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POLAR AND NONPOLAR SETS FOR A TREE
INDEXED PROCESS!

By STEVEN N. EvaNns

University of California, Berkeley

We consider a class of stochastic processes of a type that was first
introduced by Dubins and Freedman. These processes are indexed by the
lines of descent through an infinite tree and take values in a space of
sequences. Our main results concern necessary and sufficient conditions of
a potential theoretic type for a subset of the state-space to be hit with
positive probability by the sample paths of the process. We examine these
conditions in some specific examples and also relate them to conditions
expressed in terms of Hausdorff dimension. As well, we use similar tech-
niques to investigate multiple points in the sample paths of the process.

1. Introduction. The following type of stochastic process was introduced
in Section 8 of Dubins and Freedman (1967). Given an integer.a > 2, let T
denote the infinite rooted a-ary tree. A path or line of descent through T is a
sequence p = (v, vy, ...) of vertices such that v, is at distance i + 1 from the
root. Now consider another integer b > 2. For each vertex v of T, suppose
that we have an independent random variable Z, which is uniformly dis-
tributed on E = {0,1,...,5 — 1}. We construct a stochastic process X indexed
by the set of paths through T and taking values in E® by associating with any
such path p = (vy, v;,...) the random sequence X(p) =(Z,,Z,,...).

The main question we address in this paper is as follows. Given a (product)
measurable subset B of E*, when is there positive probability that X(p) € B
for at least one path p? In other words, we want to know whether or not the
sample paths of X ‘hit’ B with positive probability. In the usual nomencla-
ture, we will say that B is nonpolar or polar according to whether or not X
hits B with positive probability.

Before we state our answer, we need to introduce some more notation.
Make the set E® into an Abelian group by doing addition coordinatewise
modulo b. For x = (x,, x4,...), x # 0, define r(x) = inf{i: x; # 0}. If we set
lx| =b7"® for x + 0 and |0] = 0, then (x,y) — |x —y| is a metric on E”
which gives the usual product topology.

THEOREM 1. Suppose that a > b. Then the points are nonpolar.
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580 S. N. EVANS
THEOREM 2. Suppose that a = b. Then a measurable set B is nonpolar if

and only if there is a finite, nontrivial measure u concentrated on B such that

1
[/ 1og( ey )#(dx)#(dy) <,

where we adopt the convention that log(1/0) = o,
THEOREM 3. Suppose that a < b. Then a measurable set B is nonpolar if
and only if there is a finite, nontrivial measure u concentrated on B such that

1
/I3 —prld)u(dy) <=,

where 8 = (log b — log a)/log b and we adopt the convention that 1/0 = o,

We prove these results in Section 2. As a first consequence, we note here
that if B is a singleton, say B = {(0,0,...)}, then B is polar if and only if
a < b. A little thought shows that this is just the observation that a branching
process with Binomial(a, 1/b) offspring distribution becomes extinct almost
surely if and only if @ < b. We give some more interesting examples in Section
3, where we also develop the connection between Hausdorff dimension and the
conditions of Theorems 2 and 3. In Section 4, we use similar techniques to
study multiple points in the sample paths of X. In particular, we show that X
possesses k-tuple points if and only if (log a/log b) > (2 — 1)/k (see Theo-
rem 6).

As the integrands appearing in Theorems 2 and 3 will continually reappear
in what follows, we adopt a more compact notation for them. If a = b, set
k(z) =|logz|, 0 <z <1, and put «(0) = ; while if a < b, set k(z) =279,
0 <z <1, where 6 = (log b — log a) /log b, and put «(0) = «.

2. Proofs of Theorems 1, 2 and 3. For ease of notation we only prove
Theorem 2 in the special case a = b = 2. It will be seen that the proof of
Theorem 2 in general and the proofs of Theorems 1 and 3 will only require
fairly minor modifications.

