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SOME ASYMPTOTIC AND LARGE DEVIATION RESULTS IN
POISSON APPROXIMATION

By Louis H. Y. Cuen anD K. P. CHoI
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Let X,,,...,X,,, n=>1, be independent random variables with
P(X,;=1=1-P(X,; = 0) =p,; such that max{p,;: 1 <i <n} > 0as
n—>o Let W, =%,_,_.,X,, and let Z be a Poisson random variable
with mean A = EW,. Poisson approximation for the distribution of W,
dates back to 1960, when Le Cam obtained upper bounds for the total
variation distance d(W,,, Z) = T, ., o|P(W, = k) — P(Z = k)|. Barbour and
Hall (in 1984) and Deheuvels and Pfeifer (in 1986) investigated the asymp-
totic behavior of d(W,,, Z) as n — « for small, moderate and large A. Their
results imply that the orders of the bounds obtained by Le Cam are best
possible. Chen proved (in 1974 and 1975) that the more general variation
distance d(h,W,,Z) = L, h(R)IP(W, = k) — P(Z="F)|, h >0, con-
verges to 0 as n — », provided A remains bounded and Eh(Z) < «. We
investigate the asymptotic behavior of: (i) ER(W,)) — Eh(Z,) for real h; and
(i) d(h,W,,Z) for h >0 as n — « for small and moderate A, thus
generalizing the corresponding results of Barbour and Hall and of De-
heuvels and Pfeifer. Our method also yields a large deviation result and
holds promise for successful application in the case when X,,,..., X,,, are
dependent. ‘

1. Introduction. Let X,,,...,X,,,n =1,2,3,..., be a triangular array
of independent Bernoulli random variables with P(X,; = 1) =1 —
P(X,; = 0) = p,; such that p, - 0as n — o, where p, = max({p,;:1 <i <n}.
Let W, =X,_,.,X,, and Z, be a Poisson random variable with mean u.
Approximating the distribution of W, by that of Z,, where A = EW,, dates
back to Le Cam (1960), who obtained upper bounds for the total variation
distance d(W,, Z,) = L, o|P(W, = k) — P(Z, = k)| between £(W,) and
A(Z,). The results of Le Cam can be summarized as d(W,,Z,) < C(1 A
A~DE?_ p2,, where C is an absolute constant. The magnitude of C has been
successively improved by Kerstan (1964), Chen (1975a) and Barbour and Hall
(1984). Barbour and Hall (1984) and Deheuvels and Pfeifer (1986) investigated
the asymptotic behavior of d(W,, Z,) as n — « for small, moderate and large
A. Their results imply that the order of the bound (1 A A")X?_;p2; is best
possible. Chen (1974, 1975b) showed that the more general variation dis-
tance d(h,W,, Z,) converges to 0 as n — « provided A remains bounded and
Eh(Z) < », where d(h,W,,Z,) =L, h(R)IP(W, =k)— P(Z, =k)| and
h>0.

In this paper, we investigate the asymptotic behavior of (i) ER(W,)) — Eh(Z,)
for real h and (i) d(h,W,, Z,) for h > 0, as n — « for small and moderate A,
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thus generalizing the corresponding results of Barbour and Hall and of
Deheuvels and Pfeifer. Our method also yields a large deviation result. In
particular, our method for large deviation is different from the heuristic
treatment of Stein [(1986), Chapter 5] and that of Barbour and Jensen (1989),
who used Stein’s method for asymptotic expansions and the method of conju-
gate distributions. It also holds promise for successful application in the case
when X,,,...,X,, are dependent. Poisson approximation for dependent
Bernoulli random variables has been found to have many applications. See, for
example, Arratia, Goldstein and Gordon (1989, 1990), Barbour and Holst
(1989) and Barbour, Holst and Janson (1988, 1992). The ideas used in this
paper also provide an approach to Poisson approximation for unbounded
functions which is different from, and perhaps also neater than, that consid-
ered by Barbour (1987).

