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p-VARIATION OF THE LOCAL TIMES OF SYMMETRIC
STABLE PROCESSES AND OF GAUSSIAN PROCESSES
WITH STATIONARY INCREMENTS!

By MicHAEL B. MARCUS AND JAY ROSEN’

City College of CUNY and College of Staten Island, CUNY

Let {L},(t,x) € R*X R} be the local time of a real-valued symmetric
stable process of order 1 < 8 < 2 and let {w(n)} be a sequence of partitions
of [0, a]. Results are obtained for

im ) |Li— Lyt [Y/#0

n—o
x,€m(n)

both almost surely and in L” for all » > 0. Results are also obtained for a
similar expression but where the supremum of the sum is taken over all
partitions of [0, a] and a function other than a power is applied to the
increments of the local times. The proofs use a lemma of the authors’
which is a consequence of an isomorphism theorem of Dynkin and which
relates sample path behavior of local times with those of associated Gauss-
ian processes. The major effort in this paper consists of obtaining results
on the p-variation of the associated Gaussian processes. These results
are of independent interest since the associated processes include fractional
Brownian motion.

1. Introduction. Let X = {X(¢),t € R*} be a symmetric stable process
of order 1 < B <2, that is, a real-valued Lévy process with characteristic
function

(1.1) EeX®) = o=’ 0 < ) < o0,

It follows from Boylan (1964) [see also Barlow (1988)], that X has an almost
surely jointly continuous local time which we denote by L = {L%(t,x)
R*X R}.

The interest in the p-variation of stochastic processes was initiated, no
doubt, by Lévy’s elegant result on the quadratic, or 2-variation, of Brownian
motion {B(¢),¢ € R*} [with E(B(s) — B(¢))?> = |s — t[], that is,

2"—1 i i+ 1))\
ook (B(F)_B( 7 )) Thoas

1=

Generalizations of this result lead to complications. Let = ={0 =x, <
x; -+ <X, = a} denote a partition of [0,a] and let m(w) = sup, _; _, (x; —
x;_,) denote the length of the largest interval in 7. [m () is called the mesh of
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1686 M. B. MARCUS AND J. ROSEN

m]. Let Q,(8) = {partitions 7 of [0, allm () < 6}. Dudley (1973) showed that
for {m(n)} any sequence of partitions of [0, a] such that m(w(n)) = o(1/log n),

(1.2) lim ¥ (B(x)-B(x.1)) =a as.

x;€m(n)

However, de la Vega (1974) showed that this is no longer true if the éondition
on m(mw(n)) is relaxed to m(m(n)) = O(1/log n). (In fact, he shows more, as
we point out later on.) Taylor (1972) showed that

lim sup Y ¢(|B(x;) —B(x;,_1)])=1 as,

-0 TEQR,S) x, e

where §(x) = |x/y/21log* log1/x |, (log* u = 1 V log u). All of these results
are generally referred to as results about the quadratic or 2-variation of
Brownian motion. Similar results for other stochastic processes, with 2 re-
placed by p, are referred to as results about the p-variation of these processes.
We will consider the p-variation of the local times of symmetric stable pro-
cesses in the spatial variable. That these results are similar to the ones for
Brownian motion is more than a coincidence. They are a consequence of work
developed in Marcus and Rosen (1992), which gives relationships between
Gaussian processes and the local times of strongly symmetric Markov pro-
cesses, that is based on an isomorphism theorem of Dynkin (1983), (1984).

To clarify the notation in (1.2) and in all that follows, note that in the
expression L, ., f(x;_y, x;), for some function f, we mean that the sum is
taken over all the terms in which both x;_; and x; are contained in 1.

THEOREM 1.1. Let X = {X(¢),t € R*} be a real-valued symmetric stable
process of index 1 < B < 2 and let {L},(t,x) € R*X R} be the local time of X.

@ If {w(n)} is any sequence of partitions of [0, a] with lim, _,., m(7(n)) = 0,
then

(1.3) ’}1_120 Y |L# — Lae1 /67D - C(B)j;alLfll/(B_l)dx
x,€m(n)

in L” uniformly in t on any bounded interval of R*, for all r > 0, where
92/(B-1)

) 1 1 1/(B—1)
(1.4) c(B) = Y F(B St 5)(F(B)sin((ﬂ'/2)(3 - 1)) ) '

Gi) If {m(n)} is any sequence of partitions of [0, a] such that m(w(n)) =
o(1/log n)/B=D_ then

a 4 "
. (15) 7}nn Z |Lat¢, _ L;;,_1|2/(B—1) _ C(B)/(‘) |L;¢|1/(B—1) dx
e x;€m(n)

for almost all t € R™ almost surely.
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(iii)

(1.6) lim sup Y |L# - Li-1[Y®7P -
-0 TEQRLS) x, €7

almost surely for each t € R™.

