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ERGODIC THEORY OF STOCHASTIC PETRI NETWORKS

By FrRANGOIS BACCELLI
INRIA

Stochastic Petri networks provide a general formalism for describing
the dynamics of discrete event systems. The present paper focuses on a
subclass of stochastic Petri networks called stochastic event graphs, under
the assumption that the variables used for their “timing”’ form stationary
and ergodic sequences of random variables. We show that such stochastic
event graphs can be seen as a (max, +) linear system in a random,
stationary and ergodic environment. We then analyze the associated Lya-
pounov exponents and construct the stationary and ergodic regime of the
increments, by proving an Oseledec-type multiplicative ergodic theorem.
Finally, we show how to construct the stationary marking process from
these results.

1. Introduction. Timed Petri networks can be viewed as a general for-
malism for describing the dynamics of discrete event systems. It is beyond the
scope of the present paper to review the domains of application of this
formalism and the interested reader should refer to [4] and [6] for some entry
points to the relevant literature. It is worthwhile mentioning that this formal-
ism is powerful enough for allowing one to describe most of the existing
models in queuing theory. In particular, the subclass of timed Petri networks
" considered here, namely, event graphs, contains several classical queuing
models (e.g., single server queues, queues in tandem, closed cyclic networks,
synchronized queuing networks, network of queues with blocking, etc.; see [2]).
The main practical concerns of the paper are the construction of the stationary
behavior of stochastic event graphs and the conditions under which such a
stationary regime exists, when assuming that the sequences used in the
timing of the Petri net are stationary and ergodic. The paper is structured as
follows. Timed Petri networks and the subclass of timed event graphs are
described together with some of their basic properties in Section 2. This
section has no probability theory at all and is based on basic graph theoretic
considerations. The main new result consists of showing that the choice of
adequate state variables allows one to see a stochastic event graph as a linear
system in a random environment, where the linearity is understood with
respect to the semifield (R, max, + ). The probabilistic issues are addressed in
Section 3, where the statistical assumptions are described. Section 3.2 is
concerned with the determination of the maximal Lyapounov exponents of this
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type of linear system. These Lyapounov exponents, which are known as cycle
times in the Petri net literature, allow one to characterize the linear growth
rate of the state variables of the event graph. The construction of the station-
ary regime of the increments of the state variables is the object of Sections 3.3
and 3.4, and it can be seen as an Oseledec-type multiplicative ergodic theorem
in (R,max, +). In the nonautonomous case, there is a unique stationary
regime that is reached in finite time regardless of the initial lag times in the
event graph, provided the cycle time compares adequately with the asymptotic
rate of the input. In the autonomous case, there is no uniqueness of the
stationary regimes in general. We provide a simple condition for the stationary
regime to be unique and to be reached with coupling. Finally, the construction
of the stationary marking is addressed in Section 3.5.

The results on cycle times and on the construction of the stationary regime
can be seen as stochastic extensions of known results on the periodic regimes
of deterministic timed Petri networks [8], [3]. The observation that determinis-
tic event graphs can be seen as (R, max, +) linear systems was first made in [3],
where the algebraic framework that is used in the present paper was also
developed. The main probabilistic tool that is used to extend these results to
the stochastic case is the theory of stochastic recursive sequences [2].

2. Timed Petri networks.

2.1. Definition and notation. The aim of this section is to sketch the
formal definition of a Petri net. The reader is invited to consult [6] for more
details and for examples. A Petri net is a pair (£, u). £= (7, &) is a bipartite
graph with a finite set of nodes 7" which is partitioned into the disjoint sets &
(the set of places) and 2 (the set of transitions); the set of arcs & consists of
pairs of the form (p;, q;) or (g;, p;), with p, € & and q; € 2. We denote the
sets of predecessors and the set of successors of a node ¢ of & by m(¢) and
o(), respectively. If p; € w(q;), we also write i € wI(j), i =1,...,|%|, j =
1,...,12]; similarly, if q; € w(p,), we write j € w?(i), and if q; € o(p)),
J € oP(i), etc. The graph ¢ is also assumed to be connected. It is also assumed
that, for all i, w(p,) # &. The Petri net is autonomous provided =(q;) # &,
for all j.

The initial marking  is a |#|-vector with nonnegative integer entries. The
integer u; is interpreted as the number of fokens initially in place p,. Roughly
speaking, places represent conditions and transitions represent events. A
transition has a certain number of input and output places representing the
preconditions. The presence of a token in a place is interpreted as the
condition associated with that place being fulfilled. Petri networks can be seen
as dynamical systems where changes occur according to the following rules:

1. A transition is said to be enabled if each upstream place contains at least
one token.

2. The firing of an enabled transition removes one token from each of its
upstream places and adds one token to each of its downstream places.
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For g; to be enabled in the initial marking, we need that u; > 1, for all
p; € m(q;). If the enabled transition g¢; fires, then a new marking u' is
obtained with w; =, — 12> 0, if p, € w(q;), ; = u; + 1, if p; € o(q;), and
W; = u;, otherwise. By firing a transition that is enabled for the marking 1/, we
get a new marking ' in the same way. The markings ' and y’ are said to be
reachable (here in one and two steps, respectively) from wu. :

A Petri net, with initial marking u, is said to be live if, for all markings v
reachable from u and for all transitions ¢, there exists a marking o reachable
from v where ¢ is enabled. A Petri net is called an event graph if each place
has exactly one upstream and one downstream transition. In the literature,
event graphs are also referred to as marked graphs or as decision free Petri
networks. Under the foregoing assumptions, an autonomous event graph with
initial marking u is live if and only if every circuit of & contains at least one
place with w; > 0 (see [6]).

2.2. Timed event graphs.

2.2.1. Firing times and holding times. Time can be introduced in two
basic ways: by associating durations with either transition firings or with the
sojourn of tokens in places. By definition, the firing time of a transition is the
time that elapses between the starting and the completion of a firing of
the transition. The tokens to be consumed by a transition remain in the
preceding places during the firing time and are called reserved tokens. When a
transition produces a token in a place, this token cannot immediately con-
tribute to the enabling of the downstream transitions; it must first spend some
holding time in that place.

Another general rule states that transitions fire as soon as they are enabled
and that tokens start enabling the transition downstream as soon as they have
completed their holding times.

REMARK. With our definitions, nothing prevents a transition from having
several simultaneous firings. If we want to preclude such a phenomenon, we
may add an extra place associated with this transition. This extra place should
have the transition under consideration as unique predecessor and successor,
and one token in the initial marking. The addition of this loop models a
mechanism that is called a recycling of the transition. With this mechanism,
the (2 + 1)st firing can only start after the completion of the £th.