We begin with some notation. Let G =I1%_,{0,1} and G, = I1}_,{0, 1},
each thought of as groups with coordinatewise addition modulo 2. Give G the
metric described in Section 1 and write & for the corresponding Borel o-field
(which is also just the product o-field). Let A denote normalized Haar measure
on (G, &), so that A is just the product of the uniform measure on {0, 1}.
Define m,: G - G, by 7,(80,81,---,8n>---) = (&0, &1, - -, &) With a slight
abuse of notation, we will also use the same notation for the similarly defined
projection of G,, onto G, when m > n.

Observe that we can use G, in an obvious way to label the set of vertices of
the binary tree which are at distance (in the usual graph theoretic sense)
n + 1 from the root. Similarly, we can label the set of paths through the
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binary tree using G. Without further comment we will construct our process
X as a G-indexed, G-valued process and continue to think of it that way.

Set I' = U3_¢Gy, and T, = U;_oGy. Put Q =TI {0,1}. For y €T, let p,:
Q — {0, 1} denote the corresponding coordinate projection. Let % ° denote the
product o-field on Q and let P° denote the probability measure which is the
product of the uniform measure on {0, 1}. Let (2, &, P) be the completion of
(Q, FO,PO. For (w, t) € Q X G, define

X(w,t) = (w,,o(t), Ortys - - - ).
Similarly, for (0, ?) € Q X G,, define
X, (o, t) = (wwo(t)’ W@ “’w,,(t))-

Observe that X is a continuous process [in fact, | X(s) — X(#)| < |s — ¢| for
all s,t € G]. Note also that if we define measure-preserving bijec-
tions o, Q> Q for t € G by (p,° o, w) =p, 4, (®) when y € G,, then
X(o/(w), s) = X(w, s + t). In particular, X is stationary.

We will first show the necessity of the stated condition. In doing so, we use a
technique similar to that developed in Fitzsimmons and Salisbury (1989) for
multiparameter Markov processes. We could follow Fitzsimmons and Salisbury
quite closely and begin by showing that if B € & is such that P3 ¢t € G:
X(t) € B) > 0, then there exists a nontrivial homogeneous random measure
concentrated on {¢t € G: X(¢) € B} which, by application of a suitable central
projection operation, can be made adapted in some sense. Moreover, this
adapted random measure has finite probabilistic energy. Finally, we could
prove that the Revuz measure associated with this adapted random measure
satisfies the finite analytic energy condition of Theorem 2. Such a course
would, however, involve us in several unnecessary technicalities. Essentially,
our approach involves carrying out an analogous program with X replaced by
X, and B replaced by m, B, so that everything takes place in a much simpler
discrete setting. Our constructions are suitably nested so that if w, denotes
the Revuz measure of the adapted homogeneous random measure appearing at
the nth stage, then u, = uom, ! for some measure u on G which is easily
shown to satisfy the conditions of Theorem 2.

Suppose, then, that B € & is such that P(3 t € G: X(¢)€B)>0. A
Choquet capacity argument shows that there is a compact subset of B which
is also nonpolar [cf. Lemma 1.10.12 and Theorem 1.10.6 of Blumenthal and
Getoor (1968)], so we may suppose without loss of generality that B is
compact.

Let G* = G U {A}, where A is an abstract isolated point; and let #* be the
corresponding Borel o-field. It is easy to see that there is a %#/#“-measurable
map S: Q — G* such that

(w,S(w)) € {(,t): X(o',t) €B} © X(0,G) NB# I
and
S(w)=AeX(0,G)NB=0
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(one can either appeal to a general cross-section theorem or give a simple
direct construction using the fact that B is compact and X is continuous).
Given w € ) and A € &, define L(w, A) = [31,(S e 0, Xw) + )A(d?) for w
such that X(w,G) N B # & and put L(w, A) = 0 otherwise. It is easy to check
that L is a random measure with the following properties:

(2.1) P(L(G)) =P(3 t e G: X(t) € B),
(2.2) L({t € G: X(t) ¢ B}) =0,
(2.3) L(o,0, A) = L(w,t + A),
(2.4) L(G) < 1.