Gv) If y(x) = |x/y2log* log1/x |27B=D then
(L7 lim sup ¥ g(ILy - L)) =¢(B) [ 1LV  da

820 reQ8) x,em 0

almost surely for each t € R*, where

2 )1/(B—1)

c(B) = -
B) =\ TBysin((m/2)(B - 1)
Some results of this sort have already been obtained. We first note that if
B =1+ (1/k), where k is an integer, then (1.3) is

(18) lim T (Lp - L) = o(p) [ ds,

— 0
n x,€m(n)

where the right-hand side is a k-fold self-intersection local time for intersec-
tions of the underlying stable process in [0, a]. In particular, for the local time
of Brownian motion we have

(19) lim Z (L’:z — sz—1)2 — 4[aLf dx.
n—)ooxie'rr(n) o

Formula (1.9), but with convergence in probability, was obtained in Bouleau
and Yor (1981) and Perkins (1982), and allows one to develop stochastic
integration with respect to the space parameter of Brownian local time: see
also Walsh (1983). The formula (1.8), with convergence in L2, was established
in Rosen (1990) by a complicated computational argument. Let us also note
that it follows from Theorem 1.1 (ii) that we get convergence for almost all ¢
almost surely in (1.8) and (1.9) as long as the condition on m(m(n)) is satisfied.

We show in Theorem 3.5 that the result in Theorem 1.1 (ii) is ‘“best
possible” in the sense that for all b > 0, we can find a sequence of partitions
{m(n)} with m(m(n)) < b/log n, such that (1.5) is false, whatever the value of
1 < B < 2. Thus for B = 2, (ii) is indeed ““best possible’” and for 1 < 8 < 2it is
close.

To prove Theorem 1.1 we use Lemma 4.3 in Marcus and Rosen (1992),
which enables us to obtain results for various types of p-variation of the local
times of symmetric stable processes from analogous results about the p-varia-
tion of their associated Gaussian processes. The mean zero Gaussian process
{G(x), x € R} with covariance g(x,y) is said to be associated with the Markov
process X if g(x,y) is the 1l-potential of X. In the case of symmetric stable
processes of index B, the associated Gaussian processes are stationary with
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covariance given by

[oo cos A(x —y)

dA
0 1+ AP

1
(1.10) g(x,y) = =

ar
[see, e.g., Barlow (1988)]. In general, for Gaussian processes with stationary
increments, we define

(1.11) o2(h) = E(G(x + k) — G(x))*.

Results about various aspects of the p-variation of Gaussian processes
appear in Kono (1969), Kawada and Kono (1973), Giné and Klein (1975), Jain
and Monrad (1983), and Adler and Pyke (1990). We use the results of Kawada
and Kono in the proofs of (iii) and (iv) of Theorem 1.1. For the other parts of
the proof of Theorem 1.1 we obtain, in Theorem 1.2, some new results on the
almost sure convergence of the p-variation of certain Gaussian processes for
p > 2. In the case p = 2 they are similar to those in Giné and Klein (1975). In
Marcus and Rosen (1992) we advanced the position that it is useful to study
local times of symmetric Markov processes through their associated Gaussian
processes because there are many tools available to us in the theory of
Gaussian processes. This is also the case in this paper.

THEOREM 1.2. Let {G(x), x € R} be a mean zero Gaussian process with
stationary increments. If o®(h) is concave for h € [0, 8] for some & > 0 and
satisfies lim, _, ,o(h)/h'/P = a for some p > 2 and 0 < a < «, then for any
sequence of partitions {m(n)} of [0, a] such that m(m(n)) = o(1/log n)?/?,

(1.12) lim Y |G(x,) - G(x,_,)] = ElmfaPa a.s.,

x;€m(n)

where m is a normal random variable with mean 0 and variance 1. Also

lim Y [G(x) - GX(xiy)]
= gem(n)

(1.13) )
=E'|n|”(2a)pf0|G(x)|pdx a.s.

For Brownian motion, as discussed above, p = 2 and « = 1 and we recover
the result of Dudley (1973) mentioned in (1.2). The result in (1.12) for p = 2
has some overlap with Theorem 1 in Giné and Klein (1975). Actually we can
also prove this theorem with the methods used here but this is not surprising
since Borell’s inequality, which we use, is sharper than the Hanson-Wright
bound used in Giné and Klein (1975). We also show, in Theorem 2.6, that
'(1.12) and (1.13) are close to “best possible’” in the same sense that the results
in Theorem 1.1 (ii) are ‘“best possible,” as we mentioned above.