2. Notation and main results. We denote the set of nonnegative inte-
gers by Z* and the statement that Z, has a Poisson distribution with mean A
by Z, ~ Pois(A). To simplify notation, we use p; for p,,;, X; for X, ;,, W for W,
and Z for Z, when ambiguity does not arise. Throughout this paper, % is a
real-valued function defined on Z™. For a given A, let U,k denote a solution to
the difference equation A f(w + 1) — wf(w) = h(w) — Eh(Z,), w € Z*. Note
that the solution to this difference equation is unique except at w = 0 and
that the value of any solution at w = 0 does not enter into our calculations
at all. Let Vihi(w) = Uh(w + 2) — Uh(w + 1), w > 0, that is, Vih(w) =
AUh(w + 1). Let I, denote the indicator function of A, a subset of Z*. In the
case A = {r}, r € Z*, we will use I, instead of I,,. We denote f(n)/g(n) — 1
as n = © by f(n) ~ g(n). Finally, we denote P(Z, = r) by p(A;r).

THEOREM 2.1. Suppose E|h(Z, + 4)| <« for some vy >0, where Z, ~
Pois(y). If A = 0 as n — =, then the following hold:

() ER(W) — ER(Z) ~ —27XE7_, p2h(2) — 2h(1) + h(0)], provided that
AR(0) = A(2) — 2h(1) + h(0) # O;
(i) d(h,W,Z) ~ 27E2_ p2R(2) + 2h(1) + h(0)], where h is a nonnega-

tive function on Z* and Y2_,h(k) > 0.

THEOREM 2.2. Let a > 0. Suppose E|h(Z, + 4)| < = for some y > a. If
A= aand p, = 0 as n = «, then the following hold:

(i) ER(W) — Eh(Z) ~ 27 XX, p2)E A2h(Z,), provided that E A’h(Z,) #

0;
(i) d(h,W,Z) ~ (2a®) XX, pPDEIZE — (2a + 1)Z, + a*|h(Z,), where h

is a nonnegative function on Z* and E|Z2 — (2a + VZ, + a*lh(Z,) > 0.

To state our next results on large deviation, we let A(x) be a polynomial of
degree N in the form a, + L3_;a,IT#Z5(x — ). Let A be a subset of Z*, and
let a denote min{k: k& € A}.
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THEOREM 2.3. Let H(x) = h(x)I,(x). Suppose A remains bounded, p,, = 0
and a = o(A[X?_,p2]1"Y/?) as n - . Then

EH(W) —a?(n
EH(Z) ‘“W(EJ"')'

By putting A ={z + 1,z + 2,...} and h(x) = 1, we immediately obtain the
following corollary.

CoROLLARY 2.4. Suppose A remains bounded, p, » 0 and 2z =
o(A[X?_,p2171/%) as n — . Then

P(W>z —22(n
_(__)_ -1~ — Z pi2 .
P(Z > z) 2) [

ReEMARKS. (i) The special cases where h(n) =1, n >0, in parts (ii) of
Theorems 2.1 and 2.2 have been proved by Deheuvels and Pfeifer (1986) by a
semigroup approach. They have also been obtained by Barbour and Hall
(1984).

(i) It is perhaps interesting to note that in Theorem 2.1, the asymptotic
values of EL(W) — Eh(Z) and d(h, W, Z) involve h(0), h(1) and A(2).

(iii) Corollary 2.4 can also be proved by using the results in Barbour and
Jensen (1989).

3. Preliminary lemmas. In this section, we establish some basic identi-
ties and inequalities which are needed in the proofs of the theorems. The first
lemma can be easily proved by induction.

LemMMA 3.1. Letk,z€ Z" and 1 <k <z Then

z—k+1 k-1
Y i(i+1)-(i+k-2)=k ][ (2—1i),
i=1 . i=0

where the summand on the left-hand side is taken to be 1 for k = 1.

