoulli.
Property (Al) also guarantees positive entropy. Property (A2) guarantees that
eventually almost surely there will be infinitely many n, such that L}* >

n3/4/2 for at least n3/* /2 many indices i < n,, so that ©, _,L? > n3/2/4, and
hence, (1) fails. Property (A3) implies that we can produce such examples by
making arbitrarily small changes in the sample paths of the i.i.d. process A.

Our construction will be similar to our construction of ergodic processes for
which sample paths of length n tend to have matching blocks longer than that
predicted by entropy [Shields (1991)]. We shall first show how to construct a
stationary coding function F, so that property (A2) holds for a given large n.

LEMMA 4. Given 6 > 0, there is an N, such that if n > N,, then there is a
measurable, shift-invariant functwn F,: Q — O such that if y = F,(x), then
the following hold:

(i) With probability greater than 1 — 6, there is an i, 0<i<n —n
such thaty;,; = 0,0 <j < n®*
(i1) prob(x, # F,(x),) < 6.

3/4
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Proor. The basic coding idea is quite simple: Just partition a sample path
x into blocks x{,%}" of length n and define y;,,, =0, 1 <t<n®%y, , =
X, +¢ otherwise. This code is, of course, not stationary. Such a block code can
be modified to obtain a stationary code by using the ‘‘punctuation” scheme
described in Shields and Neuhoff (1977), which is essentially the same as the
Rochlin tower coding technique used in Ornstein (1974). Let y be a positive
number to be specified later and choose a cylinder set C such that 0 < u(C) <
y. Fix x € Q and define the increasing sequence m; = m,(x) by the condition
T™x € C. The n-block coder is applied to successive n-blocks starting with
m;, until we get within n of m,, . To make this precise, for each i, determine
nonnegative integers q;, r; such that m, ; — m; = q;,n + r;, 0 < r; < n. Define
F,(x) =y, where

0, if0<j<gq,1<t<n®"
Ymitjn+e = X, +in+s» Otherwise.
The average distance between m;, , and m; is greater than 1/y, so if vy is
small enough (to guarantee that most of the time is spent in the blocks
Xpoajn+es 0 <J <q; t <n) and n large enough (so that n®*/n is small),
then, with probability greater than 1 — 8, there is an i < n — n®/* such that
¥;.; =0, 0 <j<n%% and, furthermore, prob(x, # F(x),) < 8. This com-

i+j 0 n 0

pletes the proof of Lemma 4. O

Note that the fact that we started with the i.i.d. measure A is unimportant.
Given any ergodic measure v, the numbers n and y can be chosen so that
Lemma 4 holds. This is because the set of sequences x for which inf m; = —=
and sup m; = « has measure 1 with respect to every ergodic measure.

Now we are ready to iterate the preceding construction. To facilitate the
discussion, let us define a sequence y} to be n-good if there is an i < n — n3/4
such that y,,; =0, 0 <j < n®*; otherwise y will be called n-bad. Let %,
denote the set of n-bad sequences. Let us suppose we have determined

ny<ny< -+ <n, such that for ¢, = F, , j <k, and p; = pig; ¥y =
$;(yV™1), j <k, where u, = A, y@ = x, the following hold:
&
(c N0 # 9875 < o

1 1 1
(C2) /"'j(‘@ni) = 9i+1 + 9i+2 oot Qit(G—D+1’ 1<j<k.

We then apply Lemma 4 to choose n,,, > n, and ¢p1 = F,,,, to obtain:
1 Mx: yF+D =+ 9B} < 3,
2./ Iu'k+1(‘@n ) < 8,

where ;. ; = prdiis, y*D = ¢, (y®). If & is small enough then so few
changes are made by ¢, ; that we can guarantee that (C1) and (C2) hold with
k replaced by £ + 1.

k+1
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Now we pass to the limit, defining F(x) = lim ,(¢,( - (¢4(x)) - --)). This
definition makes sense for condition (C1) guarantees that, almost surely, each
coordinate is changed only a finite number of times. Conditions (C1) and (C2)
guarantee that the limit process has the desired properties (A1)-(A3). This
completes the construction of our counterexample to the conjecture (1).

ReEMARK. The same example provides a counterexample to the Hausdorff
dimension conjecture, (2). If n = n,, then most of a sample path will be
covered by nonoverlapping blocks of length n such that the initial n3/* of each
such block are 0’s. If n independent paths are selected and »n is large enough,
then it can be shown that, with probability bounded away from 0, at least
n®* /4 will have to start in the first half of such an initial block of 0’s. This is
because it is (approximately) like the problem of throwing n balls into 2n'/*
boxes. The expected number of balls in the first box is n®/*/2 and the variance
is ~ (constant)n3/4.
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