In Section 2 we give the results on Gaussian processes that we use,
including the proof of Theorem 1.2. In Section 3 we prove Theorem 1.1. We
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are grateful to M. Yor for calling our attention to the question of the
p-variation of local times.

2. Gaussian processes. In this section we will obtain results on the
p-variation of Gaussian processes and give the proof of Theorem 1.2. We will
use the following result on the norm of a special class of matrices. It is a
simple statement about the behavior of symmetric operators on R" but we
will provide a more direct proof for the convenience of some readers.

LemMa 2.1. Let B =(B;))} ;_; be an n X n positive definite symmetric
matrix and let || Bl| denote the operator norm of B as an operator from 1§ — 13.
Suppose that

n
(2.1) Y Bl<C Vi<is<n.
j=1

Then ||Bll < C.

Proor. We note that B is a symmetric positive definite matrix and
therefore

(2.2) Bl = lim (trace(B™))"™.
We have

trace( B™) B

ilizBizis imly

I
™

S. Z _1lBi152”Bi2i3,“.|Bimi1|

< . Z _ IBil,izl Tt |Bimim+1|

Since n is fixed, the lemma follows from (2.2). O

We will consider a slightly broader definition of partition than the one given
in the introduction. We let = = {b, = x, <x, --* <x,_ = b} denote a parti-
tion of [by, b,], with the understanding that b, and b, can be different for the
different partitions considered. For G = {G(x), x € R}, a real-valued Gaussian
process, we associate with a partition 7 the covariance matrix

(2;3) pij(m) = E(G(x;) _G(xi—l))(G(xj) _G(xj—l)) Li=1,.. k.

For a real-valued random variable Z we denote the median of Z by med(Z).
The major result used in this paper, besides Lemma 4.3 in Marcus and Rosen
(1992), is the following restatement of Borell’s inequality.
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LeEmMA 2.2. Let G = {G(x), x € R} be a real-valued Gaussian process and
let {w(m)};, _, be partitions of {{by(m), b(m)])f;,_,. For p > 1 define

1/p

(2.4) 161 am = T 166x) -6 pf) "
x,€m(m)
Then
(2.5) P( sup 1 G Il ey, p — med( sup Il G |||7T(m),p) > t) < 2¢7t7/20%)
where
k‘n(m)

(2.6) 6% = sup sup Y. a;a;p; (m(m))

m {{a,}: Tla,l?<1} i, j=1
and 1/p +1/q =1. If p > 2, then
(2.7) 6% < sup | p(mw(m))|,

where ||p()|l denotes the operator norm of p as an operator from k= — [k=,
Also

< V2.

(2.8) ’E( sup [l G I ,,(m),p) - med( sup G Il 1T(m),p)

Proor. The standard form of Borell’s inequality is the following [see, e.g.,
Fernique (1985), Ledoux and Talagrand (1991)]: Let {H(u),u € U}, U a
countable index set, be a Gaussian process. Then

sup H(u) — med( supH(u))

ueU uelU

> t) < e /@)

(2.9) P(

where
v? = sup E(H?*(u)).
uesU

Let U =11 X B,, where B, is a countable dense subset of the unit ball of [,
and IT = {w(m)};, _,. For w(m) € Il and {a;} € B, set
H(”T(m),{ai}) = X ai(G(xi) - G(xid))'
x,€m(m)
We see that
k 1/p

m(m)

sup H(w(m),{a;})= sup | ¥ |G(x) - G(x;_)I
(m(m),{a,DeU m(m)ell \ i=1

sup [l G lll wgmy, p-

m(m)ell
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Also

k‘n'(m)
v? = sup Z aiajpi,j(‘”(m))
(m(m),{a,PelUi,j=1 -

kw(m)

= sup sup Z aiajpi,j(w(m))'
m {{a;}: Tla;l?<1} i, j=1

(2.10)

Combining these statements we get (2.5) and (2.6). When p > 2 we have q < 2
and since, in this case, the unit ball of /, is contained in the unit ball of ,, we
see that the last line of (2.10) is

k

m(m)

sup sup Y aiajpi,j(ﬂ(m))
m {{a;}: Tla,?<1} i,j=1

sup || p(m(m)) |

IA

by the definition of ||p(mr(m))|l. The statement in (2.8) follows from (2.5). O

We prove a slight generalization of (1.12) of Theorem 1.2 because we need it
in the proof of (1.13) of Theorem 1.2.