LeEmMA 3.2. For k > 1 and Z ~ Pois()), we have
E|UR(Z + k)| < kY Eh(2)| + B W EZ(Z — 1) -+ (Z — k + 1)| h(Z)]
=k Y|ER(Z)| + E\h(Z + R)|}.
Proor. For w =1, Uh(w) = -X7_,(w — DIN~*[h(l) — ER(Z)]/1! [see
* (18) on page 84 of Stein (1986)], which can be rewritten as
| E[h(Z) - ER(Z)]I(Z = w)
Ap(A;w— 1) '

Uh(w) = —
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Therefore
= |E[h(Z) — ER(Z)]I(Z = w + k)]
E\lUR(Z+ k)| = wgo P (Gw k1) p(A; w)
<Ak f‘, (w+k-1)
w=0
o (w+ DE(h(Z)| +|ER(Z))(Z = w + k)
- A"‘E{(lh(zn HER(Z)) T w(w+ 1)
w=1
o (w+ k- 2)

= k"W E(|h(Z)| +|ER(Z))Z(Z - 1) - (Z — k + 1)
=k~ Y|ER(Z)| + E|R(Z + k) |},

where we have used Lemma 3.1 and the following identity [Stein (1986),
Theorem 1, page 81]:

(3.1) EZf(Z) = AEf(Z + 1). O
REMARK. It is not difficult to see that if EZ!|h(Z + k — 1)| < » for some
1=0,1,...,k, then EZYR(Z + k - 1) < xforall [ = 0,1,..., k.
LemMma 3.3. Let Vih(w) = Uh(w + 2) — Uh(w + 1), w > 0. We have
E[V,h(Z)| = (24%) 'EZ(Z - 1)|h(Z)| + A 'EZIh(Z)| + (3/2)| EA(Z)]
= 27E|h(Z + 2)| + E|h(Z + 1)| + (3/2)| ER(Z)].
Proor.. Since E|V,h(Z)| < E|\U,h(Z + 2)| + E|U,h(Z + 1)|, the lemma
follows from Lemma 3.2 and (3.1). O

REMARK. In fact, for £ > 0, we have
E|V\h(Z + k)| <27'E|R(Z + k + 2)|
+E|R(Z +k+ 1) + (3/2)E|h(Z + k).
LeEmmA 3.4. We have
E[VZh(Z)| < (8)*) 'EZ(Z - 1)(Z - 2)(Z - 3)| h(Z)|
+(2X%) 'EZ(Z - 1)(Z - 2)|h(Z)]
+ 5(4A2) 'EZ(Z - 1)|h(2)|
+3(2)) 'EZ|h(Z)| + Z|ER(Z)|
= 8 YE|h(Z + 4)| + 4E|h(Z + 3)| + 10E|h(Z + 2)]
+12E|h(Z + 1)| + 27| ER(Z)|}.
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Proor. Replacing & by V,h in Lemma 3.3, we have
E|V?h(Z)| < 27 B|V;h(Z + 2)| + E|V,h(Z + 1)| + (3/2) E|V;h(Z)]
< 27YE|Uh(Z + 4)| + BE|U,h(Z + 3)|
+2E|U\k(Z + 2)| + 3E|V,h(Z)|}.
Applying Lemmas 3.2 and 3.3 and (3.1), we obtain Lemma 3.4. O

LemMma 3.5. Suppose EZ?|h(Z)| < . Then EV,h(Z) = —E A’h(Z)/2.

Proor. Denote U,k by f. Then for k£ > 0,
Af(w+k+2)—(w+k+1)f(w+k+1)=h(w+k+1) - Ehr(Z),
and ‘
AMf(w+k+1)—(w+k)f(w+k)=h(w+k)—Eh(Z).
Taking the difference, we get
Mf(w+k+2)—f(w+k+1)] —w[f(w+k+1)—f(w+Ek)]
+kf(w+k)—(B+1)f(w+k+1)=h(w+k+1)—-h(w+Ek).

