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STRICT STATIONARITY OF GENERALIZED
AUTOREGRESSIVE PROCESSES

By PHILIPPE BOUGEROL AND Ni1co PICARD

Université de Nancy 1

In this paper we consider the multivariate equation X, .; = A, X, +
B, ., with iid. coefficients which have only a logarithmic moment. We
give a necessary and sufficient condition for existence of a strictly station-
ary solution independent of the future. As an application we characterize
the multivariate ARMA equations with general noise which have such a
solution.

1. Introduction. In the last two decades, there has been a growing
interest in various generalizations of autoregressive processes. Some classes of
models are random coefficient models, dynamic models with a state space
representation, multivariate autoregressive moving average (ARMA) models
with nongaussian disturbances, bilinear models, stochastic difference equa-
tions, generalized autoregressive models with conditional heteroscedasticity
(GARCH) processes [see, for instance, Nicholls and Quinn (1982), Caines
(1988), Granger and Andersen (1978), Vervaat (1979), Engle and Bollerslev
(1986)]. An overview of their main properties is presented in Priestley (1988).
These processes are usually introduced to model stationary time series. There-
fore their stationarity properties are to be studied carefully. General conditions
ensuring existence and uniqueness of second-order stationary solutions are
known and presented in the references given above. They are usually proved
by Hilbert space techniques. However, it has been recognized that some
important time series which appear in modelling are strictly stationary and
non-square-integrable [we recall that a sequence {X,} is strictly stationary if,
for all n € Z and m € N, the law of (X,, X,,,,.-., X,,,,) is independent of
n]. These non-square-integrable strictly stationary processes were first intro-
duced in modelling financial data by Mandelbrot (1963) [see also Granger and
Orr (1972)]. Examples are ARMA processes with infinite variance [Stuck
and Kleiner (1974), Hannan and Kanter (1977), Brockwell and Cline (1985)]
and various ARCH and GARCH models [Engle and Bollerslev (1986), Nelson
(1990)]. For instance, several statistical empirical studies have shown that the
stationary GARCH processes associated with interest rates and exchange rates
are typically non-square-integrable. The purpose of this paper is to give
necessary and sufficient conditions for the existence of strictly stationary
generalized autoregressive processes. Other recent results related to the sta-
tionarity properties of these models can be fourid in Feigin and Tweedie
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(1985), Liu and Brockwell (1988), Pham (1986), Tjgstheim (1986) and Pourah-
madi (1988).

One can associate with each of these processes (sometimes through a
so-called Markovian representation) a multivariate stochastic difference equa-
tion of the following type:

(1) Xn+1=An+1Xn+Bn+1’ nez’

where X, and B,, are random vectors in R%, the A,’s are d X d matrices, and
{(A,, B,), n €7} is a strictly stationary ergodic process. The stationarity
properties of these processes are directly related to the stationarity properties
of the solutions of (1). It is therefore sufficient to consider this general model
and we will restrict ourselves to this situation.

Actually, a general sufficient condition ensuring the existence of a strictly
stationary solution of (1) is already known. The following theorem is due to
Brandt (1986). It is stated there for the one-dimensional case d = 1 but the
proof is valid for all d (for the convenience of the reader we repeat the proof in
the second part of the Proof of Theorem 2.5). Below, || || is an operator norm
on the set of d X d matrices.

THEOREM 1.1 (Brandt). Let {(A,, B,), n € Z} be a strictly stationary er-
godic process such that both E(log™||A,yl) and E(log™||B,l) are finite. Suppose
that the top Lyapounov exponent y defined by

1
v = 1nf{[E( —— logllAgA_; -+ A—n”)’ ne N}

is strictly negative. Then, for all n € Z, the series
400
Xn = Z AnAn—l T An—k+1Bn—k
k=0
converges a.s., and the process {X,, n € Z} is the unique strictly stationary
solution of (1).