THEOREM 2.3. Let {G(x),x € R} be a mean zero Gaussian process with
stationary increments and assume that o*(h) is concave for h € [0,8] for
some § > 0 and satisfies lim,, , o o(h)/h'/P = a for somep > 2 and 0 < a <
. Let {m(n)f;_, be partitions of {{by(n),b(n)If;_,; such that m(w(n)) =
o(1/log n)?/? and lim, _,, by(n) = b, and lim, _, b(n) = b,. Then
(2.11) lim Y |G(x;) - G(x,_,)[" = EInPa?(b, — b,) a.s.,

no® y em(n)

where m is a normal random variable with mean 0 and variance 1.

Proor. Let us consider Lemma 2.2 with {w(m)}, _; consisting of a single
element 7(n). We will show that for all n sufficiently large,

(212) lo(r(n)l = o o |

Assuming (2.12) for the moment, we see from (2.5) and the Borel-Cantelli
lemma that

(213) lim ( ”l G I” w(n),p medlll G I” Tr(n),p) =0 a.s.

Set med( [l G Il #r), ») = M,,. Then we have that
M, < 2E(1G ll sy, p) < 2(E NG Zny )"

1/p

= 2(EnlP)?| L oP(x; — %)

x;€m(n)
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It follows from the hypotheses on o2 that
(2.14) M, < C(EmP)"?(b, — b)) VY n,

where C is an absolute constant. Choose some convergent subsequence {M,, -
of {M,):_, and suppose that

(2.15) lim M, =M.
It then follows from (2.13) and (2.15) that
(2.16) im |Gl wgn,),p =M as.

Let us also note that it follows from (2.5), (2.12) and (2.14) that for all r > 0,
there exist finite constants C(r) such that

ENlGN 7ry,p <C(r) Vnx=1.

Thus, in particular, {l|G 5y, p; 7 = 1,...} is uniformly integrable. This,
together with (2.16), shows that
(2.17) Hm E |G 15y, = MP.

1>
Since it is obvious because of our assumption on o2 that

Lim EIG Wl Zn,p = (b; = bo)aElnl,

we have that
(2.18) MP = (b, — by)a”Elnl.

Thus the bounded set {M,};_, has a unique limit point M. It now follows from
(2.13) that

llm G %y, p = (b1 — bo)aPElnl”.

To complete the proof.of (2.11) we need only establish (2.12). This will
follow from Lemma 2.1 once we show that

(219)  X|pi(m(n))] < 20%(x; — x,_,) <2 ma(?;)az( Xi-1)-
Jj e
To obtain (2.19) we first assume that j > i. We note from (2.3) that
Pij = _%[az(xj—l —X;_q) — Uz(xj—} - xz)]
+%[0'2(xj — %) —o¥(x; - x;)]
o = _Aj—l,i + Aj,i’

where

Aj;= %[0'2(36' —%_q) — Uz(xj - xz)]
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Let us take n sufficiently large so that o? is concave and monotonically

increasing on [0, max, c ,,lx; — x;_;|]. This implies that A;; > 0 and also

that A;_,, > A;; for all j > i. Therefore

k k

> o ;1 = > (A1 — A ) =4, — A, <A,
(2.20) J=i+l j=i+1

= %0'2(351' —X;_1),

where k = k_,, is the number of partition points in m(n).
Recall that o%(h) = o%(—h) since the Gaussian processes have stationary
increments. Therefore, similar to the above, for j < i, we set
pij=D; 1= D;,;,
where now
D ;= %[Uz(xi - xj) - 0'2(xi—1 - x;)]
Using the monotonicity and concavity of o2 once more we see that D;; >0,
and also that D, ; > D;_, ; for all j <i. Therefore,

i-1 i-1
Z |Pi'[= Z D;;—-D;_y;
(2.21) e j=1( i = D=1,
=D, y,—Dy;<D;,_,,;= 30%(x; — %,_;)
and, of course,
(2.22) pi,i = 0%(%; = x;_1).

Using (2.20), (2.21) and (2.22) we obtain (2.19). This completes the proof of
Theorem 23.0

Proor orF THEOREM 1.2. The proof of (1.12) follows immediately from
Theorem 2.3. We simply take b,(n) = 0 and b,(n) = a for all n. We proceed to
the proof of (1.13). For clarity we write

T = [O =xo(7) <+ <x; () =a].
We divide [0, a] into m equal subintervals I; ,(a) = [(j — 1)/m)a,(j/m)al,

J =1,..., m. Using the partition points of 7 we define

J .
(2.23)  xp(m) = s:p {xk(w): xp(m) < Za}, J=0,...,m.
_Consider the partitions (given by-the increasing sequence of points)

