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ON A MAXIMUM SEQUENCE IN A CRITICAL MULTITYPE
BRANCHING PROCESS!

By K. B. ATHREYA

Iowa State University

Let {Z,} be a p type positively regular nonsingular critical branching
process with mean matrix M. If v is a right eigenvector of M for the
eigenvalue 1 and Y, = Z,, - v, and if M,, = max,_;_, Y}, then it is shown
that under second moments (log n) 'E;M, —i-v, where E; denotes
starting with Z; = i and - denotes inner product. This is an extension of
the result for the single type case obtained by Athreya in 1988.

1. Introduction. In a recent paper [1] it was shown that if {Z )3
is a single type critical branching process such that E;Z? < «, then
(logn) 'E;M, » i as n - », where E; refers to starting with Z, =i and
M, = max,_,_, Z,. In the same paper the multitype analogue (Theorem 2 of
[1]) was stated (with a misprint) without a proof and with a claim that the
method of proof carries over fully. It turns out that the argument for the lower
bound (proof of Proposition 4 of [1]) does not go over easily. Whereas in [1]
there was only one random walk involved, here there are finitely many random
walks with the number of summands in each being random. The purpose of
this paper is to give a complete proof of the correct version of the multitype
case. A preprint of Spataru [5] addresses this problem and proves a weaker
result, which is stated in Remark 2.

2. The main result.

TueEOREM 1. Let Z,=(Z2,,,Z,,,...,Z,,) be a p type positively regular
nonsingular critical branching process with mean matrix M and finite second
moments. Let w = (uy,u,,...,u,) and v = (v},0,,...,v,) be nonnegative
vectors such that Mv=v, uM=w, XPu,=1, Yfu,v;=1. Let M, =
max,_; ., v, Z;;. Then

(1) (logn) 'E;M, > i-v,

where E; denotes starting with Zy, = i and - denotes inner product.

ReMARK 1. This theorem is the same as Theorem 2 of [1] except that there
u denotes the right and v the left eigenvector (which is an error).
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REMARK 2. Spataru [5] has proved the following weaker form of Theo-
rem 1:

(i-v) min v; < liminf(log n) "'E;M, < limsup(logn) *E,M, <i- v.
l<j<p n n

The improvement of this result obtained in the present paper is via a better
estimate which simplifies the proof even in the single type case.

3. The proof. We shall need the following facts about p type critical
positively regular, nonsingular branching processes. For proof, see Athreya
and Ney ([2], Chapter V).

Let Z, = (Z,,,Z,5,...,Z,,) denote the population size vector of the nth
generation. Assume throughout that E;Z?; < « for all 1 < i, j < p, where E;
denotes starting with Z,, = 1, Z,; = 0 for j # i. Let u, v, M be as in Theorem
1. Then the following hold:

1. {Y, =v-Z,, n > 0} is a nonnegative martingale.

2. For each i, there are constants A; and u; such that, as n — «: (a)
nP(Y, > 0) —» A; and (b) n'E;Y,2 > u,.

3. For any i # 0 and any £ > 0,

lim Pi(Z,,Y,' —u;l >¢ forsomel <j <pl|Y, >0)=0.
i\l“njtn J n

n-—ow

4. There is a A in (0, ©) such that, for all i # 0,
lim sup | Py(Y,, < nx|¥, > 0) — (1 — e™**)| = 0.

n x>0

We now start the proof with the upper bound.

ProrosiTION 1. For any i,

(2) limsup (logn) "E;M, <i-v.

ProOF. For 0 <x < =, let S, denote the stopping time
S, = min{inf{r: r > 0, Y, > x},n}.
Then,
P(M, > x) = P(Ys, 2 x) <x7'E;Ys =x7'EY,

(by Doob’s optimal sampling theorem). So, for n > i - v,

[ P(M, 2 %) dn < (EY,)(log n — logi - v).

i

Also, [yP(M, > x)dx < (EY,>)n"! (by Doob’s inequality).
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Now, by fact 2(b),

supfwP(Mn >x)dx < o,
n n

Since E;M, =i v+ [, P(M, > x)dx and EY, =i - v, (2) follows. O

ReMARk 3. The preceding proof is due to Spataru [5]. More generally,
Pakes [3] has shown that, for any nonnegative martingale {Y,} for which
EY, logY, — =, one has

lim sup (EM,)(EY, logY,) ' < 1.
n

For our Y, it turns out (see Lemma 3) that under finite second moments
E;Y, logY, ~ (i - wlog n. In the case of infinite second moments, one could
still get an upper growth rate for EM, if one could get a rate for EY, log¥,,.