Our aim is to establish a converse to this theorem. We consider the case
where the (A,, B,)’s are independent, identically distributed, and we look at
strictly stationary solutions which are “independent of the future” (we call
them nonanticipative; see Definition 2.2). Our main result (Theorem 2.5) is
that under an irreducibility condition, if there is a nonanticipative strictly
stationary solution of (1) then the top Lyapounov exponent y is strictly
negative. As an application, we study multivariateé ARMA processes with
arbitrary i.i.d. noise. We prove that the necessary and sufficient condition for
_ the existence of a nonanticipative strictly stationary solution of an ARMA
equation is the familiar condition on the polynomial matrix associated with the
autoregressive part (see Theorem 4.1). We also consider dynamical models
with a state space representation (Proposition 4.2). In that case our irreducibil-
ity condition reduces to controllability.
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The plan of this paper is the following. In Section 2, we state our main
results on the existence of strictly stationary solutions of (1). We consider both
situations, with and without moment condition (Theorems 2.4 and 2.5). Sec-
tion 3 is devoted to the proofs of these results. Applications to ARMA processes
and dynamic models with a state space representation are presented in Section
4. The methods rest upon martingale and Markov chain theory and use the
same approach as Bougerol (1987), where the case B, = 0 was considered.
Actually, this paper is independent of Bougerol (1987); the situation here is
somewhat simpler (due to our irreducibility assumption) and can be described
completely. This was not possible there, where, for instance, the A,’s had to
be invertible.

Autoregressive processes with positive coefficients and GARCH processes
are studied along the same lines in Bougerol and Picard (1992). Under moment
conditions and in dimension 1, results similar to ours appeared in Elie (1982),
Grincevicius (1981) and Vervaat (1979).

2. Statement of the general results. In this section we give the main
definitions that we will use and we state our general results. Proofs are
postponed until the next section. Below, M(d) denotes the set of d X d real
matrices and (Q, &7, P) is a given probability space.

DEFINITION 2.1. A generalized autoregressive model with i.i.d. coefficients
is a model

(2) Xn+1 = An+1Xn + Bn+1’ ne Z’

where {(A,, B,), n € 7} is a given sequence of independent, identically dis-
tributed, random variables defined on (2, 7, P) with values in M(d) X R%. A
solution of this equation is any sequence {X,, n € Z} of R%valued random
variables for which (2) holds.

In this paper we are only interested in stationary solutions which are
independent of the future at any given time, in the sense of the following
definition. We do not assume that they are causal nor measurable with respect
to the past. In fact, it will be a consequence of our main theorem that this is
actually true under an irreducibility condition.

DEFINITION 2.2. A nonanticipative strictly stationary solution of (2) is a
strictly stationary process {X,, n € Z} which is a solution of (2) such that, for
any p € Z, X, is independent of the random variables {(4,, B,), n > p}.

Without an extra hypothesis the converse of Brandt’s theorem is not true;
for instance, if B, is identically 0, then X, = 0 is a stationary solution for any
sequence {A,}. In order to avoid such degenerate situations, we introduce the
following irreducibility condition. Proposition 2.6 and Corollary 2.7 will shed
some light on the role of this hypothesis. We recall that an affine subspace H
of R? is a translate z + V of a linear subspace V. In general, we make no
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distinction between a matrix and the linear map which is associated with this
matrix (in the canonical basis).

DEFINITION 2.3. An affine subspace H of R? is said to be invariant under
the model (2) if {Ayx + By; x € H} is contained in H almost surely. The
model (2) is called irreducible if R? is the only affine invariant subspace.

Our first result does not require any integrability condition. It will be
proved in Section 3.

THEOREM 2.4. Consider a generalized autoregressive model (2) with i.i.d.
coefficients. Suppose that this model is irreducible and that it has a nonantici-
pative strictly stationary solution {X,,, n € Z}. Then the following hold:

@) AjA_, -+ A_, converges to 0 almost surely when k — + .
(ii) For any integer n,
+ o0
(3) Xn = Z AnAn—l T An—k+an—k’
k=0

where the series converges almost surely.
(iii) This solution is the unique strictly stationary solution of (2).

We recall the definition of the top Lyapounov exponent. We choose any
norm || || on R¢ and define an operator norm on M(d) by
| M|l
[l

for M in M(d). The top Lyapounov exponent associated with the models (1)
and (2) is defined, when E(log™|| A, is finite, by

llMII=sup{ ;xeRd,x#O},

1
vy = mf{[E( —] logllAgA_, -~ A_,,Il), ne N}.

