The Annals of Probability
1992, Vol. 20, No. 2, 1099-1104

BOOK REVIEW

GEOFFREY GRIMMETT, Percolation. Springer, Berlin, 1989.
REvVIEW BY CAROL BEZUIDENHOUT

University of Rochester

The field of rigorous percolation theory has grown so fast during the past 10
years that Kesten’s 1982 book on the subject is largely out of date. Even
Grimmett’s 1989 book, reviewed here, is not completely current, although it
remains the best available source of information about percolation theory.

The book is organized in a very logical way, and so a glance at its list of
contents gives a quick but useful overview of the subject. It contains an
accessible and complete account of most of the important results that had been
proved prior to its preparation, especially in those parts of the theory that have
been largely worked out. On the other hand, somewhat more detail about
scaling theory and critical exponent inequalities might have been desirable.
The chapter notes serve as a useful guide to further reading since they contain
references to several topics that are not discussed in the text, and notes, added
in proof, about almost all the major results that appeared after the book was
written. The book makes it clear that the main open problems lie in the area of
critical exponents and scaling theory. It should be useful both as a textbook
either for a graduate course or for independent study and as a reference work.

The percolation model was introduced in 1957 by Broadbent and Hammers-
ley as a model for the flow of fluid through a porous medium. Many variations
are possible, but the simplest case, to be described shortly, is the nearest-
neighbour, translation- and rotation-invariant, independent model.

We create a random graph whose set of vertices is Z¢ and (in the nearest-
neighbour case) each of whose edges joins a pair of nearest neighbours in Z¢
(i.e., a pair {x, y} with ¢_,|x; — ;| = 1). We do this by randomly assigning one
of the two statuses occupied and vacant to each potential edge (nearest-
neighbour pair) in Z¢, the assignment being made independently over edges,
and the probability that an edge is occupied being the same for all edges. The
edge set of the random graph is the random set of occupied edges. This model
depends on a single parameter, usually denoted p and called the edge-density
or simply the density, namely, the probability that a given nearest-neighbour
edge is occupied.

In describing the model, we have made three assumptions: first, that only
nearest neighbours in Z% can be joined by edges; second, that the probability
that an edge is present is the same for all edges; and, finally, that there is no
statistical dependence among the statuses of edges. By confining his attention
for the most part to this simple model, Grimmett avoids many of the technical
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details that made Kesten’s book rather daunting for the beginner. Variants of
the model arise when one relaxes these assumptions. In the notes to Chapter
1, Grimmett gives references to discussions of these and other variants. There
are many models that are more or less closely related to percolation, the most
important of which is first-passage percolation. Grimmett’s book gives short
accounts—which are by no means complete, nor intended to be so—of some of
these.

The detailed study of the percolation model focuses for the most part on the
statistical properties of the connected clusters in the random graph. Princi-
pally, one studies the distribution of the random set C(x) of sites in Z¢ that
belong to the same connected cluster as a fixed site x (which, by translation
invariance, may be taken to be the origin 0 of Z¢), and especially the distribu-
tion of the extended real-valued random variable |C(0)|, the cardinality of
C(0). When, as in the example given here, the model depends on a parameter
p, it is of particular interest to understand how this distribution varies with p.
The fundamental fact about this model, and the basic reason it is of interest to
mathematical physicists, is that it undergoes a phase transition. What this
means is that there is an abrupt change in the properties of the model as the
parameter passes smoothly through a certain value, called its critical value.

To exhibit the phase transition quantitatively, we introduce the so-called
percolation probability—the probability that, when the edge-density is p, the
origin lies in an infinite connected cluster; in symbols,

6(p) = P,(IC(0) = ).