ProOPOSITION 2.

(3) liminf(logn) "E;M, > i - v.

We need the following lemmas.

LEmMA 1. Let {X,); bei.i.d. r.v.’s with EX, = 0, 0> = EX? < w. Then, for
each ¢ > 0, nP(IX,| > ¢) > 0, where X, =n " MX; + X, + -+ +X,).

LEmMa 2. Let {X,); bei.i.d. nonnegative r.v.’s with EX? < © and EX, < 1.
Then, for any p > 1, nEy(X,) — 0, where (x) = x(log p~x)".

Proor oF LEMMA 1. This is known in the literature. See, for example, [4],
page 286. O

Proor oF LEMMA 2. Since, for x > p > 1,

¥(x) = loglp'x) = [ “(log(p™y) + 1) dy,
we have
nEy(X,) = /:’(mg(p—ly) + 1)nP(X, > y)dy.
Fory>p>1,
nP(X,>y) < nP(X, - EX|| > (y — EX,))

<nV(X,)(y - EX)) "< V(X)(y - )"

Since (log(p~'y) + 1)y — 1)~ 2 is integrable in (p, ®), it follows from Lemma 1
and the dominated convergence theorem that nEy(X,) - 0. O
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In what follows we write

(4) $(n, F, p) = nE(y(X,)),
where y(x) = x(log(p~'x))* and the {X}} are i.i.d. r.v.’s with c.d.f. F.

LemMA 3. Let {Y,: n > 0} be a nonnegative martingale. Fix n > 1, 1 > 1.
Let T =T, , be a stopping time defined by

min{r:1<r<n,Y,=0o0rY, >1},

T= n, if 0<Y.<lforl<r<n.

Then
(5) E(Yp: Y, >1)>E(Y,: Y, >1).

Proor. This is Proposition 3 in [1]. O

PrOOF OF PROPOSITION 2. Fix integers / and n and a number p > 1. Then,
by Lemma 3,

E(Y,:Y,>1)<E(Y;: Yy >1)

<E(Yr:Yr=21,Y,<pl) + E(Y;:Y; > pl)

=a, +b,, say.
Note that a,; < plP(Y; > 1) < plP(M, > 1). Thus,

pY, P(M,>1)+ Y 17%,,> Y I7'E(Y,:Y, > ).
1 1 1
Since p > 1 is arbitrary, EM, = X5P(M,, > 1) and L3I 7'E(Y,: Y, > 1) ~

EY, logY,, it is enough to show that
(6) (logn) 'E,Y, logY, »i-v,

(7 (logn) " Y 1", - 0.
1
To establish (6) we use the following lemma.
LemMa 4. E;Y, logY, —i- vlogn — AA[5x(log x)e ™ ** dx.

Proor. Since E;Y, = E;Y,=1i-v,
EY, logY, —i-vlogn = E;Y, log(n"'Y,)
= Ei(n"'Y,(log n7'Y, )Y, > 0)nPy(Y, > 0).
By fact 2(a), nPy(Y,, > 0) - A; and by facts 2(b) and 4,
{n7'Y, log(n~'Y,)lY, > 0}
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are uniformly integrable and {n~'Y,|Y, > 0} converges in distribution to a r.v.
with c.d.f. 1 — e** for x > 0. This yields the lemma. O