2.2.2. Initial condition. Assume that we start looking at the system evolu-
tion at time ¢ = 0 and that the piecewise constant: function N, (¢) describing
the evolution of the number of tokens present in p;, i = 1,...,|Z|, at time
t € R, is right continuous, and take N;(0) = u;. The general idea behind the
initial condition is that the N;(0) (= u;) tokens visible in p; at time ¢ = 0 are
assumed to have entered p; before time 0 and to be either completing their
holding times or ready to be consumed. The initial condition is defined through
a vector of R-valued initial lag times, where the lag time of a token of the



378 F. BACCELLI

initial marking of p; is the epoch when this token starts contributing to
enabling o(p,).

However, these lag times should be compatible with the general rules that
transitions fire as soon as they are enabled, and so on. For instance, if the lag
time of an initial token exceeds its holding time, this token cannot have
entered the place before time 0; similarly, if the lag times (which are possibly
negative) are such that one of the transitions completes firing and consumes
tokens of the initial marking before ¢ = 0, these tokens cannot be part of the
marking seen at time 0 since they should then have left before time 0. The
initial condition of a timed event graph (i.e., the initial marking and a vector of
lag times) is said to be compatible if (1) the lag time of each initial token does
not exceed its holding time and (2) the first epoch when a transition completes
firing is nonnegative.

2.2.3. FIFO places and transitions. A place p;, is first-in-first-out (FIFO) if
the kth token to enter this place is also the kth to contribute enabling the
transition q; = o(p;). For instance, a place with constant holding times is
FIFO. A transition g; is FIFO if the kth firing of q; to start is also the k£th to
complete. For instance, a transition with constant firing times is always FIFO.
If a transition is recycled, its (2 + 1)st firing cannot start before the comple-
tion of the kth one, so that a recycled transition is necessarily FIFO, regard-
less of the firing times. An event graph is FIFO if all its places and transitions
are FIFO. A typical example of FIFO timed event graph is that of a system
with constant holding times and recycled transitions with possibly variable
firing times. In the sequel, we assume that the event graph under considera-
tion is FIFO and has all its transitions recycled.

2.2.4. Numbering of events. The following way of numbering the tokens
that traverse a place and the firings of a transition is adopted: by convention,
the kth token, & > 1, of place p; is the kth token to contribute enabling
transition o(p;) during the evolution of the event graph, including the tokens
of the initial marking. The kth firing, & > 1, of transition g, is the kth firing
~of g, to be initiated, including the firings that consume initial tokens.

2.2.5. Dynamics. In the sequel, the sequences of holding times «;(k),
i=1,...,|2|, ke Z, and of firing times B,(k), j=1,...,|2|, k€ Z, are
assumed to be given. The dynamics of the event graph are defined as follows:

1. The kth token of place p; incurs the holding time a;(k).
2. Once it is enabled, the kth firing of q; takes the firing time B;(%).

We now state a few basic properties of the numbering in a FIFO event graph
with a compatible initial condition. For i such that u; > 1, denote by w; =
(w,(1), wy(2),...,w;(un;)) the vector of the lag times of the initial tokens of
place p, ordered in a nondecreasing way.

Observe that if the initial condition is compatible and if the timed event
graph is FIFO, then for all 1 < £ < u;, such that u; > 1, the initial token with



ERGODIC THEORY OF STOCHASTIC PETRI NETWORKS 379

lag time w;(%) is also the kth token of place p;, according to the numbering
convention. If this last property does not hold for some place p;, then
necessarily a token which does not belong to the initial marking of p, and
which enters p; after time O contributes enabling o(p;) before one of the
tokens of the initial marking. Since the tokens of the initial marking enter p,
before time 0, this contradicts the assumption that p, is FIFO.

Using this observation, it is easily checked that the firing of ¢; that
consumes the kth token of p; [for all p; € 7(q;)] is also the kth firing of g;,
and that the completion of the kth firing of g, £ > 1, produces the (£ + u;)th
token of p;, for all p; € o(q;).

. . def def

2.3. The (R*, max, +) semifield. Consider the set R* = R U ¢, where ¢ =
— o, and the internal operations ® = max and ® = +. It is easy to check that
(R*, & , ® ) is a commutative and idempotent semifield: @ is associative and
commutative and has ¢ for neutral element; ® is associative and commutative
with neutral element ¢ = 0; and ® is both right and left distributive with
respect to @. In particular, we can define matrix multiplications in this
semifield by the usual relation

J
(A®B),;< @ A, ©B,,
k=1

Matrix multiplication is easily checked to be associative. As in the usual
algebra, we often drop the ® symbol (for instance, we also rewrite the last
expression as @®,_,. . ;A;,B,;). Observe that in this semifield, xk =
x ® -+ ® x is equal to & times x in the usual algebra. In the same vein, x'/*
is simply «x divided by k. For more on this structure, see [3].

2.4. Autonomous (max, +) linear systems.

2.4.1. The basic recursive equations. The state variable x,(k), j =
1,...,12|, k = 1, of the event graph is the epoch when transition ¢, starts
firing for the kth time, with the convention that, for all q;, x;(k) = « if ¢,
fires less than % times. These state variables are continued to negative values
of k£ by the relation x,(k) = ¢, for all £ < 0. Let M = max;_; o u; Define
the |2| X | 2| matrices A(k, k), A(k, bk —1),..., Ak, k — M),

Ajl(k7 k— m)
(2.1) def | Bj(k —m) ® D a;(k), if pgeg=m,
= (ien?(PDIrP@)=1} .
€, otherwise,
and the |2|-dimensional vector-v(k), k =1,..., M,
def @ wi(k), if iEWq(j)llLiZk * J,
(2.2) Uj(k) = (iE’TTq(j)lﬂ-iZk) R { }
€, otherwise.
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In these definitions, we adopt the convention that the ®-sum over an empty
set is .

THEOREM 1. For a timed event graph with recycled transitions, the state
vector x(k) = (x;(k)) satisfies the recursive equations

x(k) =A(k,k)x(k) ® A(k,k — D)x(k - 1)
® - 0A(k,k—M)x(k—M),
=M+ 1, M+ 2,..., with the initial conditions
x(k) =A(k,k)x(k)® --- ® A(k,k —M)x(k — M) @ v(k),
fork=1,2,.... M,

(2.3)

where xj(k)dife forall k < 0.