Fix an integer n > 0. For ¢ € G,, let %" = o{X, ()} = alp, )+ P -
It is clear from (2.3) that there is a function w,: G, — [0, such that
P(L(7 'O F™) = p (X)) for all ¢ € G,.

LemMA 1. The following hold:

(@) L cq,k.(x)=PA ¢ eG: X(t)€B).
(i) T,qn phn(x)=0.
(i) P(E,cq,m (X, P < 16.

Proor. Observe that
ta(x) = 2" 1P(X,(0) = x)n,(x)
- P( T 1% = (X))

teqG,
(2.5) - p( Y 1(X,(2) = x)L(wn‘l(t)))

teG,
= P(fGl(wn o X(t) = x)L(dt)).

(1) This is clear from (2.1) and (2.5).
(i) From (2.5), we have

L () = B[ 1(m e X(2) & m, B)L(ab)|

X &,

IA

P(fGl(X(t) & B)L(dt))
O’

I

by (2.2).
(iii) Define the usual lexicographic total order on G, by declaring that
(ag,...,a,) is less than (B,,...,B,) if and only if for some 0 < m < n, we

have a; = B; for i <m and a,, =0, B8,, = 1. Let s(0),...,s(2"*! — 1) be the
listing of G,, in this order. So, for example, s(0) = (0,...,0), s(1) = (0,...,0,1)
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and s(2"*' -1 =(1,...,1). Set H, = £& V'V Fh and S = FG,
VoV F gy, Observethat1f0<J<k<l<2"+1—1and0<m<n
then

m,8(j) =m,s(l) = m,s(j) =m,s(k) =m,s(l),

and hence
k n 2"*l-1 »n n
10 0 tras@n] 0| "U " O sl = 0 i)
i=0m=0 = m=0 m=0
Thus, for each %k there are o-fields &, 7, .#, such that Gy Siiky #nr Fi

are independent, &= &, V %,V #; V ./k, Hy, = FGyV H, and S =
Fiy V F. From Lemma A.1 of the Appendix, we have P(L(w SR F ) =
P(P(L(w‘ls(k))lﬁ)lé’fk) and the result follows from (2.4) and two applica-
tions of Lemma A.2 of the Appendix. O

Note from (2.5) that if x = (x,...,x,) € G,, then pu, (x) =
Bnii(Zosoes %0, 0) + 1,4 1(xg, ..., %,,1). An application of Kolmogorov’s exis-
tence theorem gives that there is a measure p on G such that u,(x)=
w o, *({x}) for all n. It follows from parts (i) and (ii) of Lemma 1 that

p(B) = lim p(m'm,B) = lim Y u,(x) = 11m Y owa(x)

n—® n—=%® yew,B ® xeG,
=u(@) =P(3tEG:X(t) EB) >0

[recall we are assuming that B is compact, so N%_o(m, 'm, B) = N5 _olx € G:
inf, _ plx —yl <27} = B].
Moreover,

P([teanu,,(xnm)] )
Y Y T T anm)ua)P(X(s) =5 X(2) = )

seG, teG, x€G, yeG,

Y X 2t Y P(X,(0) = x, X,(¢) = y)ua(%)paly)

x€G, yeqG, teG,

- anlZ P(X,(0) = x)u(m; x)’

+ ¥ ¥ P(X,(0) = x, X,(t) = x)u(m; %)’

x t#0

+ ¥ L X P(X,(0) =x, X,(¢) =y)u(my x)u(m'y)|-

x y#xt+#0
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Observe the following:
P(X,(0) =x) = 2-+D,
P(X,(0) =x, X,(¢) =x) = 2™~ %n+D p2Q |zl =27,
and
P(X,(0) =x,X,(t)=y) = 2'”_2("+1)1(|7Tn—1(x -yl < 2_’”),
x#+y, t+0, |l 1t =2
(note that if u € G, \ {0}, then {|v|: v € 7, 'u} is a singleton and it makes

sense to think of |, 'u| as a single number). Thus, after a straightforward
computation,

P( > Mn(xnm)r) = utmf + 5 Joeo{ =57 ) +1]

teq,
An + D(ds)u(dy);

and we see from part (iii) of Lemma 1 that

1
ff‘°g(|x = )#(dx)#(dy) <o,

as required to complete the proof that the conditions of Theorem 2 are
necessary for B to be nonpolar.