' W(Ij,m(a)) = {xk(j—n(’”') <Xp-p+r(m) < 00 < xk(j)(‘”')},
(2.24) ‘

Jj=1...,m.
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For a partition 7, we have

¥ |63 %) - Gz

x, €T

(2.25) ~ X Y 6% x) - Gy

Jj=1x,en, (a)

<2y T 6 -G sw oGP

J=1xen; () Xp( - () <2 < Ty ()

[The clarification of notation given prior to the statement of Theorem 1.1 is
particularly relevant to the last two lines of (2.25) as well as to some similar
statements involving subpartitions that are given later.] It is well known that
under the hypothesis on o2 [see, e.g., Section IV, Theorem 1.3 in Jain and
Marcus (1978)], the Gaussian process G has continuous sample paths almost
surely. Using this fact and Theorem 2.3 we can take the limit, as n goes to
infinity, of the terms to the right of the inequality in (2.25) to obtain

limsup Y |G(x;) — GX(x; )
n—©  xem(n)
(2.26) -
<ElmP(2a)" Y — sup |G(x)] as.

j=1M x€l, ,(a)
Similarly, we obtain

liminf Y |G2(xi)—G2(xi—1),p
TPy em(n)

(2.27)

> EinP(20)”

inf |G(x)] as.
j= )

x€l; ,(a

a
1
Taking the limit of the right-hand sides of (2.26) and (2.27), as m goes to
infinity, and using the definition of Riemann integration, we get (1.13). O

We will also use the following results in the proof of Theorem 1. The main
part, (2.28), is due to Kawada and Kono.

THEOREM 2.4. Let {G(x),x € R} be a mean zero Gaussian process with
stationary increments. If o®(h) is concave for h € [0, 8] for some & > 0 and
satisfies lim, _,0(h)/hY?P =a for some p>2 and 0 <a <, then for

o(x) = |x//2Tog* log 1 /x I,

(2.28) lim sup ) ¢(|G(x;) = G(x;_,)]) =afa a.s.

-0 TEQRLS) x; €™
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Also,

(2.29) lim sup Y o(|G*(x;) — G*(x, - 1)|)=(2a)pf0a|lG(x)|pdx a.s.

TEQRLWS) x, €T

Proor. The statement in (2.28) follows from Theorems 3 and 4 in Kawada
and Kono (1969). [It is easy to verify their conditions (ii)-(v) once one
recognizes that they all follow from the concavity of o(h). To see this use
Theorem 1.7.2b, page 39, of Bingham, Goldie and Teugels (1987).] Their
results are for Gaussian processes with stationary increments defined on [0, 1].
If we apply their results to H(ax) = G(x) with

(2.30) E|H(a(x + k) - H(ax)|* = ¢*(ah),

we get (2.28).

We now prove (2.29). Continuing the notation of the proof of Theorem 1.2,
in addition to the subpartitions of = given by =(I; ,(a)), j=1,...,m —1
[see (2.24)], we define

#1, ua)) = {2

J
a <xpop1(m) < < xyy(m) < ;a},

(2.31) .
Jj=1,...,m

[Note that ((j — 1)/m)a and (j/m)a are points in the partition given in
(2.31).] We have

Y o(|G3(x;) — G3(x;_1))

x, €T

YT e(6%(x) - Gy

Jj=1zxemnl, (a)

<Y Y e(6%x) - Gx))

j=1x,el, (a)

(2.32)

m—1

+ X ‘p(|G2(xk(j)("T)) - Gz(xk(j)+1("7))|)'l

j=1

To get (2.32) we added partition points at {(j — 1)/m)a}’_,. These points are
included in the first term of (2.32). In the second term we have written the
partitions that were present that bracketed the added points.

Since ¢ is regularly varying at zero, for any 0 < u’'< v < » and any ¢ > 0, if
¢ is sufficiently small, we have ¢(cb) < (1 + e)p(c)|bf’ for all b € [u,v].
However, for b sufficiently small, ¢(cb) < ¢(c)Ibl’. Therefore for any v < o
and e > 0, if ¢ is sufficiently small, we have ¢(cb) < (1 + &)p(c)|bl’ for all
b < v. Now, since G(x) is uniformly continuous almost surely on [0, a], we can
find a & sufficiently small, depending on ¢ and , such that for all » in a set of
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measure one,

sup T o(|G*(x) ~ G*(x ) )I( sup |G(x)| <)

TEQL) x; e ) x€[0,a]
m
<(1+¢)2” ) sup Y o(lG(x) - G(x;_1)])
J=17€Q,d) x;€7(1; (a))

2.33
( ) X sup [2G(x)[

x€l; ,(a)