Hammersley (1963) made the elementary but useful observation that one can
construct the models at all possible edge densities simultaneously (i.e., couple
them) in such a way that if an edge is occupied at density p, then it is also
occupied at every higher density. From this it is easy to deduce the intuitively
obvious fact that 6(p) is nondecreasing in p. Evidently, 6(0) = 0 and 6(1) = 1.
Therefore, the set {p: 8(p) = 0} is an interval containing 0 but not 1. We define
p. = p(d) to be the supremum of this interval. The starting point, both
historically and logically, for the investigation of the model is the result (due to
Broadbent and Hammersley) that p, € (0, 1); that is, the model undergoes a
phase transition at a nontrivial value of the parameter. (The exact value of p,
is known only when d = 2, in which case it equals 3.) We thus have

=0, 0<p<p
0(p){>0, p.<p<l1,

so that p, breaks the parameter space up into two regimes or phases; the
subcritical phase [0, p,) and the supercritical phase (p,, 1], on which the
behaviour of the model differs both qualitatively and quantitatively. Thus
further study of the model falls naturally into three areas, namely, detailed
investigations of what happens (i) in the subcritical regime, (ii) in the super-
critical regime and (iii) at and near the critical point.
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Simple arguments, using the subadditivity of measures in the first case and
an appropriate zero—one law in the second, show that if p < p,, then almost
surely all connected clusters are finite, whereas when p > p,, with probability
1 there exists at least one infinite cluster in Z¢.

The theory is much more developed in the two-dimensional than the general
case (because the geometry of two-dimensional Euclidean space facilitates
many proofs). More is known and the proofs have been polished to a high
degree so that a very elegant treatment is now possible. Grimmett devotes a
chapter to this special case.

The subcritical phase. The most important results about the subcritical
phase are listed below. Grimmett gives clear and detailed discussions of these
results and their interconnections. As above, let |C(0)| be the size (volume) of
the connected cluster containing the origin. Let dS(n) = {x € Z¢: £¢_,Ix,| = n}
and let R(0) = max{n: C(0) N dS(n) # &} be the radius of this cluster. Then
if p < p,, the distribution of each of the random variables |C(0)| and R(0) is
proper (has no atom at ) and has an exponentially decaying tall It follows
from this that E, |C(0)| <  whenever p < p,.

Let 7,(0,¢,), the connectivity function, be the probability that the point

= (n,. 0) in Z¢ belongs to the same connected cluster as the origin. Then
if P <D, Tp(O e, ) decays exponentially in n, its rate of decay being the same
as that of P,(R(0) > n).

It should be emphasised that this succinct statement of what is known
about the subcritical phase does not accurately reflect the relative depth of the
various results, or the tortuous historical path to their discovery. Grimmett’s
chapter notes do a better job.

In particular, the fact that EPIC(O)I < o« for p < p, is deep and has intimate
logical and historical links both with the fact that p,(2) = 3 and with the
exponential decay of the tail of the radius of the cluster containing the origin.
It was proved for the case d = 2 by Kesten (1980) and in the general case
independently by Menshikov (1986) and Aizenman and Barsky (1987).

The supercritical phase. Perhaps the most important feature of the
supercritical phase is the uniqueness of the infinite cluster whose existence is
guaranteed by the definition of p, (and the zero-one law mentioned earlier).
This fact is relatively easily accessible in two dimensions [Harris (1960)]. The
first proof valid in higher dimensions was given by Aizenman, Kesten and
Newman (1987). A simplification of this proof [due to Gandolfi, Grimmett and
Russo (1988)] appears in Grimmett’s book. However, a wonderfully elegant
proof of this fact, applicable to a wide variety of models, was later discovered
by Burton and Keane (1989)—too late for its details to appear in the body of
Grimmett’s book. Nevertheless the notes to the relevant chapter contain a
clear summary (added in proof).

Another basic fact about the supercritical model is that if p > p_, then in a
sufficiently thick slab, there is with probability 1 an infinite connected cluster.
More precisely, suppose that p > p.. Then there exists an integer K depending



1102 C. BEZUIDENHOUT

on p so that if Z¢ is replaced in the definition of the model by the set
[-K,K]*"*x 72,

then with positive probability, the connected cluster containing the origin is
infinite. In fact the same is true if Z?¢ is replaced by a set of the form
[-K,K]92x Z*X Z [where Z*=7Z N[0,©)]. The proof of this result—
believed for many years prior to its proof—appears in papers by Barsky,
Grimmett and Newman (1990) and Grimmett and Marstrand (1990). In the
first of those papers, the main theorem (a summary of whose proof is in
Grimmett’s book) is the weaker result that the conclusion of the first state-
ment of this paragraph is true if p > pJ, where p/ is the critical value for
percolation in the half-space Z¢~! X Z™*. In the second paper, which appeared
after Grimmett’s book was published, p; is shown to coincide with p,. This
means that the hypothesis p > p/, which occurs in the statement of several
theorems in Grimmett’s book, can be replaced by the aesthetically more
satisfying hypothesis p > p,.