Suppose now that u is a measure satisfying conditions of Theorem 2. Then
the trace of n on some compact subset of B also satisfies these conditions and
so, without loss of generality, we may assume that B is compact. Put
p(x) =peom;'({x}) for x € G, and set M, =%, ; p, (X (). From the
calculations of the previous paragraph, we see that P(M,) = u(G) > 0 and
limsup,, _,., P(M?2) < . Thus, by the Cauchy—Schwarz inequality,

P(3teG: X(t) €B) = limP(3te€qG,: X,(t) €m,B)

n—o

> liminf P(M, > 0)

n—o

e [POL)T
= llrl;lililfW > 0,

and so the conditions of Theorem 2 are also sufficient for B to be nonpolar.
O

3. Some examples.

ProposiTION 1. Suppose that B =T113;_(B, # &, where B, CE has b,
elements. Then B is nonpolar if and only if

RO R GEE

k=0 bk
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Proor. We see from Theorem 1 that the result is certainly true when
a < b, so we suppose that a < b. There is an isometry of E* which maps B to

%-ol0,1,...,b, — 1} and it is clear from inspection of the necessary and
sufficient conditions of Theorems 2 and 3 that we may further suppose
without loss of generality that B, = {0,1,...,b, — 1}. Make B into an Abelian
group with the addition operation @ defined by performing addition in the kth
coordinate modulo b,. Let © be the corresponding subtraction operation. Note
that [x — y| = |x © y| for x, y € B. Let v denote the normalized Haar measure
on B.

Given two finite measures u;,; and pu, define {(uy, uy) = [[fx(lx —
yDu(dx)uy(dy). Observe that if u; and wu, are both supported on B, then
(g = [[x(lx © yDu(dx)u(dy). Also, it is not too difficult to show that
(g, gd < gy )X g, wo)'/? [cf. Section 3 of Evans (1988)]. If u is a finite
measure on B and w € B, define the measure u,, which is also supported on
B, by u,(C) = u(C © w) and note that {u,, p,> = {u, n). From the transla-
tion invariance of » and Fubini’s theorem we have

w(B)w,v) = [ [(vyv,u(dx) p(dy)
= [ [ <t 1, () u(dy)

< [ [k ) Xty )Y u(dx) v (dy)

& =, p).

Applying Theorems 2 and 3, we see that B will be nonpolar if and only if
{v,v) < =. If we further observe that (v,v) = [k(IxDv(dx) and v({x: |x| <
b)) = (byb; -+ b,_)7 %, then the result follows from a straightforward
summation by parts. O

PROPOSITION 2. Suppose that a = b. Suppose that ¢ is a probability mea-
sure on E that is not concentrated on a single point and £% is the correspond-
ing product measure on E*. If B C E” is a measurable set such that £(B) > 0,
then B is nonpolar.

Proor. Let u be the trace of £ on B. Note that there exists a constant
¢ < 1 such that sup, u({y: |x —y| <b7"} < ¢”, and hence

[/ 1og( m fyl )#(dx)u(dy) < sup | 1og(

e <o

The result now follows from Theorem 2. O

Before we can state our next result, we need to recall some details regarding
Hausdorff dimension [for a complete background see, e.g., Rogers (1970)].
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Given «, &€ > 0 and a measurable set B C E*, set
A, (B) = inf{z diam(Gi)"},

where the infimum is over all countable collections (G;)7_, of balls with

13

diameter at most ¢ (in the metric | -+ — - |) that cover B. Put

A,(B) = supA, (B).