Proor. We first prove that the variables x(k), j=1,...,|12|, k=1,
satisfy the recursive equations

xj(k) = @ (xrr”(i)(k - k) ® Bw”(i)(k —K;)® ai(k))
(2‘4) {iemi(lk>uw;}

® &) w;(k).
{ier?(PDk<u}

The kth firing, £ > 1, of transition g starts as soon as, for all i € 79(j), the
kth token of p; contributes to enabling g;. In view of the FIFO assumptions,
for £ > u;, this kth token is produced by the (¢ — u;)th firing of the transi-
tion m(p;), so that the epoch when this token contributes enabling o(p,) is
Xori(k — 1) ® Boog(k — ;) ® ak). For k < u;, this event takes place at
time w;(k), in view of the FIFO assumptions, which completes the proof of
(2.4). Now use the associativity and commutativity of @, together with our
convention on @-sums over empty sets, to rewrite x;(k), & > M, as

(&) b &) x(k—m) ®B,(k—m) ®a,(k).

{m=0,...,M} {i=1,..., 12) Gemi(DITPG)=1, p;=m}
The distributivity of ® with respect to ® implies in turn that x;(k) is equal to

(x,(k -m)® @D Bi(k —m) ®a;(k)|,

{m=0,...,M}{I=1,...,12} {ienU(PIrP@)=1, p;=m}

which completes the proof of (2.3), in view of the definition of A. The proof of
(2.3) for & < M follows the same lines. O

2.4.2. Simplifications. The recursive equations (2.4) are unchanged if we
put all the firing times equal to e and if one replaces a,(k) by B,»;(k — ;) ®
&,(k). There is hence no loss of generality assuming 8 = e, which will be done
from now on.

It is now shown that the initial condition of (2.3) can be further simplified
whenever the lag times satisfy certain additional constraints. For all i such
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that u, > 0, denote by y,(k), k < 0, the entrance time function associated with
place p;, defined by the relation

def [w;(k) —a;(k), forl <k <uyu,;,
(2.5) vk =) =Y o b o .

The initial condition is said to be strongly compatible if, for any pair of places
p; and p; which follow the same transition, the entrance times y,(k) and y,(k)
coincide provided % > min(u;, u;), namely, if there exist functions z;(k),
Jj=1,...,12|, k <0, such that

(2.6) Yi(k) =2,0;(k), Vi, ksuchthat —u, +1<k <0.
Observe that the function z,(k) is only defined through (2.6) for —M; < k < 0,

provided M = maxlan( J)(,u ;) = 1. For other values of %, or if M; = 0, take
z;(k) = &.

COROLLARY 1. For a FIFO timed event graph with a strongly compatible
initial condition, the state vector x(k) = (x;(k)) satisfies the recursive equa-
tions
x(k) =A(k,k)x(k) ® A(k, k — 1)x(k — 1)

- ®A(k,k —M)x(k - M),
k=1,2,..., provided the continuation of x(k) to negative values of k is
defined by x (k) = 2;(k),V k<0, j =1,...,12|

(2.7)

Proor. By successively using (2.5) and (2.6) we get
@D w;(k) = @D (Zw”(i)(k - Ky) ®ai(k))7
iem?(lk<p;} ieni(lk<p,}
for all 2 =1,2,..., so that we can rewrite (2.4) as indicated when using the
proper continuation of x. O

2.4.3. Constructiveness of the recursive equations.

LeEmMA 1. The event graph is live if and only if there exists a permutation
matrix P for which the matrix P'A(k, k)P is strictly lower triangular.

Proor. If the matrix P'A(k, k)P is strictly lower triangular for some
permutation P, then there is no cycle with zero initial marking, in view of the
definition of A(Z%, k) [see (2.1)]. Conversely, if the event graph is live, the
matrix A(k, k) has no circuit, and there exists a permutation of the coordi-
nates that makes A strictly lower triangular. O

" If the matrix A(k, k) is strictly lower triangular, (A(k, k)" = ¢ for n > |2|,
and the matrix

Ak, k) e o Ak, k) © A2k, k) ® - -
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(where e denotes here the identity matrix with scalar e on the diagonal and &
elsewhere) is finite. Let

Ak k- ) Ak, R) AR E—1), 1=1,..., M,

o(k) K a*(k, )u(k), kez,
with vj(k)dge for k<Oor k> M.

THEOREM 2. If the event graph is live, the recursive equations (2.3) can be
rewritten as
(2.8) x(k)=A(k,k—1x(k—1)® - 0A(k,k —M)x(k— M) ® 5(k),
k=1,2,..., M, where xj(k)difs, forallk < 0.

Proor. From (2.3) we get by induction on n that, forall £ = 1,2,...,

x(k) =AYk, k)x(k)

ea(m=oea nA”‘(k,k))( EB LAk -Dx(k-1)e v(k)).

..... = 1,...,
Equation (2.8) follows from the last relation by letting n go to . O

As a direct consequence of the preceding theorem, we get that if the holding
times and the lag times are all finite, so are the state variables x,(k),
j=1...,|12, k=1

2.4.4. Standard autonomous equations. It may be desirable to replace the
initial recurrence (2.8), which is of order M, by an equivalent recurrence of
order 1. This is done by using the standard technique which consists in
extending the state vector. Let £(k) and §(k) be the |.2| X M-vectors

’;(’f)l) 3k + 1)
| UV L | |,
x(k + 1 - M) :

where & represents here the | 2|-dimensional null vector. Let A(k), k € Z, be
the (12| X M) X (2| X M) matrix defined by the relation

K(k+1,k) fT(k+1,k—1) ""X(k+1,k+1—M)
. e € € €
A(k) = € ‘e € ’
. : e 8 £
S el € e €

where e and & denote the |.2| X | 2| identity and null matrices, respectively. If
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we adopt the convention that x;(k) and v;(k) are equal to ¢ for £ <0, it
should be clear that (2.9) is a mere rewriting of (2.8).

COROLLARY 2. The extended state space vector %(k) satisfies the M X |2}
dimensional recurrence of order 1:

(2.9) £(k+1)=A(R)E(k) ® 6(k), k=1,2,....

Equation (2.9) will be referred to as the standard form of the recursive
equations (2.8). In the particular case of a strongly compatible initial condi-
tion, these equations read #(k + 1) = A(k)%(k), k= 1,2,..., provided the
continuation that is taken for x;(k), k < 0 is adequate. One can associate a
timed event graph with (2.9) by associating one transition with each coordinate
and one place with each entry of the matrix A(%) that is not . One interesting

property of this event graph is that its initial marking is such that each u, is 1.