+m sup go([G(x) - G(y)| sup |2G(x)|),
Ix—y[logﬁl x€[0, a]
x,y€[0,a

where I(A) denotes the indicator function of the set A. It is well known (see,
e.g, Section IV, Theorem 1.3, in Jain and Marcus (1978)] that

IG(x) — G(y)l
(2.34) limsup sup () (y)1/2 <C as,
50 |x-yl<s (8%/7(log1/8))

for some absolute constant C. Thus the last term in (2.33) is 0(8). Using this
fact and taking the limit as & goes to 0 in (2.33), we get by (2.28) that

lim sup Y o(|G¥(x;) - Gz(xi_l)I)I( sup |G(x)]| < v)

520 1@ 6) x;em xe[0, a)

(2.35) -

<(1+¢)(20)" Y — sup |G(x)] as.
j=1™

x€l; ,(a)

Finally, taking the limit as m goes to infinity we get

lim s T o(IG%(x) - G x ) )I( sup 16(x)] <)
8_)01'r€Qa(5)x,~E‘n- x<€[0,al

(2.36)
< (1+6)(2a)" [ 1G(x)[ dz as.,
0

and since this holds for all ¢ > 0 and all v, we get (2.29) but with a less than or
equal sign. To get the opposite inequality we note that

sup X o(|G3(x;) — GP(x;10))
TEQRYS) x;€m
(2.37) m
> Y sup > so(IG(xi) _‘G(xi—l)]x }nf()

J=1 7 E€Qyd) x;ei(l; (a)) Shiomi@

12G(x)1).

By an argument similar to the above we note that for any ¢ > 0 and u > 0, for
¢ sufficiently small, we have ¢(cb) > (1 — e)p(c)|bl’ for all b > u. Therefore
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for any £ > 0 we can find a § = 8(¢), sufficiently small, such that the last term
in (2.37) is
> (1-¢)27 ) sup Y e(|G(x) - G(x;1)])
=1 TE€QU) x;em a
(2.38) J Q, sem(l, ()

X inf |G(x) [”I( inf  |G(x)] > u)
x€l; (a) x€l; ,(a)

Taking the limit in (2.37) first as 8 goes to zero and then as m goes to infinity,

we get that the left-hand side of (2.29) is

> (1- s)(za)"[o"|G(x)|”I(G(x) > u) dx

> (1- s)(2a)p(f0a|G(x)|p dx — aup).

Since this is true for all ¢ > 0 and all u > 0, we obtain (2.29) but with a
greater than or equal sign. This completes the proof of Theorem 2.4. O

Our major concern with Gaussian processes is to show that (1.12), (1.13),
(2.28) and (2.29) are satisfied by the stationary Gaussian processes with
covariance given by (1.10). Let us denote these Gaussian processes by {Gz(x),
x € R). The functions o-2(h) for these processes, as defined in (1.11), are

9.39 2 h 2 ool—cos)thd)t
(2.39) a( >—Wfo —F

THEOREM 2.5. Let {Gg(x), x € R} be the mean zero Gaussian processes
with covariance given by (1.10) and increments variance [see (1.11)] given by
(2.39). These processes satisfy (1.12) and (1.13) for the sequences of partitions
considered.in Theorem 1.2 and (2.28) and (2.29), wherep = 2/(B — 1) and

2 w1 —cosy 1/2

(2.40) a=a (Wfo 7 dy) .

Proor. We cannot use Theorems 1.2 and 2.4 immediately because we have

not established that ¢/(h) is concave in [0, 5]. We could show this analytically

and compute o but it is simpler and more interesting to give a probabilistic

proof. We introduce two Gaussian processes with stationary increments
Gy (x), x €1}, i=1,2, defined by

1 *® *® . .
Gp. (%) = ﬁ(fo (1 — cos Ax) f,(A) dB(A) + jo (sin Ax) fi(A) dB’(A)),

where

1
fi(A) = B2 and fy(A) = 12

(A1 + %))
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and B and B’ are independent Brownian motions. Let Gg, Gz ; and Gg , be
independent and note that G, ,(x) and G,(x) — Gﬁ(O) + Gy o(x) are equivalent
Gaussian processes. (They have the same covariance.) Furthermore, we see by
a change of variables that

g 2 .o 1—cosAh 2 a1
(241) E(Ggy(x + k) — Gy (%)) = ;[0 — 5 dA = (ap)"h”
and that
(2.42) E(Gg o(x + h) — Gﬂ,z(x))2 — O(hCB-DA2)

as h goes to zero. This last relationship follows from simple estimates. We now
see by (2.41) that (2.11) is satisfied by G, ; and that « is given by (2.40).
Therefore (2.11) is also satisfied by GB(x) G5(0) + Gg o(x). However, it
follows from (2.42), as in (2.34), that