Taking the expectation of both sides with respect to the Poisson distribution,
we get

REf(Z + k) — (k + DEf(Z + k + 1)
—E(R(Z+k+1) - h(Z+k)).
Putting 2 = 0 and £ = 1 into (3.2), we have
(3.3) —Ef(Z+1) = E(h(Z + 1) — k(Z))
and '
(3.4) Ef(Z+1) - 2Ef(Z+2)=E(h(Z+2)—h(Z+1)).
Therefore, 2E(f(Z + 2) — f(Z + 1)) = —E A?h(Z) and Lemma 3.5 follows. O

(3.2)

Putting h = I,, we immediately obtain the following lemma.
LEMMA 3.6. Letr € Z*. Then
EV,I(Z) = —(202) 'p(A;r)[r2 = (21 + 1)r + A%,

4. Proof of Theorems 2.1 and 2.2. We will only prove Theorem 2.1(i)
because the method of proof can be carried over to Theorem 2.1(ii) and
‘Theorem 2.2. We start with the following identity [Stein (1986), page 861

(4.1) ER(W) - ER(Z) = 3. p2EV,h(WD),

i=1
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where W = W — X,. Rewriting (4.1), we get

ER(W) — Eh(Z) = ( ipf)Em(W) + ¥ pH{EVR(WD) - EV,h(W))
i=1 i=1

- ( ) p?)Em(W)
1

+ L PIE(A(W®) = (WS + 1)),
i=1

Applying (4.1) to EV,h(W), we obtain

ER(W) - ER(Z) = ( ipf)EWZ) ¥ ( ip?)( Y pIEV2h(WO)
1 i=1

Jj=1

(4.2) i
+ ¥ pPE(VR(W®) - ViR(W® + 1)),

13

i=1
From Lemma 3.5,
( ipf)Em(Z) - —( ip?)EA%(Z)/z
i=1 i=1
> —( ip?) A%h(0) /2
i=1

s

= _( Zplz)[h(2) —2h(1) + h(0)]/2 as A — 0.

i=1
Therefore, Theorem 2.1(i) will be proved if we can show that each of
Y. p;EVER(W), 3 pPEVy( W(i))/( )y p?)
j=1 i=1 i=1
and
£ stviaw + 1| £
i=1 i=1
tends to 0 as n — . From a result of Chen [(1975b), page 998] P(W® = k) <
2Sp(A; k) for all k>0 and for sufficiently large n, where S ={1+
ATIEr_ pZ/(1 — p)) and ¢t is the integral part of A + 1 + X7, p2/(1 — p,).
So,

Y pPEVZR(W®)| < 23( Zp?)Elth(Z)l
i=1 i=1
- <4785, ME|h(Z + 4)| + 4E|h(Z + 3)|
+10E|h(Z + 2)| + 12E|h(Z + 1)| + 27| ER(Z) )
< 27TMSp, /2 - 0 asn — o,
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where, for A < vy,
M = max{E|h(Z +i)|:0 <i < 4} < e”max{E|h(Z, +i)|[: 0 <i <4} <.

Similarly,
Y pPEV,R(W®) /( )y p?) < 28p,E|V,h(2)|
i=1 i=1
< SpAE|R(Z + 2)| + 2E|h(Z + 1)|
+3|Eh(Z)|)

<6MSp, >0 asn — x

In the same way, we can show that ©7_,p?EV,A(W® + 1) /(X7_,p2) — 0.
This completes the proof of part (i) of Theorem 2.1. O

5. Proof of Theorem 2.3. Before we prove Theorem 2.3, we need the
following lemma.

Lemma 5.1, Suppose h(x) = ay + L3_1a,T1%23(x —j), ay # 0. For any
m € 7%, we have
(5.1) ER(Z+m)I(Z+m) ~ayA"p(l;a— N—-m) asa— x,
where A c 7% and a = min{k: k € A}. Indeed, we have

E\R(Z + m)I(Z + m)| ~ layIA¥p(A;a — N —m).