2.5. Nonautonomous (max, +) linear systems. In a nonautonomous event
graph, transitions without predecessors (called input transitions) are allowed.
This set of transitions is denoted .#. With each input transition ¢; € .7 is
associated an input sequence, that is, an increasing sequence u(k), k € Z,
where u;(k), k > 1, gives the epoch when g, fires for the kth time after the
origin of time. This sequence is compatible if « (1) > 0 and u;(0) < 0, for all
q; € S l[for instance, take u;(1) =0, q; € #]. Accordingly, at time u ;(k),
k > 1, of the input sequence, the (¥ + u,)th token of p, enters this place, for
all p, € 0(q;). As in the autonomous case, we can prove that the firing times
can be taken equal to zero without loss of generality, which will be assumed
throughout this section. The input sequence u ;(k), j € .7, is strongly compat-
ible if it is compatible and if, for all p; € o(q;) with w; >1, w(k)=
uilk —w;)®alk),foralll <k <p,.

2.5.1. Basic nonautonomous equations. Define the | 2| X |.#| matrices
B(k,k), B(k,k —1),...,B(k,k — M) by
le(k7 k- l)
(210) def @ ai(k)7 lfql E‘/’ q] EQ? /‘l"rrq(j)=l’
= {ienri(PD7PG)=1}
€, otherwise,

and the | “#|-dimensional vector u(k)dif(ul(k), vt g(R), R=1,2,.... Us-
ing the same arguments as in Theorem 1 we get the following theorem.

THEOREM 3. Under the foregoing assumptions, the state vector x(k) =

(x,(R), ..., x o(k)) satisfies the recursive equations
(k) = A(k, k)x(k) ® A(k, k — 1)x(k — 1)
(2.11) ® @Ak, k- M)x(k — M)

® B(k,k)u(k)® -+ ® B(k,k — M)u(k — M) & v(k),
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k=12..., where x;(k)<e for all k<0, v(k) is defined in (2.2) for
l1<ks<

—3 1’
< k < M and is € otherwise.

If the event graph is live, then the recursive equations are constructive. To
see this, define

Bk, k- 1) S A*(k,k)B(k,k—1), keZ,1=0,...,M,

and use the following theorem (which is proved like Theorem 2).

TI-'IEOREM 4. If the event graph is live, the recursive equations (2.11) can be
rewrtitten as
x(k) =A(k,k — )x(k —1)
(2.12) @& - @A(k, b —M)x(k—M) & v(k)
® B(k,k)u(k) ® --- @ B(k,k —M)u(k — M),
k=1,2,..., M, with the same simplification as in Corollary 1, provided the

initial lag times are strongly compatible.

2.5.2. Standard nonautonomous equations. Define the M X |.Z]-

dimensional vector il(k)dif(u(k + 1), u(k),...,u(k + 2 — M)), and define
B(k), k € Z, to be the (|.#] X M) X (2] X M) matrix

B(k+1,k+1) B(k+1,k) -+ B(k+1L,k+2-M)
B(k) = ¢ ¢ o ¢
¢ ¢ e P

COROLLARY 3. The extended state space vector (k) satisfies the M X | 2|
dimensional recurrence of order 1:

(2.13) &(k + 1) = A(k)Z(k) ® B(k)a(k) @ 0(k), k=1,2,....

If the lag times are strongly compatible, we can rewrite (2.13) as
(2.14)  &(k+1) = A(k)i(k) ® B(k)a(k), k=1,2,....
If we define £(k) = (a(k), £(k)) and if A(k) is the matrix
Uk) =
B(k) A(k)

where U(k) is the diagonal matrix with entries Ijjj(k) =a(k+1) — a;k),
then it is immediate that (2.14) can also be rewritten as

(2.16) £(k+1) =A(k)E(k), k=12,....

2

(2.15) A(k) =
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3. Stochastic event graphs. This section is based on the standard
forms of the recursive equations which were established in Corollaries 2 and 3.
We apply some of the results that were obtained on this class of recursive
equations in [2] and rephrase them within the linear system theoretic formal-
ism. Finally, we come back to the stochastic event graph itself and we show
how to construct the stationary marking process.

3.1. Statistical assumptions. A timed event graph is a stochastic event
graph if the holding times, the firing times and the lag times are all random
variables defined on a common probability space. In the autonomous case, it is
assumed that the holding times are #-stationary, while in the nonautonomous
case, the assumption is that the holding times and the increments U;;(k) =
uik+1—u (k) are jointly @-stationary. More precisely, the random vari-
ables ak), j = , o [resp., a,(k)] and U,;(k), q; € 7, are assumed to be
deﬁned on a common probablllty space (Q, T, P) endowed with a shift § which
leaves P invariant and is ergodic. Let «; = ;(0) and U;; = U;;(0). We have
hence a;(k) = a,° 0% p, € P, U (k) = jjof)k q; €S, keZ 1t is also
assumed that the varlables a; and U;; are 1ntegrable In view of these
assumptions, if we denote by A the matrix A(0) in (2.9), we have hence
A(k) = Ao 6%, In addition, the entries of A that are not identically equal to &
are integrable. The same properties hold for A(%) in (2.16).

3.2. Rate theorems. The basic datum of this section is equation (3.1):
(3.1) x(k+ 1) =A(k)x(k), k=1,2,...,

where the initial condition is x(0) = z. The matrices A(k) are such that
A(k) = Ao 6% k € Z; each entry of A not a.s. equal to ¢ is nonnegative and
integrable; each diagonal element of A is nonnegative. When needed, we stress
the dependence on the initial condition in (3.1) by writing x(%; z). In view of
our remarks at the end of Sections 2.4.4 and 2.5, and above, this framework
covers both the autonomous and nonautonomous models considered in the
previous section.

3.2.1. Maximal Lyapounov exponent. For x € R and A € R*, let
x|l = GBJ x; and [|A]l = a; ;. For x € RY, we also use the notation

/x/ —mm X

i,j=

THEOREM 5. There exists a constant 0 < a < © such that, for all finite
initial conditions z = x(0),

(32) lim lx(k;2)IM* = lim||Ao6* 1 --- AogAz|"*=a a.s.
— 00 k'—yoo
jf the initial condition is integrable, the former limits also hold in mean.