IG, -G
(2.43) limsup sup p.2(%) 5,2(7)l

iz < C a.s.
550 [x-yl<s (8®F "D 2(log1/5))

It is easy to see that this implies that lim, .lllGg 5/l wny,p = O for the
partitions 7(n) defined in Theorem 2.3. Therefore it follows from the triangle
inequality, after we take the 1/pth root of each side of (2.11), that G,(x) —
G4(0) satisfies (2.11). Since (2.11) is the same for G,4(x) and Gg(x) — G4(0), we
see that Gy(x) also satisfies (2.11). This immediately implies that Gy(x)
satisfies (1.12). It also implies that it satisfies (1.13), since the proof of
Theorem 1.2, (1.13) only requires that the Gaussian process is continuous and
satisfies (2.11).

We now show that Gz(x) — G4(0) and hence G4(x) satisfies (2.28). It is clear
that G, (x) satisfies (2.28) and therefore so does Gy(x) — G40) +
G o(x). For x € R define o(x) = ¢(|x]). Clearly ¢(x) is convex for x € [, 8]
for some 8 > 0. Therefore for any £ > 0, for all |a| and |b| sufficiently small,
depending on &, we have

(@ 1 ) e (b
<p(1_£)21_£qo(a+ )_1—s¢(;)

and

(2.44) p(a) < (1 —8)5( ) +e¢(—).
1-¢ £

- These inequalities follow from Jensen’s inequality. We use them in (2.28) with

@ replaced by ¢ and with @ = G4(x;) — G4(x;_;) and b = G o(x;) — Gg (x;_1).

Since all these processes are uniformly continuous, there is no problem in

taking the terms arbitrarily small. It should be clear now that in order to show
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that G(x) satisfies (2.28), we need only show that for all £ > 0,
IGB,2(xi) - GB,2(xi—1)|

€

=0

(2.45) lim sup ) ¢

-0 e (5) x,em

This follows immediately from (2.43) since (28 — 1) A 2)(p/2) > 1. Thus we
see that G,4(x) satisfies (2.28). This also means that it satisfies (2.29) since in
the proof of Theorem 2.4, we showed that any uniformly continuous pro-
cess that satisfies (2.28) satisfies (2.29). This completes the proof of Theo-
rem 2.5. O

We now have all the material about Gaussian processes that will be used in
Section 3 to prove Theorem 1.1. In the rest of this section we show that the
condition on the mesh size in Theorem 1.2 is close to ‘‘best possible.” This will
be used in Theorem 3.5 to obtain a similar result for the local times.

THEOREM 2.6. For any b > 0 we can find a sequence of partitions {m,},_,
with m(m,) < b/log n such that (1.12) and (1.13) of Theorem 1.2 are false for
all of the Gaussian processes that satisfy the hypotheses of Theorem 1.2 with
0<a<om

Theorem 2.6 shows that (1.12) and (1.13) are best possible for p = 2. There
is a gap for p > 2. This theorem, for the case of (1.12), was proved by
de la Vega (1974) when G is Brownian motion. Actually, he only states the
result for b > 3. However a minor modification of his proof does give all 4 > 0.
The proof of Theorem 2.6 closely follows the proof of de la Vega (1974).

Proor. To simplify matters we take a« = a = 1. That the proof is valid for
all0 < @ < wand 0 < @ < » should be obvious from the proof of this case. The
set of partitions that we use to obtain the examples that establish Theorem 2.6
are the same as the ones used in de la Vega (1974). The description of these
partitions that follows is taken, almost verbatim, from this reference.

Consider the sequence of partitions {m,} constructed as follows: m, is the
partition consisting of the interval [0, 1]. For each integer q > 1, in turn, we
add to the sequence, in an arbitrary order, all those partitions of [0, 1] each of
which contains for each integer k, 0 <k < 297! — 1, either the interval
Jr =[2k/29 2k + 2/2%] or both intervals IZ* = [2k/2% 2k + 1/27] and
IZF*1 = 2k + 1/29,2k + 2/27]. Call I1, the set containing these partitions.

There are 22° ' partitions in II o- One of them has mesh 279 all the others
have mesh 2! 77, Their ranks in the sequence {m,} are bounded above by

1+ ¥ 2% <ot
' 0<r=<qg-1

One can verify that m(m,) < 3/log n for all n > 1.