>0

Then A, is a measure on E”. The Hausdorff dimension of B is defined as
dim B = inf{a > 0: A, (B) = 0}.

It is easy to see that A, is just Haar measure on E” and so, in particular, E®
has Hausdorff dimension 1.

By analogy with the Euclidean theory [see, e.g.,, Chapter 10 of Kahane
(1985)], we also define the capacity dimension of a nonempty measurable set
B as the supremum of the set of real numbers B8 such that it is possible to
find a finite, nontrivial measure u concentrated on B for which [flx — y| ™"
w(dx)u(dy) < . An argument almost identical to the proof of Theorem (2.3)
in Evans (1988) shows that the analogue of Frostman’s theorem holds and
these notions of dimension coincide [the proof in Evans (1988) is only for
compact sets, but each of these methods for assigning a dimension to a
measurable set has the property that the dimension of a set is the supremum
of the dimensions of its compact subsets].

ProOPOSITION 3. Suppose that B # & is a measurable set. If dim B >
(log b — log a)/log b, then B is nonpolar, whereas if dim B < (log b —
log a)/log b, then B is polar.

Proor. From Theorem 1, the result is trivial when a > . When a < b, the
result follows from Theorem 3 and the above observation that Hausdorff
dimension and capacity dimension coincide. When a = b, the result follows
from Theorem 2, the above observation and the fact that for all > 0, we have
logzl <27",0<z<1. 0O

Given Proposition 3, one might conjecture that the Hausdorff dimension of
X(@) is (log a/log b) A 1 almost surely. We remark without proof that, using
standard techniques, it is not too difficult to show that this is indeed the case.

With Proposition 3 in hand we could give a large number of examples. This
is especially so once we observe the fairly elementary fact that if for each
measurable set B ¢ E, we define B* c [0, 1] by

B* = { Y ox, b *FD: = (x4, %,,...) € B},
k=0

then dim B = dim B* and hence the Hausdorff dimensions of many interest-
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ing sets may be found in the literature. However, we restrict ourselves to the
following.

PROPOSITION 4. Suppose that 0 < < (b — 1)/2. Define

n—1
B_= {x = (%9, X1,...): liminfn~' ) x, = 'r]},

e k=0

n—o

BO={x=(xO,x1,. : limn~ Z =}

and
n—1
B.= {x = (%9, X1,...): limsupn~! Y = 'q};
n—>o k=0

and define C_,C,, C, similarly, but with the = sign replaced by the < sign.
Let r be the unique root between 0 and 1 of the equation

b-1
Y ri(j—m)=n,
j=1

and set

b-1
R=r"mY ri

If (b/a) < R, then B_ (respectively, By, B_,C_,C,,C,) is nonpolar, whereas
if (b/a) > R, then B_ (respectively, By, B,,C_,C,,C.) is polar.

Proor. Given Proposition 3 and the above observation concerning the
computation of Hausdorff dimension, the result follows from Theorem 14 of
Eggleston (1951). O

Questions similar to those addressed by Proposition 4 were considered in
Lemma 8.8 of Dubins and Freedman (1967) for the case when ¢ = b = 2. In
this setting, they consider a construction more general than that of X, in
which the common distribution of the independent random variables (Z,) need
not be uniform on {0, 1}. They obtain a sufficient condition for C . to be polar.
When the common distribution of the (Z,) is uniform, their general condition
becomes nlogn + (1 — log(l — n) > 0, which, of course, does not hold for
any 0 <7 < 3. This agrees with Proposition 4, which states that when
a = b = 2, any of the sets considered in the statement of the proposition will
be nonpolar.

4. Multiple points. Given an integer k2 > 1, we say that X has a k-tuple
point if there exists x € E* such that card(X~!)(x) > k. As in the case of Lévy
processes, the study of multiple points can be reduced to a study of a
multiparameter process formed from independent copies of X [see Evans
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(1987) or Fitzsimmons and Salisbury (1989) for examples of this technique for
Lévy processes]. With this in mind, we state without proof the following result
which can be proved by exactly the same means as Theorems 2 and 3.