Proor. The proof is essentially that of Theorem 2.5 in [2], a matrix
product version of which is given below. One first gets by induction e <
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E[llx(k;e)ll < o, for all £ > 0. Let X,, ,..; = llx(k;e)le 0™, m € Z, k > 0. We
have

le(k,e)ll = Ao0*" - Aell=Aco*~1 -+ Al

For all pairs of matrices A and B, ||A ® Bl <||All ® ||B]l. Therefore for all
k>1landall0 <p <k,

lAogk=t --- AcfPAogP~t - Allog™
<[[Acg*t --r AoBP|lo ™| AP~ .-+ Allog™,
thatis, X,, .41 < Xn map + Xonip, m+ss S0 that the result for ||x(%, e)l| follows

immediately from Kingman’s theorem on subadditive ergodic processes.
The property (3.2) for arbitrary z follows from the relation

lx(k; eI * 72/ % < llx(k; 2)I7* < llx(k;e) M 207, k= o0.

If z is integrable, the convergence in mean follows immediately from this and
the convergence in mean for ||x(k, e)||'/*. O

It is enough to have a circuit of the communication graph with an entry of
A with a positive mean value to have a > 0.

3.2.2. Decomposition into strongly connected components. The communi-
cation graph associated with A in (3.1) is the graph on 2= {1,..., J}, with
arcs the set of pairs (i, j) such that A, # ¢ a.s. This graph is assumed to be
connected. Let &, =(2,,8)),..., I = (2y, Ey), be the set of maximal
strongly connected subgraphs of the communication graph (a directed graph is
strongly connected if there exists a path from any node to any other node).
Due to our assumptions, 2, U -+ U @y = 2.

The associated reduced graph is the directed graph on {1, 2, ..., N} with the
set of arcs

{(m,n)lm,n=1,...,N,3i,je2,ied,, jed, A; +¢}.

This graph is acyclic and connected. The notation m(n) is used to represent the
set of nodes that are direct predecessors of n in the reduced graph. Without
loss of generality, the numbering of the nodes is assumed to be compatible
with the graph in the sense that if (m, n) is an arc, then m < n. In particular,
the source subgraphs (the subgraphs without predecessors) are numbered
{1,..., N°. We also denote m*[n] [resp., w*(n)] the set of possibly indirect
predecessors of n including (resp., excluding) node n.

3.2.3. Individual growth rates in the strongly connected case.

CoROLLARY 4. If the matrix A has a strongly connected communication
graph, then, for any finite initial condition z = x(0) and for any transition
Jj=1,...,d,

(3.3) lim (x;(k; z))l/k a.s.

k— o0
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where a is the maximal Lyapounov exponent of Theorem 5. If the initial
condition is integrable, we also have convergence in mean.

Proor. From the strong connectedness assumption, for all i, j = 1,..., dJ,
there exists a path from i to j of length less than . This plus the assumption
on the diagonal elements imply that x,(k;z) > x,(k —J;2) for all i,;j=
1,...,dJ and k > J. The property (3.3) follows then from the bounds ||x(k —
J; 2l < x;(k; 2) <l|lx(k;2)l, j =1,...,J, and from Theorem 5. O

3.2.4. General case. Consider the case of an event graph with N strongly
connected subgraphs. For all 1 <n < N, and for any vector x € RY (resp.,
matrix A € R7*Y) let x™(%) [resp., A™(k)] be the restriction of x(%) [resp.,
A(R)] on the subspace of R corresponding to 2,, and let a,, be the maximal
Lyapounov exponent of A™(k%); similarly, let x[*I(k) [resp., A"(k)] be the
restriction of x(%) [resp., A(k)] on the subspace corresponding to U,, c ,#n1%m.
and let a,; be the maximal Lyapounov exponent of A"I(%).

THEOREM 6. For all finite initial conditions,

(3.4) kliigllx‘"’(k).lll/k=a[n]= @ a, as

mem*[n]

Similarly, for all j € 2, lim,, _,,, xj(k)l/k = a,, a.s., with the usual addi-
tion concerning the convergence in mean, provided the initial condition is
integrable.

PrROOF. It is obvious from the definition that [|x™} ()| < [lx"1(%)||, so that
lim inf, |lx™(®)I['"* < a, . Using the fact that for all j € 2, and & € U2,
m € 7*(n), there is a path of length less than J from h to j, we get the
following bound from (3.1):

x(k+1)> (<>) x(k—-d), Vje2,
(h,he2,, men*(n)}

provided k > J. Therefore, |x™(k + DIl > [|lx*I(k — J)Il, for k& > J, so that
lim sup,, xR * > a;,; a.s.. The proof of the individual a.s. limits follows
the same lines as in Corollary 4. The proof for the convergence of the
expectations in the integrable case is immediate. A proof of the second equality
in (3.4) can be found in Theorem 2.7 and Corollary 2.8 in [2]. O

We can draw the following practical conclusions for stochastic event graphs:
All the transitions in a strongly connected component of the graph have the
same asymptotic firing rate (if there is only one such component, the constant
a is also called the cycle time of the event graph); the firing rates of the
components are obtained from the constants a,, (namely, the cycle times of
the strongly connected components ‘“in isolation’’) by (3.4).
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3.3. Multiplicative ergodic theorem—Nonautonomous case. Consider a
nonautonomous stochastic event graph with associated equation

(3.5) x(k + 1) = A(k)x(k) ® B(k)u(k), k=1,2,...,

and with initial condition x(0) = 2. The statistical assumptions are the follow-
ing: the J X J matrices A(k) and the J X I matrices B(k) satisfy the
relations A(k) = A-0* and B(k) = B - 0%, where the entries of A and B that
are not a.s. equal to & are positive and integrable; the increments

U(k) u(k+1)—u(k), i,j=1,...,1, k €Z, are such that U, (k) =
U, ~°0k where Uj; is mtegrable and

(3.6) lim lu(k)|V* = lim /u(k)/*=u as,

so that E[U,;] =ufor all i = 1,...,|.7|. The following notation is used for A:
a denotes the maximum Lyapounov exponent, and a,;,a;,,, » = 1,..., N, the
constants defined in Section 3.2.4, so that a = @, a,,. In view of the results of
Section 2.7, this framework is that of a nonautonomous stochastic event graph
with strongly compatible initial condition. In addition to this, the following
nondegeneracy of the input will be assumed: for all n — 1, 1,..., N there
exists a j € 2, such that (B(k)u(k)); # ¢.

3.3.1. Construction of stationary increments. The basic process of interest
is the increment process

def
8ii(k;z) = x;(k +1,2) —uy(k), Jj=1,..,d,i=1,..,L

THEOREM 7. If a < wu, there exists a unique finite random matrix & = (5,;)
such that the increments 8,;(k) couple in finite time with the stationary and
ergodic process 9§, ° 0%, regardless of the initial condition. If a > w, let n, be
the first n = 1,..., N such that a, > u. Then all increments of the form
8,(k), j € .Qno, tend to © a.s., for all finite initial conditions.