Most of the remaining results about the supercritical phase address the
behaviour of finite clusters. Again, these and other results are explained
clearly and at length in Grimmett’s book. In some cases there is exponential
decay. For example, it is shown that for p > p_, the radius of a finite cluster
has an exponentially decaying tail. The so-called truncated connectivity
TIf (0, e,,)—the probability that 0 and e, belong to the same finite connected
cluster—also decays exponentially as n — ». However, the tail of the distribu-
tion of the size of a finite cluster decays subexponentially. In fact, if p > p,,
then both the lim inf and the lim sup as n — o of

—log P,(IC(0)] = n)
n@-b7d

are positive and finite.

At and near the critical point. Most questions about the sub- and
supercritical phases have been rigorously settled. This cannot be said of those
questions involving the behaviour of the model at or near the critical value
of the parameter, where many of the interesting questions remain open. "
Grimmett’s treatment of these topics is somewhat sketchy. To some extent
this reflects the paucity of the current state of knowledge, but some of the
papers Grimmett refers to in his chapter notes can be consulted with profit.

The exact value of the critical value is known only when d = 2, where it
equals 3, as Kesten showed in 1980. Bounds are available in other dimensions
and asymptotically, p(d) ~ 1/2d as d — « [Kesten (1990)]. Grimmett does
not go into detail on this topic, but does give some references in the notes to
Chapter 1.

The most basic question about the behaviour of the model at its critical
value remains open except in special cases. It is this: Is 6(p,) = 0?7 This is
known to be true when d = 2. Harris (1960) showed that 6(3) = 0 and this,
together with Kesten’s result that p(2) = 3, confirms that 6(p,) = 0. In 1984
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Aizenman and Newman introduced a condition which they called the triangle
condition. It is conjectured to hold when the dimension is more than 6 but not
in low dimensions. Aizenman and Barsky (1991) showed that under the
triangle condition it is indeed the case that 6(p.) = 0. Hara and Slade (1990)
have verified that the triangle condition holds for sufficiently large d, although
the smallest d for which their proof works is not particularly close to 6. Thus
it is known that 6(p,) = 0 when d is 2 or is very large, but not otherwise. The
triangle condition is certainly violated in low dimensions so that even if Hara
and Slades’s result can be iinproved to show that the triangle condition holds
whenever it is conjectured to do so, the problem of showing that 6(p,) = 0 will
remain open in lower dimensions.

Motivated by analogies with other models, statistical physicists conjecture
that certain power laws hold at p, and as p approaches p.. The exponents in
such power laws are called critical exponents and are believed to be universal
in the sense that they are likely to depend only on the dimension and not on
the detailed structure of the underlying lattice. Many power laws are believed
to hold. So far none has been rigorously established, although partial results
are available. An example of a power law conjectured to hold at p, is this: It is
believed that P,(IC(0)| = n) decays as an inverse power of n. By convention,
this power is written 1 + 1/8. A power law believed to hold as p approaches
p. is that 8(p) is supposed to behave in some suitable sense as (p — p,)? as
Pl D

Scaling theory predicts that certain relations hold among the different
critical exponents. For example, it is believed that (6 + 1) = 2 — a, where 8
and J are the exponents introduced above, and « is another critical exponent
whose definition is more complicated. Kesten (1987a, b) has made substantial
progress on scaling theory in two dimensions.

As for the values of these critical exponents, it is predicted that when the
dimension is sufficiently large (i.e., > 6), they will all be equal to the corre-
sponding values for percolation on a tree. Aizenman and Newman (1984) and
Barsky and Aizenman (1991) have shown that when the triangle condition is
satisfied, certain power laws hold in a strong sense with critical exponents
taking these predicted values. In lower dimension, the values of the critical
exponents will be different. No such value has been rigorously determined.

Acknowledgments. Thanks to Geoffrey Grimmett and Rob van den Berg
for suggestions and comments.
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