For instance, y < E(logllA,l), with equality in dimension 1. When A, is a
constant matrix A, then y is the logarithm of the spectral radius of A. It is
known that a.s.,

1
(4) y= lim —logllA,A_, --- A_,l
n—+owo N
[see Furstenberg and Kesten (1960) or Kingman (1973)]. This shows that vy is
independent of the chosen norm. In general, this exponent can be difficult to
compute but it is easily estimated by Monte Carlo simulations, using (4).
Qur second main result is the following converse of Brandt’s theorem.

THEOREM 2.5. Suppose that the generalized autoregressive model (2) with
i.i.d. coefficients is irreducible and that both E(log™||A,l) and E(log™||B,l) are
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finite. Then (2) has a nonanticipative strictly stationary solution if and only if
the top Lyapounov exponent vy is strictly negative.

The next proposition could be a first step in the study of the nonirreducible
situation. We will use it in Section 4.

PROPOSITION 2.6. Suppose that the model (2) has a nonanticipative strictly
stationary solution {X,, n € Z}. Let H be the minimal affine subspace of R4
such that P(X, € H) = 1. Then H is invariant under the model and any
invariant subspace of H carries a nonanticipative strictly stationary solution.

An immediate consequence of Theorem 1.1, Theorem 2.5 and Proposition
2.6 is the following corollary.

CoROLLARY 2.7. Consider a model (2) with E(log™||A,l) and E(og™||B,lD
finite. Suppose that there exists a nonanticipative strictly stationary solution
which is not carried by an affine hyperplane. Then the following three condi-
tions are equivalent:

(i) The top Lyapounov exponent is strictly negative.
(ii) The model is irreducible.
(iii) There is a unique stationary solution.

ReEMARK 2.8. Under the same hypotheses as above we may also consider
the equation

(5) Xn+1 = An+1Xn + Bn+1’ nz O’

indexed by positive times. Suppose that {X,, n € N} is a nonanticipative
strictly stationary solution of (5). It is easy to see that {(X,,, A,, B,), n € N} is
a strictly stationary process. It can be extended, as any stationary process
indexed by the positive integers, to a new stationary process {(X,, A,, B,),
n € 7}. It is clear that X, ,, =A,.,X, + B, ,, as., for all n in Z, and that
{X,, n€ 2z} will be a nonanticipative strictly stationary solution of this
equation. This reduces the study of (5) to the study of (2).

3. Proofs of the general results. We consider a generalized autoregres-
sive model with i.i.d. coefficients. One can associate with this model a Markov
chain on R%: Starting from a deterministic point x in R¢, the chain is at time
n in the state X,, where {X,, n € N} is the solution of (2) which satisfies
X, = x. The transition probability of this Markov chain is the kernel P given
by

P(x,C) =P(Aox + By C), xR,

for any Borel set C of R%. A P-invariant distribution is a probability measure
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m on R? such that
JP(x,C) dm(x) = m(C)

for any Borel set C. In other words, it is an invariant distribution of the
Markov chain.

LEMMA 3.1. There is a one-to-one correspondence between the nonanticipa-
tive strictly stationary solutions of (2) and the P-invariant distributions.

Proor. Let {X,, n € Z} be a nonanticipative strictly stationary solution of
(2) and let m be the common law of the X,’s. By the definition of ‘‘nonantic-
ipative,” X, is independent of (A;, B,) and we may write, for any Borel set C
of R¢,

m(C)=P(X,€C)

— P(A, X, + B, €C)

= [P(Ax + B, € C) dPx(x)

= [P(x,C) dm(x).

This shows that m is P-invariant. Conversely, let m be a P-invariant
distribution. Consider a random variable X, with law m, independent of the
sequence {(A,, B,), n > 1}. When n is positive, define a process by the
formula X,=A,X,_, + B,. Then {X,, n €N} is a Markov chain with
transition probability P. Since the law of X, is P-invariant, this is also a
stationary process. It is clear that this process is a nonanticipative strictly
stationary solution of (5). As seen in Remark 2.8, it can be extended to such a
solution of (2). O

LEmMMA 3.2. Let m be a P-invariant distribution. Then the affine subspace
H of minimal dimension such that m(H) = 1 is invariant under the model (2).

Proor. With the notation of Lemma 3.2, we have
l1=m(H)=P(X,€H)=P(A,X,+B,€H)

- lE{f]lH(Alx + B,) dm(x)}.