Proor. Let s(k + 1) = B(k)u(k), k € Z. It may happen that, for some
J=1,...,d, s;(k) is identically equal to ¢. In a first step, we assume that this
is not the case Let us show that under this assumption, the increments
sj(k + 1) — s,(k) are such that s,(k + 1) — s,(k) = S;(k) = S; S;; o 6%, where S
is integrable. For all i, j, we get the relation

@D Bu(k+Du(k+1) - @D B.(k)uu(k)
{l|B;;#¢} {m|B,,, +¢}

s;(k+ 1) —s;(k)

= @ min {U,(k) ®B,(k+1) - B, (k)},
{U|B,,#¢} {m|B,,+¢}

from which the @-stationarity and the integrability of s,(k + 1) — s;(k) are
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easily deduced. By letting % go to « in the relation
si(R)"" = @ By(k) u, (k)"

(1B, #¢)
and by using the assumption that E[U;;] = u, for all i, and the integrability of
the nonnegative entries of B, we get immediately that lim, s,(k)"/ k= uas.,
so that necessarily E[S;;] = u. Let

def
(3.7 8,(k) =x;(k) —s,;(k), j=1,...,Jd,k=0.
When we subtract s;(k + 1) # & from the jth line of the matrix relation (3.7),
we get
8;(k+1)= ( G? A(R)x; (k) —s;(k+ 1)) ®e= ( @ Eﬁ(k)éi(k)) ® e,
d
where E;,(k) ifAﬁ(k) - S;(k), i,j=1,...,dJ, k= 0. Therefore, the state
variables 8(k) satisfy the recursion

(3.8) 5(k+1)=E(k)s(k) ®e, k=0,

with the initial condition 6;(0) %:fx /(0) — 5,(0). This type of equation is in the
class considered in Sections 2 and 3 of [2], and the statements of the theorem
are direct consequences of the properties stated in Theorems 2.7, 3.1 and 3.3
thereof.

If the vector s(%) has some of its coordinates equal to ¢, we can consider the

sequence x’(k)difx(k + J), k > 1, which satisfies the equation
x'(k+1)=A(k)x'(k) ®s(k),
def

where A'(k) =A(k + J) and s’(k)tfs(k + J), and with the initial condition

x'(0) dgx(J ). It is easy to check that under the foregoing assumptions on the
input, for all j, there exists p(j) such that s, ;(k) # ¢ and x'(k) > s, ;(k — J)
for all k > 1. Therefore, if s}(k) = s;(k) ® s,;;,(k — J) > ¢, one can replace
s'(k) by s"(k) in the last equation without altering the result of the recursive
equations. In other words, we can replace the initial equation by another one
that satisfies the same type of statistical properties and where all entries of
s(k) are different from ¢. O

It is an immediate consequence of Theorem 7 that, under the conditions
stated there, other increments like x;(k + 1) — x(k), k= 1,...,d, do also
couple with a stationary and ergodic process.

., REMARK. It was shown in-Section 2.5.2 that the nonautonomous equation
(3.5) can be rewritten as £(k + 1) = A - 0*2(k), where

(3.9) A:(g g), f(k)=(z((,’:;),
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and where U is the diagonal matrix with entries U;; = u ;(1) — u;(0). We know
from Theorem 7 that, under the stability condition, (3.5) has a solution with
stationary increments. Since there is no loss of generality in assuming that
u,(0) = e, we get from (3.5) that this solution satisfies the equation

uy(1)(x(1) = uy(1)n) = A(x(0) — uy(0)n) ® B(u(0) — u,(0)n),
where 1 = (e, ..., e). Similarly, we have the obvious relation
uy(1)(u(1) — uy(1)n) = U(u(0) - u1(0)7n).

Define the (I + J)-dimensional vector X = (w(0) — u,0)n, x(0) — u,(0)n) and
the random variable A = u,(1). Due to the stationarity of the increments, the
preceding relations imply that (/\ X) satisfies the eigenpair property AX =
AX 0. It can be shown that (A, X) is the unique solution eigenpair such that
X, =e. Theorem 7 can hence be seen as an Oseledec-type multiplicative
ergodic theorem in (R*, ® , ® ) for matrices of the form (3.9).

In conclusion, under appropriate conditions bearing on the rates, each pair
of transitions g;, ¢; of a nonautonomous event graph is such that the process
xi(k + 1) — x,(k) couples in finite time with a uniquely defined stationary and
ergodlc sequence. Observe, however, that the assumption that U, (k) is 6-sta-
tionary may not be consistent with certain types of compatlblhty assumptlons
on the input [like, for instance, the assumption that u,(1) = 0 for all iJ;
nevertheless, it can be shown that Theorem 7 remains true if we replace the
assumption that U, (k) is 0-stationary by the weaker assumption that U ;(k)
couples in finite t1me with a 6-stationary sequence, so that the actual value of
u(k) for £ small has no influence on the asymptotic behavior of the incre-
ments.

3.4. Multiplicative ergodic theorem—Autonomous case. Consider a
stochastic event graph with associated equation

(3.10) x(k +1) = A(k)x(k), k=0,1,2,...,

where x(0) is some initial condition, with the same assumptions on A as
before.

3.4.1. The strongly connected case. We assume that the communication
graph associated with the matrix A is strongly connected. The basic process of
interest is the increment process

Bji(k;z)=xj(k+1,z)—xi(k;z), i;,j=1,...,d,
where z = x(0). Consider the random matrices
(3 11) C(k) —A(k J+ 1Ak -J) - A(k + 1)A(k), keZ.

We know that C; (k) > e for all pairs (i, j) because of the strong connected-
ness assumption. Let X(k) = x(Jk), k > 0. It is easily checked from (3.10)
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that the state variables X(k) satisfy the relation

(3.12)  X(k+1)=C(k)X(k), k=0,X(0)=x(0)%%.

Let & be the event
(3.13) #={3Rh,IC; 202Cpo0®+C,—C, ; ,Vh,i,j=1,...,J)}

where ® = 07, The following theorem summarizes results proved on the
solutions of equations of the type (3.12) in [2], Section 4.

THEOREM 8. If O = 07 is ergodic, the condition P[#] > 0 implies that
there exist a finite initial condition X(0) =Y € R’ and uniquely defined
integrable random variables A;;, i,j =1,...,dJ, such that the increments
A;(k,Y) =Xk + 1,Y) - X,(k,Y), k =0, satisfy the condition A;(k,Y)=
Ao @* foralli,j=1,...,J, k > 0. In addition, whatever the initial condi-
tion z, the increment process A, (k, z) couples in finite time with the stationary
sequence Aj; ®*. Conversely, if A ;i(k), B = 0, couples in finite time with the
stationary process A; 0@ foralli,j=1,...,dJ, then A = A.