Clearly, (6) is implied by Lemma 4.
Next,

n n
by < Y E(Yp:Yp>pl,T=r)< ¥ E(Y,:Y,_, <L,Y,>pl).
r=1

r=1
So,
[ n [
YU, <Y LITE(Y,:Y,>pl,0<Y,, <1)
=1 r=11=1
n o
-y E(lcl(ic_1> 0| X (v, <l<p-1Y,))),
r=1 =1
implying
) n Y +
(8) Y 7%, < ¥ E[YI(Y,_, > 0)|log —" ) :
=1 r=1 pY,
By the branching property, we can write
p Zo-i
Y = Z Z Xij’
i=1 j=1
where {X;;, j=1,2,..., i=1,2,..., p} are independent random variables
and are independent of Z,, Z,,...,Z,_;, and, for each j, X;; has the same

distribution as v - Z, with Z, = e,, the unit vector in the ith direction. Since
Mv = v, EX;; = v; and we write Y, = Z2_,0,Z,_;,;v7 'X,,_1,;- Now, noting
that Y,_,=v-2Z, _,=X{v,Z,_;; and that the function x — ¢(x) =
x(log(p~1x))* is convex in (p, ), we see that

P uv.Z . p

1 “(r-1i -1 -1

Yr—ﬂp( Z v-Z . U; XiZ(r—l)i) < Z UiZ(r—1)il/’(Ui XiZ(r—l)i)'
i=1 r—1 i=1

Taking expectations and using conditional independence of {X; ;} and Z,_,, we

have
Y(l ( Y, ))+ Y, 0
| log Y, >
PY,. 4 '

14
< Y E(v:Z;_19(Z-1yi> Fis p); Yooy > 0),
1

E

(9)

where F, is the c.d.f. of v7'X;, and ¢ is as in (4). From (8) and (9) it is clear
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that to establish (7) it is enough to show that, for each 1 < i < p,
n
(10) (logn)™" ¥ E(Zy_1,6(Zy—1, F;, p); Y,y > 0) = 0.
r=1

Fix p > 1 and i # 0. Now, using facts (3) and (4) and Lemma 3, we see that
given & > 0 we can find N and 1 > 0 such that, for n > N,

(a) ne(n,F,,p) <e, foralli,

(b) sup|P;(0 < Y, < nxlY, > 0) — (1 —e*)| <5,
P ] Zns 2

(¢) P, jL=Jl Y, —uj>7 Y, >0] <eg,

(d) 1-e™<e.

Let N; =2N/nu; and K; = sup, n¢(n, F,, p) < ». Then

n
@ = Y E(Z(r—l)id)(z(r—l)i’ F,p);Y._,> 0)
(11) r=t

Z + Z <K;N, +d,, say.

r<N;+1 r>N;+1

dy< ¥ E(Z;-18(Zo-1y- Fip); 0< Y, < (r— 1)n)

r>N;+1

i

u;
* T B(Zeb(Zos F)i Y1 2 (= U, Bz )
r>N;+

+ X E(Z(r—l)i¢(z(r—l)i’ Fip);Y, > (r—1mn,Z,_,, <

r>=N;+1

u;
7"—1)

=d,, +d,, +d,;, say.

Now,
n
d, <K, Y P(0O<Y,_,<(r-1)n)
1

“K,Y (PO< Y, < (r—alY,_y > 0) - (1- =) P(Y,, > 0)

+K(1-e) Y P(Y,_,>0)<2K,;e), P(Y,_, >0), by(b)and(d).
1 1
Also,

dyy <€) P(Y,_;>0) by(a)
1
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dn3 <K}, P(Y,_;>0) by(c).
1

Thus, from (11), a,; < K;N; + BK; + 1)eL?P(Y,_, > 0).
By fact 2(a), (log n) 'L ?P(Y,_, > 0) - A; and hence

limsup(log n) 'a,; = 0 foreachl <i <p.

This establishes (10) and the proof of Proposition 2 is hereby complete. O

REMARK 4. The use of Lemmas 1 and 2 has simplified the proof of the
lower bound even in the one type case considered in [1], where the deeper
results of Hsu and Robbins on complete convergence and of Kiefer and
Wolfowitz on random walks were used.

REMARK 5. Some open questions remain:
(i) In the p type case, prove or disprove that

(logn)_lEi max Z; > u;i-v, forl<i<p,
0<j<n
(of course, assuming second moments).
(i1) In both the single type and multitype cases, show that even if the
second moments are not finite, lim (loga,) 'E;M, - i-v, where a, =
(P(Z,>0)"L
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