THEOREM 4. Suppose that a < b. Define a T*-indexed stochastic process X
by setting

X(p) = (X'(pY),..., X*(p*)), p=(p...,p*) €T

where X',..., X* are in(iependent copies of X. Let B be a measurable subset of
(E®)*. Then B is hit by X with positive probability if and only if there exists a
finite, nontrivial measure u concentrated on B such that

[ [l = 31) -+ w(lx* — yH)u(dx)u(dy) < .

THEOREM 5. Let B be a nonempty measurable subset of E*. If a > b, then
the probability that there exists x € B such that card( X~ ')x) > k is positive. If
a < b, this probability is either positive or zero depending on whether there
exists a finite, nontrivial measure u concentrated on B such that

[ [r(x = y)*u(dx)u(dy) <=

Proor. For simplicity, we will carry out the proof for the case a = b = 2
and work with the notation established in Section 2. The proof in the general
case requires only minor modifications.

For n >0, define a mapping 60,: G - G by setting 6,(g,,8,-.-) =
(8n+1)Bnsg---) Also, let s,(0),...,5,(2""! — 1) be any listing of the ele-
ments of G,. It is clear from the construction of X that the probability in
question will be positive if and only if for some n with 2! — 1 > k, we have
that

k—1
[16,°X(m 's,(j))|NnB,+
Jj=0

with positive probability, where
B, ={(x,%,...,x):x €6,B}.

Applying Theorem 4, this is equivalent to the existence of a nontrivial finite
measure i, concentrated on 6,B for which [[k(lx — y))*u, (dx)u,(dy) < .
This last condition, however, is readily seen to be equivalent to the one
appearing in the statement of the result. O

THEOREM 6. If (log a/log b) > (k — 1)/k, then almost surely X has k-tuple
points. Otherwise, X almost surely does not have k-tuple points.

Proor. If we apply Theorem 5 with E®, then an argument similar to the
one given in the proof of Proposition 1 shows that X has k-tuple points with
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positive probability if and only if a > b or @ < b and [[«(lx — y)*v(dx)v(dy)
< o, where v is Haar measure on E”. An easy calculation shows that the
latter condition holds if and only if (log a/log b) > (& — 1) /k.

It therefore remains to show that if X has k-tuple points with positive
probability, then X has k-tuple points almost surely. Once again we only carry
out the proof in the case when a = b = 2. Obviously, X has k-tuple points if
for all n, the restriction of X to the set =, X(0,...,0) has k-tuple points. In
fact, from the construction of X, it can be seen that the probabilities of these
two events are equal. Since the latter event is a tail event for the family
of independent random variables {p,: y €T}, the result follows from
Kolmogorov’s zero-one law. O

APPENDIX

The following result follows from a straightforward monotone class argu-
ment.

LEMMA A.1. Let (3, o7, Q) be a probability space. Suppose that we have
A= N Ly N Ay N X, where X\, A, Xy, o, are independent sub-o-
fields. For a Q-integrable random variable Y, we have

QY1) = QY| V o4) 4, v ).

The next result, which we prove for the sake of completeness, is just a
discrete time version of Meyer’s energy inequality.

LEmMMa A.2. Let (3,%7,Q) be a probability space. Suppose that &, C
A, C - C %, are sub-o-fields of &/ and Y,,Y,,...,Y, are nonnegative,
square-integrable random variables. Then

o[z a5 ])
Proor. We have

Q([Zkl Q(Yklm)r) <2% ¥ QQ(Y%l%4)Q(Yi))

k I>k

=2) X QQ(Yil4)Y))

< 2;(§;(kak)zl v,)
<[z om0 e[z ]

where the last line follows from the Cauchy-Schwarz inequality. O
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