Thus if L = {x € R¢, A,x + B, € H, as.}, then m(L) = 1. The affine sub-
space L N H is such that m(L N H) = 1. By minimality, H is contained in L.
This shows that {A,;x + B;; « € H} is contained in H a.s., hence H is
invariant. O

In order to prove Theorem 2.4 it is convenient to use affine maps. Let Aff(d)
denote the set of affine maps from R¢ into R¢. Such a map f can be written in
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a unique way as

f(x) =Ax + b, x € RY,
where A is in M(d) and b is in R The set Afi(d) is thus in one-to-one
correspondence with M(d) X R9. It is a vector space of dimension d(d + 1).
The composition of maps defines a product on Affi(d). Explicitly, if f(x) =
Ax + b and g(x) = Cx + d, then

(fo8)(x) =ACx + Ad + b.
With this product, Aff(d) is a topological semigroup.

ProOF OF THEOREM 2.4. We define random affine maps F, (= F?) and T,
(=T2) by
F(x)=A,x+B,, x€R%nez,

and
Fn=F0°F_1°"'°F_n, nEN.

Let u be the law of Fy, u, be the law of T, and v = X5,_;27"" 'w,,. These are
probability measures on Afi(d). The topological support of », denoted by S, is
a closed subsemigroup of Aff(d).

By assumption, the model is irreducible and (2) has a nonanticipative
strictly stationary solution. Whence, it follows from the above lemmas that
there exists a P-invariant distribution m which is not carried by an affine
hyperplane.

The pairing which associates to the element ( f, x) in Affid) X R? the vector
f(x) in R? defines an action of Aff{d) on R%. In the terminology of Bougerol
and Lacroix [(1985), 1.3.3], m is a u-invariant distribution. Thus we are in
position to use Lemma II.2.1 of Bougerol and Lacroix (1985), due to Guivarc’h
and Raugi (1985). By this lemma, there exists a measurable subset , of ()
such that P(Q,) = 1 and such that for all w in Q, there is a probability
measure m, on R? with the following properties: For any bounded continuous
function ¢: R¢ - R,

(6) lim (I (x)) dm(x) = [(x) dm,(x)
and, for v-almost all f in AfR(d),
(7) T [$((T2 e £)(x)) dm(x) = [$(x) dm,(x).

Let H, be the smallest affine subspace of R such that m (H,) = 1. We need
the following lemma.

LEMMA 3.3. If there exists a P-invariant distribution m which is not
.carried by an affine hyperplane, then, for all w € £, the following hold:

(i) The sequence {T'*, n > 0} is bounded in the vector space Aff(d).
(i) For any limit point T2 of this sequence, (a) the set {I?° f, f € S} is
bounded and (b) for all fin S, (I2 o fYRY) = T2(R%) = H,,.
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Proor. We fix an element o in (),. Suppose that the sequence {T'*, n > 0}
is not bounded. We can find a subsequence {n;, i € N} and an affine map I'*
such that

w
n;

lim [T®f= +o and i =TI
Jim [T = e and i
[where || || denotes a norm on the vector space Afid)]. Let H = {x € RY,

I'“(x) = 0} and ¢: R? - R be a continuous function with compact support. If x
is not in H, then [I;}(x) - +o, and thus ¢(I*(x)) = 0, as i » +x. This
implies that

Jim [¢(Te(x)) dm(x) = lim [1y(x)$(Tz(x)) dm ().
Using (6) we obtain that

|[6(2) dm )

As m, is a probability measure, m(H) = 1. Since m is not carried by an affine
hyperplane, H must be equal to R%. Thus I'° = 0, but this is impossible since
IT“]l = 1. Therefore the sequence {I'?, n > 0} is bounded, which proves the
first assertion.

Now, let I’ be a limit of this sequence. Then by (7), for v-almost all f,

(8) Jo((T2e £)(x)) dm(x) = [¢(x) dm (x),

for all bounded continuous ¢. The set of affine maps f for which this holds is
closed. Thus this equality holds for all f in the support S of v. Using this
property, the boundedness of {I' o f, f € S} is then proved exactly as the first
assertion. Now, it follows from (8) that, for any f in S,

m,(C) =m{x € R% (I2- f)(x) € C}

for any Borel subset C of R, Applying this relation with C = H , we see that
m is carried by {x € R% ([ f)Xx) € H,}. Since, by assumption, m is not
carried by a proper affine subspace, this implies that (I'® - f)}R?) is contained
in H,. Using again this relation with C = (I - fXR%) and using the minimal-
ity of H,, we see that actually (I* - f)XR?) = H,,. Since, by (6), (8) also holds
when f is the identity transformation, we also have I'*(R¢) = H,, which
proves (b). O

< m(H)suplo(x)l.