The results of Theorem 8 yield the following multiplicative ergodic theorem,
which can be understood as (part of) an Oseledec theorem for positive matrices
in (R*, &, ®).

CorROLLARY 5. If C(k) = C o ®* is a sequence of matrices with nonnegative
and integrable entries, where © is an ergodic shift, and if P[#]> 0, then
there exists a unique finite eigenpair A, X, with X, = e and such that

(3.14) CX =AXo0.

This eigenpair is integrable, and E[A] = ¢, where ¢ is the maximal Lyapounov
exponent of C.

Proor. Let X(%) be the solution of (3.12) with stationary increments. It is
easily checked that X = X(0) — X,(0)n and A = X,(1) — X,(0) satisfy the prop-
erties stated in the theorem. In particular, the property that E[A] = ¢ follows
immediately from the rate property X,(k)*/* - ¢ a.s.

As for the uniqueness, it is immediate that if (A, X) is an eigenpair as
defined above, then X(k) = A -+ Ao @®*1X o ®*, k> 0, satisfies the equation
X(k + 1) = C(k)X(k), k = 0. From the very definition of X(%), it is immedi-
ate that the increments X;(k + 1) — X,(k) are ©O-stationary for all pairs
i,j=1,...,J. Therefore, for the last property of Theorem 8, we get the
relation X (1) — X;(0) = A ;. This implies that A = X;(1) — X(0) is then equal
to A;; and that X;0® = A;; — A;;, so that X and A are uniquely defined
from A. O
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The results of Theorem 8 can be continued to the increments (%) defined
previously.

COROLLARY 6. Under the conditions of Theorem 5, the increments §(k) also
admit a 0-stationary regime in the sense that there exists an initial condition
for which the relation 6(k) = & < 0% holds for all k > 0. This stationary regime
is unique and integrable, and, whatever the initial condition, 8(k) couples
with it in finite time.

Proor. In the proof of Theorem 5, we established that X is the
unique initial condition such that X, =e and such that the increments
A (k; X) = x;((k + 1)J, X) — x,(kJ; X) are stationary in k, and more pre-
cisely such that Aj,(k; X) = A;; ° ©*, k > 0. This implies that the increments
(x,(k + DJ + 1;X) —x(kJ + 1;X)), i,j = 1,...,d, are stationary in k, as
can be seen when writing them as

min  {A,,(k; X) ® A, ((k+ 1)J) — Ay (kJ)}
(h, A,#e} U, Ay#*e)
and when using the stationarity of A(%; X). But this increment process is the
one generated by the event graph when taking A(k)-6, k > 0, as timing
sequence and Z as initial condition, where Z; = x,(1; X) — x(1;X), j =
1,...,dJ. In view of the uniqueness property mentioned in Theorem 5, we get
immediately from this that x(J + 1; X) —x(1; X) = A;;0, i,j=1,...,d.
Since Z; = e, this in turn entails that Z = X -6, in view of the uniqueness
property mentioned above.
We show that the increment process 6(%; X) satisfies the desired property.
We have

(L, X)= @ {(x(1;X)®A;(1) —x(1;X)}
(3_15) {h, Aj,+¢}
{Xh ® AJh(O) - Xz} o 0,
so that 6(k; X) = (0, X)- 0* for £ = 1. In addition, 8(%) satisfies the recur-
sive equations 8(k + 1) = f(8(k), A(k + 1), A(k)), where

Fu(o(), Ak + 1), AR)) = @ min {3,(k) Ak + 1) = Au(k)),

i,j=1,...,dJ. Using this relation, we prove by an immediate induction that
&(k) satisfies the preceding relation for all 2 > 0.

One proves in the same way that the coupling d¢f the A increments with a
uniquely defined stationary process implies the same property for 8. The
integrability property follows from the integrability of X and the relation

8;(0X)= @ (X,®4,0 - X.}. O
(h,Ajh#e) .
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3.4.2. The general autonomous case. Consider first the case where the
reduced graph has a single source, namely N° = 1, and assume that it satisfies
the assumption of Theorem 5. Then, we get from Theorem 5 that the
increments of the state variables x;(k), j € 2,, couple in finite time with a
stationary, ergodic and integrable process which satisfies the property
Elx(k + 1) — x,(k)] = a;;,, where a;, is the maximal Lyapounov exponent
associated with A!Y. The techniques of [2] that were used for the analysis of
the general nonautonomous case yield the following theorem.

THEOREM 9. Under the assumptions of Theorem 5 concerning AM, if
®,_, . Ny < Ay, then there exists a unique finite random matrix & = (§,;)
such that the increments §;,(k), i, j € 2, couple in finite time with a station-
ary and ergodic process 9;;° 0%, regardless of the initial condition. If
D, _, nNAp > Ay, let n, be the first n=2,..., N such that a,, > a,
Then all increments of the form 6,(k), j € 2,, 1 €2, m<n,, tend to
a.s., for all initial conditions.

ReEMARK. The increments of the variables x;(k), j € 2,, are always inte-
grable (see Corollary 6). However, it is not always true that all the increments
of the variables x,(k), j € 2, are integrable for n > 1. The general law is as
follows: Increments of the form x;(k + 1) — x,(k), i, j € 2,, are always inte-
grable, while increments of the form x(k + 1) —x(k), i€ 2, j€ 2, m #
n, may be finite and nonintegrable.

Consider now the case where the reduced graph has several sources, namely,
N, > 1. If the sources have different cycle times, it is clear that some of the
increments of the processes x;(k), j € 2,, n=1,...,N° can neither be
made stationary nor couple with a stationary sequence. Even if all these
subgraphs have the same cycle times, nothing general (namely, not depending
on more elaborate statistics) can be said on the stationarity of the variables
x(k+1) —x(k) for j€2,,i€2, mn=1,..,N° m#n, as exempli-
fied in the following simple situation.