PrROOF. Rewriting h(x + m) as by + L5, I1523(x — j), where by = ay,

we have
Eh(Z+ m)I,(Z+m) =byP(Z+meA)

+ %bkEZ(Z— 1) (Z—-k+1)I(Z+m)
k=1

' N
—bP(Z+meA)+ ¥ bMP(Z+m+keA)
k=1
=byA"P(Z+ N+ me€A)
{ N-1p N NP(Z+m +keA)
X

1+
,E’O byP(Z+m+NeA)

We will show that:
(i) P(Z+N+meA)~P(Z=a-N-m)
and
. NeNP(Z+m+EkeA)
(1) P(Z+m + N € A)

=o0(1)
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asa >, 0<k<N -1 Now,
P(Z=a-N-m)<P(Z+N+meA)<P(Z+N+m=a)

© A k
P(Z=a-N -
<P(Z=a-N m){1+k§1[a—N—m+1 }

-1

A
a—-N-m+1

’

=P(Z=a—N—m)[1—

so (i) follows easily. For 0 <2 <N — 1,
NeNP(Z+m+EkeA) P(Zza—-m—k)

</\k—N
P(Z+m+NeA) P(Z=a—-m—N)

M-NpP(Z=a-m—k) A -t

= P(Z=a-m—N) Ca-k-m+1
(e —m —N)! A -t

= — —)0
(a —m —k)! a—k-m+1

as a — ®,

This proves (ii). Lemma 5.1 then follows immediately from (i), (ii) and the fact

Proor oF THEOREM 2.3. By putting H into (4.2) and by Lemma 3.5, we
obtain

EH(W) — EH(Z) - —%( pr)EAZH(Z) ¥ ( ip?)(
i=1

n
PIEVZH(WY )))
Jj=1

i=1

+ Y pPE[VH(W®D) — VH(W® + 1)].
i=1
This implies
EHW) 1 f‘.p-z EANH(Z) f‘.pz Y pEVEH(WY)
EH(Z) 2\;Z,"") EH(Z) = EH(Z)
N L7 pPE[VH(W®) - VH(W® + 1)]
EH(Z) ‘
Theorem 2.3 will be proved if we can show that
ENH(Z) a?
(5.2) =L,
EH(Z) .\
(5.3) |25 PIEVEHWD)]
v " |ENH(2)] ’
| (5.4) | T2 1 pPEV,H(W®)|

(i ENEZ)] "
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and
55) S PP EVH(WD + )|
|(Z2_.p?)| EA%H(Z)]
Since

EAH(Z) = EH(Z + 2) — 2EH(Z + 1) + EH(Z)
=ayA¥{p(r;a — N - 2)(1 +0(1))

—2p(A;a — N —1)(1 +0(1)) +p(A;a — N)(1 +o0(1))},
this implies E A2H(Z) = a yAVp(A;a — N — 2)(1 + o(1)). Therefore,
ENH(Z) _ p(r;a—N-—2 (1+o(1))~—2
EH(Z) p(A,a — N A2
This shows (5.2).
Next,
|7 1p,EVzH(WU>)| n\E|VEH(Z)|
|ENH(Z)| ( § ) |ENH(Z)|

By Lemma 3.4, the left-hand side of (5.3) is

I/\

—s( Y p? ){EIH(Z +4)| + 4E|H(Z + 3)| + 10E|H(Z + 2)|

+12E|H(Z + 1)| + 27|EH(Z) (| EA*H(Z)|) "

n layIA¥p(A;a — N — 4)(1 + o(1))
(Z )IaNI/\ p(A;a — N — 2)(1 +o(1))

1
n a? n -1/2

= (Z ) —(1+0(1)) -0, becausea—o( pr] )
= i=1

This proves (5.3). To show (5.4) and (5.5) we proceed similarly and apply
Lemma 3.3 as follows:

|Zn \PPEV,H(WD)| 3 (Z2_.p}) E|V,H(Z)|
(Zrp?)|ENH(Z)| — 7 (T121p7) |EAH(Z)|
(Zn 1PJ)

(Z3-1p7)

(Zn lpJ)

(Z3-1p]) A

" 1/2
ss(zp?) ~(1+0(1) >0,

<S8 (1 +0(1)) <8p,(1+o0(1)) - 0.

Similarly,
T2 pPEV,H(WY + 1)

T ELeESED)] <P

(1 +0(1)) -

IA
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since

(élp?)z < (é‘, p}

1

I[£r)<(2

=1 i=1

p,.z)3 and a:o(A[ipg]_l/z).

i=1

This completes the proof of Theorem 2.3. O
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