Proor or THEOREM 2.4 (Continued). Let Q, = {0 € Q,; ¥ € 8, for all
n € N}. It is clear that P(Q;) = 1. We fix an w in Q. Let I be a limit point of
the sequence {I'’, n € N}. By Lemma 3.3, the set T ={I[[*c f, f S} is
" bounded. Since [’ is in S, and since S is a subsemigroup of Affi(d), T is also a
semigroup. Its closure K is a compact semigroup. This implies [see Hofmann
and Mostert (1966), A.1.22] that there exists an affine map 4 in K such that
hoh =h and such that G ={h° foh, f< K} is a compact group. Let A be
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the Haar measure on G such that A(G) = 1, and let z be the element of R¢
defined by

2= [£(0)dA(g).

By invariance of the Haar measure under left translations, g(z) = z, for any g
in G. In particular, for f in S,

(9) (hol2o foh)(2) ==

Let g = hoI[* and V be the affine hull of the points { f(2(2)); f € S}. For all
fin S, f(V)is contained in V. The assumed irreducibility of the model implies
that V = R?. Therefore, g(R%) = {z}. Since g is an element of S, we obtain,
using Lemma 3.3(b),

H,= (T2 g)(R?) =L2({2}).
Let Z(w) = I*(2). By Lemma 3.3(b) again, [*(R%) = {Z(w)}. In other words,
[* is the affine map which satisfies I[°(x) = Z(w), for any x € R%. This proves

that the sequence {I'“, n € N} converges to this map: For all w in Q,, and thus
almost surely, for all x in R9,

lim AoA, -+ Ax = lim (T(x) ~T,(0)) =0,
— + o0

k— +o
which proves the first claim of the theorem, and

p
lim Y AgA_, -+ A_,,B_, = lim T,(0)=2Z.

Pt g p—+o
By stationarity, for any n, there exists a random vector Z, such that, a.s.,
p
hm Z AnAn—l An—k+1Bn—k =Zn'
P H®p_g
Consider now an arbitrary strictly stationary solution Y, n € Z, of (2). Using
(2) repeatedly, we have, for all n in N,
Yo=Fo(Y_y) =(Foe F_yo - oF_)(Y_,_1) =T(Y_,_1),
so that
(10) Y,-Z= lim {L(Y_, ;) - L(O)}.

n— +w

Note that, since we use an operator norm on M(d),
”Fn(Y—n—l) - 1—‘n(o) ” = ”AOA—I T lq—ny'—n—lIl
< ”AOA—I A_n” ”Y_n_lll-

We have just proved that [|[AgA_; -+ A_,ll converges a.s. to 0. Since the law
of |Y_,_,ll is constant, the left term above goes to 0 in probability, and thus
'Y, = Z by (10). In a similar way, one shows that Y, = Z, for all n. Therefore,
there is a unique stationary solution. In particular, X, = Z,. This completes
the proof. O
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In order to prove Theorem 2.5, we will need the following more or less well
known lemma, which is only a slight extension of Lemma 5.2 of Bougerol
(1987).

LemMMA 3.4. Let {M,, n € N} be an ergodic strictly stationary sequence of
matrices in M(d). We suppose that E(log®||M,l) is finite and that, almost
surely,

lim |M,M, | - M =o0.

n— +o

Then the top Lyapounov exponent vy associated with this sequence is strictly
negative.

Proor. We may suppose that y is not — (otherwise the result is obvious).
In this case, we use the construction of Furstenberg and Kesten (1960). They
have shown that one can, on an enlarged probability space, adjoin to the
original sequence {M,, n € N} a sequence of matrices Z, in M(d) such that
{(M,,Z,), n € N} is a strictly stationary sequence with the following proper-
ties, a.s.:

1
lim —logllM,M,_, - M,Z| =y,

n—+4+o N
M, Z,l=+0,
and
Mn+1Zn
Z =
nrl ”Mn+1Zn”
We define a map ¢ from M(d) X M(d) into R by
) IMZ|| if 1121l % 0
og———, 1 )
(M, Z) = { BTz]
1, otherwise.
Then
n—-1
loglM, M, | -+ M,Z || - loglZ ]l = Y. O(M;,y,Z;), as.
i=1