Consider a timed event graph with three recycled transitions (q,, ¢, and ¢)
and five places (p,, p,, p}, % and r); p; (resp., r) is the place associated with
the recycling of ¢,, i = 1,2 (resp., t) and p; is the place connecting g, to t. We
have two sources <, with 2, = {¢;} and &, = (q,,q;), i = 1,2, and one non-
source subgraph G, with 2; = {¢} and &5 = (¢, ¢). Assume the holding times
in r, p} and p, are zero and where the holding times in p, and p, are
independent i.i.d. sequences a,(k) and a,(k), with common mean A. If the
variables a;(k) and a,(k) are deterministic, the increments x,(k) — x,(k)
(with obvious notations) are stationary and finite whatever the initial condi-
tion. However, if the two sequences are made of exponentially distributed
random variables with parameter A, these increments form a null recurrent
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Markov chain on R that admits no invariant measure with finite mass, so that
they cannot be made stationary.

Hence, under the appropriate rate conditions and provided the condition
P[#] > 0 holds, the same conclusions hold as in the nonautonomous case.
Concerning the practical meaning of the condition P[#] > 0, consider the
particular case where the random variables (k) are mutually independent. It
is easily checked that a sufficient condition for P[#] > 0 is that there exist one
transition in .2 such that all the places that follow it have holding times with
infinite support. If this condition is not satisfied, there may be several station-
ary regimes, and only a lower bound to all possible stationary regimes is
known (see [2], Section 4).

ReMARK. The notions of initial condition of an equation like (3.5) or (3.10)
should not be mixed with the notion of initial condition of the event graph. For
instance, the assertions that are made on the existence of initial conditions
that make the increments of (3.10) stationary does not imply that this process
can be obtained by choosing appropriately the lag times of the initial tokens.

3.5. Construction of the stationary marking. In this section, we assume for
the sake of simplicity that all transitions are recycled and with positive holding
times in the recycling. A place of the event graph is said to be stable if the
number of tokens in this place at time ¢ (the marking at time ¢), converges
weakly to a finite random variable when time goes to «. The event graph is
said to be stable if all the places are stable.

Choose some place p; in &, and let q; = m(p;) and q; = o(p;). Assume
there exists an initial condition X such that x.(0, X) = 0 and such that the
increments of the stochastic processes x,(k, XS, q), € 2, are stationary and

def
ergodic. Then the sequences &,(k) = x,(k, X) — x,(k, X), q, € 2, k = 0, can
be continued to bi-infinite stationary and ergodic sequences by the relation
de

£,(0)0 0% =f§h 0 0* k € Z, where ¢, = ¢,(0). A similar continuation also holds
for the sequence x(k)=x;(k + 1, X) — x,(k, X)= x 06, & > 0. Let ./ be
the marked point process on ({,F, P, 8) with interevent times sequence x(%),
k € Z, and with the R'Q'-valél?d mark sequence £,(k), g, € 2, k € Z. Namely,
the kth point of .# is #(k) = x,(k, X), for k > 0 and (k) = X1, — x(k), for
k < 0, and its mark is {£,(%), g, € 2}. The interarrival times and the marks
being 6-stationary, this point process is stationary (in its Palm version). In
view of our assumptions, .#” has a finite intensity anddr}o double points.

Let T(k) = (T(%), ..., T,(k)) be the sequence T,(k) = t(k) + £,(k), q; € 2,
k € Z, and let N be the random variable

(3;)16) N? = Z 1(T,(k+p,,~)>0)’
k<0
where g, = o(p,). This variable is a.s. finite. Indeed, T,(k) satisfies the rela-

tions lim, _,, T,(k)/k = ¢ > 0, where c is a positive constant. Therefore T;(%)
is an increasing sequence such that lim,_, _, T;(k) = —~ a.s. Hence there
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exists a finite integer-valued random variable H such that T,(k) < 0 for all
k< —H.

THEOREM 10. Under the assumptions of Theorem 7 (resp., 9), if a,, <u,
forall n=1,..., N (resp., a, <ag, foralln=2,..., N), then the event
graph is stable, whatever the initial condition, and the marking in place p; at
arrival epochs converges weakly to the random variable Nf. Conversely, if n
is the first n = 1,..., N such that a,, > u (resp., the first n = 2,..., N such
that a,, > a,), then the places connecting the transitions of 2,, U # (resp.,
2,,), m <n,, to transitions of 2, are all unstable whatever the initial
condition.

Proor. Let N?(k) be the number of tokens in p; just after time x,(%),
k > 1, where q; = m(p,). A token is in p, at this time if and only if its index
with respect to this place is h, with 1 <h <k + u;, and x,(h) > x,(k), where
q; = o(p;). Therefore,

(3'17) Nio(k) = Z 1(x,(h)>xj(k)) = Z 1(x,(k+y,—h)>xj(k))'

l<h<k+p; O<h<k+p;

We first prove the last assertion of the theorem. Assume that p, is a place
connecting a transition of 2,, U .# (resp., 2,,) to a transition of 2, . Due to
the property that lim,(x,(k) — x;(k))/k = a, , — u > 0 [resp., lim,(x,(k) —
x;(k)/k = a,, — ay, > 0], and to the increasingness of the sequences x,(k)
and x;(k), we get that for all H, 3 K such that V k > K, h=1,..., H,
x,(k —h) —x;(k) = 0. It follows immediately from this that N°(k) > H for
k > K. Therefore, N°(k) tends to « a.s.

We now prove the first part. We know that the increments of x,(%), q;, € 2,
couple with their stationary regime in a finite random time K. This implies
that, for all fixed k, the sequence x,(k + u; —h) — x;(k) couples with a
stationary process. More precisely, forall £ > K + h and h > u;, x,(k + pu; —
h) — x;(k) = —p,(u; — h)° 0%, where

k
def
pi(k) = X x°0"—§007F=T,0) - Ty(k), k<O,

n=-1

in view of the uniqueness of the stationary regimes of the increments. Define
H = inf{k > Klx,(h) — x;(k) <0,Yh =1,...,K}.
H is a.s. finite since K is finite and x j(k) tends to « a.s. Therefore,

(3.18) N7(k) = > 1(xl(k+ui—h)—xj(k)>0) = ) Lo ui—hye6t>0p
l<h<k-K l<h<k-K

for all £ > H. On the other hand,

k _ =
(319)  Nfob* = X lpep-nm-nw>0 = L L-p-meot>or
0<h O<h

Since T,(k) tends to « as k goes to , we get that there exists L such that
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Lp-n <kl +u,-ny-1hy>0 = 0, for all & > L. Therefore, N(k) =Ny -6,
for k > max(H, L), and the stationary regime of the marking process is
reached with coupling, regardless of the initial condition. O

The preceding construction gives the Palm probability of the number of
tokens in p; at arrival epochs. The continuous time distribution of this
variable is then directly obtained via the Palm inversion formula (see [1], page
17).
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