This implies that a.s.,

1 -1
im — 3 ®(M,;,,Z;) = Y

n-o+onl .4

n—1 ’
lim Y ®(M,,,,Z) < linix log(IM, M, _, --- M,llIIZ,])

n— +o i=1

— logllZ,ll = —c.
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From a general lemma of ergodic theory [see Guivarc’h and Raugi (1985),
Lemma 3.6, or Bougerol and Lacroix (1985), Lemma 2.3] we conclude from
these two equalities that y is strictly negative. O

Proor or THEOREM 2.5. We first suppose that there exists a nonanticipa-
tive strictly stationary solution of (2). Let M, be the transpose of the matrix
A_,. For the operator norm on M(d) associated with the Euclidean norm on
R9, the norm of a matrix is equal to the norm of its transpose. Whence,

M, M,_; - Mll=llA_JA_, -~ A_,l.

The top Lyapounov exponent associated with (M) is also y. By Theorem 2.4,
AjA_; -+ A_, converges a.s. to 0 and we conclude from Lemma 3.4 that vy is
strictly negative. This proves the “only if”’ part of the theorem. The “if”’ part
follows from Theorem 1.1. We give the proof of this theorem adapted
from Brandt (1986) for the reader’s convenience. Let n be an integer. Since
E(og*|| BolD) < + oo,

-+ 00

Y p(log*IB, 4|l > —kl) < 4o,

£E=0 2

This implies, by the Borel-Cantelli lemma that a.s.,

lim su ilo HB, _.l< _r
» p k g n—=kll = 21

so that

1
limsup —logllA,A,_; - A,_,,.1B,_.ll
kot K
1

no |

< limsup —log(l1A,A,_; -~ A, 1llIB,_,l) <

k— +o k
Therefore, when y < 0, the series
+ 0
Yn = Z AnAn—l e An—k+an—k
k=0
converges a.s. It is clear that this sequence is a stationary nonanticipative
solution of (2). Uniqueness is shown at the end of the proof of Theorem 2.4. O

Proor oF ProposiTiON 2.6. The fact that H is invariant follows from
Lemma 3.2. Let Aff{H) be the vector space of affine maps from H into H.
Using the invariance of H, we may define maps F, in Aff(H) by, if x € H,
F(x) = A,x + B,. Consider the model

! Y+1’=Fn+1(Yn)’ nez,

n

where Y, € H. Except for a change of notation, this is a generalized autore-
gressive model with i.i.d. coefficients in the sense of Definition 2.1. The process
{X,, n € Z}, which is carried by H, is a nonanticipative strictly stationary
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solution of this model. Moreover, by minimality of H, the law m of X, is not
carried by a proper affine subspace of H. Therefore Lemma 3.3 holds for this
model. Let L be an invariant affine subspace of minimal dimension contained
in H. Using this lemma, we may repeat the second part of the proof of
Theorem 2.4 for the restrictions of the F,’s to L (everywhere in that
proof L replaces R? and the affine subspace V there is now equal to L).
We obtain that, for any x in L, (Fyo F_jo -+ o F_ )x) converges almost
surely to a limit Z, independent of x. By stationarity, for any % € Z,
(F,oF,_y°o -+ o F_,Xx) converges a.s. to some random variable Z, when n
goes to +o. It is clear that (Z,) is a stationary nonanticipative solution of (2)
carried by L. O

4. Application to ARMA processes and state space models. In this
section we give a necessary and sufficient condition for existence of strictly
stationary solutions of multivariate ARMA equations and state space models,
when the noise process is an arbitrary sequence of ii.d. random vectors. We
first consider multivariate ARMA models. Let F;,1 <i<p,and G;,0 <j <g,
be given real matrices of dimension d X d and d X m, respectively. A random
process {Y,, n € Z} with values in R? is solution of an ARMA equation if

p q
(11) Yn = Z EYn—i + Z stn—j’ ne Z:

i=1 j=0
where ¢,, n € Z, are given independent, identically distributed, R™-valued
random variables. Such a solution is called nonanticipative when, for any
r € Z,{Y,, k < r}is independent of {¢,,, n > r}.

Let us introduce the following matrices with polynomial coefficients:
p q
F(x)=1I1,— ) F,x", G(x) = Y. G,x",
n=1 n=0

where I, is the identity matrix in M(d). By definition, a d X d matrix with
polynomial coefficients D(x) is a common left divisor of F(x) and G(x) if there
exist two matrices P(x) and Q(x), with polynomial coefficients, such that
F(x) = D(x)P(x) and G(x) = D(x)Q(x). The matrix fraction F(x) 'G(x) is
said to be irreducible if the determinant of every common left divisor of F(x)
and G(x) is independent of x.

The following theorem is a generalization of the classical result on ARMA
processes where the white noise process is assumed to be Gaussian [see e.g.,
Caines (1988)]. The ““if”’ part is well known, and we give the proof for the
reader’s convenience. With an appropriate modification of the dimension m
and of the G,’s, we can suppose without loss of generality that there is no
" affine hyperplane H of R™ such that P(¢, € H) = 1.

THEOREM 4.1. We suppose that & is not carried by a fixed affine hyperplane
of R™, that E(log*lle,l) < © and that the matrix fraction F(x)™'G(x) is
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irreducible. Then, there exists a nonanticipative strictly stationary solution of
the ARMA equation (11) if and only if all the zeros of the polynomial det F(x)
lie outside the closed unit disk.

Proor. Step 1. Consider the following matrices, written in block form:

\P=(F1,...,Fp_1), r=(G1"":Gq—1);
v F, r G G,

Ao Ip-pa 0 0 0 B 0 |
0 0 0 0 L, |’
0 0 I,,-1 O 0

for instance, A is a (pd + gm) X (pd + gm) matrix. Write ‘M for the trans-
pose of a matrix M. The correspondence which associates with the sequence
{Y,, n € Z} the random vectors

(12) X, =" (Y., Y sz, eer Enget)

is a bijection between the solutions of the ARMA equation (11) and the
solutions of the generalized autoregressive model in RP¢+7™,

(13) n+1=AXn+B8n+17 nEZ
The inverse correspondence is given by
(14) Y,,.=CX, + De,,,, nelz,

where C = (¥, F,,T,G,) and D = G,. Equations (13) and (14) are a state
space representation of the ARMA model. Thus, by Caines [(1988), (8), Ap-
pendix 2],

(15) F(x)7'G(x) =C(x~'1-A) 'B+D.

StEP 2. We will now prove that if (13) has a strictly stationary nonantici-
pative solution {X,,, n € Z}, then the zeros of det F(x) lie outside the closed
unit disk. Let H be the affine subspace of minimal dimension of R?¢*7™ such
that P(X, € H) = 1 and let K be an affine subspace of minimal dimension of
H which is invariant under the model (13). Write K =z + V, where V is a
vector subspace and z is in RPE+ea™ Since, a.s., for any n € N,

A(z+V)+Beg,cz+V,
we have
Az—-z+Beg, V.

By subtraction, B(e; — &,) is in V. The ¢,’s are not carried by a hyperplane.
‘Therefore, &, — &, is not contained in a proper linear subspace of R™, which
. yields that

Im(B) c V.
We conclude that Az — z is in V and that AV is contained in V. We will use



STATIONARITY OF GENERALIZED AUTOREGRESSIVE PROCESSES 1727

this information to write the system in block form. Let % be the dimension of
V, and let W be the linear span of {e;, 1 < i < k}, where (e;) is the canonical
basis of RP¢*9™ Consider an invertible matrix M such that M(V)=W.
Separating the first %2 coordinates from the others, we write any x in Rpd+am

as
_[a®
T o
where x@ are the first 2 coordinates of x, and x® the remaining ones. In a

similar manner, since AV and Im B are contained in V, and since Az — z isin
V, we may write

_1_ |a®P a2 _o®
MAM _[o S| MB=|")

, [¢8)
CM~1 = (¢®,c®), M(Az—-z) = [do ]
From Proposition 2.6, we know that there exists a nonanticipative strictly
stationary solution {U,, n € Z} of (13) carried by K. Let Z, = MU, — 2).
Since U, — z is carried by V, we have Z?), = 0 and

(16) ZW, = aMZO 4 pDg, + dO,

Note that (16) is a generalized autoregressive model with i.i.d. coefficients. It is
irreducible, by minimality of K. Hence, it follows from Theorem 2.5 that the
spectral radius of a®? is strictly smaller than 1. However, we deduce from (15)
that

F(x)"'G(x) = CM~Y(x~1 - MAM~Y) 'MB + D
— cW(x~1 - a®) " 'p® 4 D,

Thus the poles of the matrix fraction F(x) 'G(x) are the inverses of the
eigenvalues of a'). Therefore, they lie outside the closed unit disk. On
the other hand, the poles of F(x)'G(x) are the roots of det F(x) = 0 because
the matrix fraction is irreducible [see Kailath (1980), Section 6.5.3]. This
proves that the zeros of det F(x) lie outside the closed unit disk.

STEP 3. We now show that if (11) has a nonanticipative strictly stationary
solution then so does (13) [notice that if we had supposed that {(Y,,, ¢,,), n € Z}
were stationary, then it would have been obvious that (12) defines such a
solution]. The process {X,, n € Z} defined by (12) is a Markov chain because
X, is independent of {z,,, n > p}. Let P be the kernel of this chain and let m,,
be the distribution of X,. The family {m,, n € Z} is tight because {¢,, n € 7}
and {Y,, n € Z} are stationary processes. Let m be a limit point of the
sequence of probability measures {(1/n)E}_;m;, n € N}. As, for any bounded
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continuous function f,

[fdm, .. = [Pfdm,,

we see that m is a P-invariant distribution. Whence, by Lemma 3.1, there
exists a nonanticipative strictly stationary solution of (13). This ends the proof
of the “only if”’ statement.

STEP 4. Let us show the “if”’ statement. It is easily seen that
det(AI — A) = A9™*dPdet F(A™1).

If all the zeros of det F(x) lie outside the closed unit disk, the spectral radius
of A is strictly less than 1, and hence the top Lyapounov exponent of (13) is
strictly negative. Since E(log*|| Be,l]) is finite, it follows from Theorem 1.1 that
there exists a unique nonanticipative strictly stationary solution {X,,, n € Z}
of (13). The process defined by (14) is then a nonanticipative strictly stationary
solution of (11). O

We now consider a general state space model. It is given by (13) and (14),
where {¢,, n € Z} is a sequence of i.i.d. R™-valued random variables and A, B,
C, and D are real matrices of size d X d, d X m, p X d and p X m, respec-
tively. A solution of this model is a sequence {Y,,, n € Z} in R? for which there
exists a sequence {X,, n € Z} in R? such that (13) and (14) hold. It is
nonanticipative if, for each & € Z, {Y,, k < r} is independent of {¢,, n > r}.
The state space model is said to be controllable if the matrix
(B, AB, ..., A°"1B) has rank d, and it is said to be observable if the matrix
¢c,i(cA), ..., (CA?1) has rank d.

PROPOSITION 4.2. Suppose that there is no affine hyperplane H of R™ such
that P(e, € H) = 1, that E(log*||Be,l) < ® and that the state space model is
controllable and observable. Then there exists a nonanticipative strictly station-
ary solution if and only if the spectral radius of the matrix A is strictly smaller
than 1.

Proor. We first suppose that there is a stationary nonanticipative solu-
tion. It follows from (13) and (14) that, for £ = 0,1,...,d — 1,

d—k-1
Yn—k = CAd_k_an_d + Z CAi_IBSn_k_i + Den_k.
i=1
By observability, this implies that X,_, is a linear function of Z, =
(Y, _gstr+»Yus€ngetr---s En). Now, using (13), we see that X, itself is a

linear function of Z,. Thus, on the one hand X, is independent of {e,,,
m > n} and therefore is a Markov chain, and on the other hand the family
{X,, n € 7} is tight. Therefore one can show, exactly as in Step 3 of the proof
of Theorem 4.1, that there exists a nonanticipative strictly stationary solution
of the autoregressive equation (13). One easily verifies that the controllability
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condition is equivalent to the irreducibility of this model. Therefore, Theorem
2.5 implies that the spectral radius of A is strictly smaller than 1. The
converse statement is clear. O

REMARK. One might be tempted to prove Theorem 4.1 by applying Proposi-
tion 4.2 to a minimal state space representation associated with the ARMA
process. However, it is not known, a priori, that any strictly stationary
solution of the ARMA model is also a solution of this associated dynamical
model. Actually, it is a consequence of the proof given above that this property
is true [see Picard (1990)].
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