1700 M. B. MARCUS AND J. ROSEN

For the Gaussian processes considered in Theorem 1.2, we define for 0 <

k<297 -1,
L) = 625 - o 5 )
(2.46) L(12**) = G( Zij 2) - G( 2k2: - )
o -o[ ) o[ 5
and

m} = max((£(224)" + (L(13)" (L(75))-
We have
(2.47) EM} = o?(279) E max{|&,F° + In,l”, 1€, + n,F},

where ¢, and 7, are normal random variables with mean zero variance 1 and

o?(1/2971)
E¢ng=—\1= 5550 |
o?(1/27)
We now show that
(2.48) lim E sup IGIIZ,, = (1 +c)Elnl

q—® well,
for some ¢ > 0, where n is a normal random variable with mean zero and
variance 1. To see this note that

21-1_1

(2.49) Esup G2 ,= ¥ E(M})
wEnq k=1

and so, by (2.47),

(2.50) lim E sup [IGII%, , = %;Er:oE max{lfqlp + I P, 1€, + n,l°}-

g% rell,

To evaluate the right-hand side of (2.50) we note that

(2.51) lim E¢,n, = —(1 — 2&/P°1),
q—)oo‘

. "This shows that for g sufficiently large, f,(-,- ), the joint density of £, and 7,

exists and is greater than zero on all of R?. Therefore, lim, _,,, f,(-,: )=f(,)
is a strictly positive joint density of normal random variables with mean zero
and variance 1 and with covariance given by the right-hand side of (2.51). Let
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g(x,y) = max{|x[” + |y/", lx + y/}. Then
E max{|&,I” + In, P, 1€, + n,F}

—f f/ fo(x,y) dxdyda

g(x,y)=A

(2.52)

—f )tz/”ff f,(APu, APv) dudvda.

gu,v)=1

Taking the limit as g goes to infinity in (2.52) and using the dominated
convergence theorem, we get

lim E max{lé,/” + In,’, 1€, + n,"}

o))

By the same reasoning we have

2EInlP = lim E(I£,F + In ")
g

(2.53) .
f)tz/Pf(Al/Pu,)tl/Pv) dudvda.
g(u, =170

(2.54)
f)tz/pf()tl/”u APy)dudvdA.

- jlltl"+|v|"21
Because of the different areas of integration in the (u, v)-plane we see that the
right-hand side of (2.53) is equal to (1 + ¢) times the right-hand side of (2.54)
for some ¢ > 0. Using this in (2.50) we get (2.48).

We now show that

(2.55) lim sup G ,=(1+c)EInF
for ¢ given in (2.48). To do this we use Lemma 2.2, exactly as it was used in
the proof of Theorem 2.3, but with [l G Ill x(n),» replaced by sup, cp 1 Gl 7,
Analagous to (2.13), we have

q—-® well, mell,

(2.56)  lim ( sup Gl 5. p — med( sup |||G|||,,,,,)) —0 as,

because, in this case, for g fixed, 62 < 4'79/7 for all ¢ sufficiently large. Let
M, = med(sup,, n, G p) BY (2.47) and (2. 49),

(2.57) M, < 28( s 1Gll,,) <C

mell,
for some constant C < «, independent of g. Using this in Lemma 2.2 [in
particular, in (2.5) and (2.8)], we see that there exist finite constants C(r) such
that

(2.58) E sup IG5 ,<C(r) Vg=1

well,
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Following the approach of (2.15) and (2.16), we can show that
m,[

q

(2.59) lim E sup IG5, , = lim
q—o®

q—o® mell,

Using (2.48), (2.59) and (2.56), we get (2.55).
We see from (2.55) that

(2.60) limsup G %, , = (1 +c)Elnl.

This shows that (1.12) does not hold for a sequence of partitions {w,} for which
m(m,) < 3/log n. It is easy to improve this to get that (1.12) does not hold for
sequences of partitions {m,} for which m(w,) < b/log n for all b > 0. For g
fixed we create 22° ' — 1 different partitions on [0, 27/] just as we did above on
[0,1]. To each of these we add 29(2/ — 1) intervals of size 2=V *9 on [27, 1].
We still have 22°"" — 1 partitions but now they are of length 2-¢*9, Since the
partitions on [27/,1] are all the same, the sum of the pth powers of the
increments converge (as g goes to infinity) to (1 — 27V)E|n/” but on [0,2 7], as
above, it converges to 277(1 + ¢)E|n|P. Thus we still have a counterexample to
(1.12), but now m(m,) < 279(8/log n). Since this holds for all j > 0 we obtain
Theorem 2.5, as stated, for the case (1.12). O

As we stated above, the same proof works for all 0 < a, @ < . Thus if the
partitions are imposed on [0, a] and lim,, _,, o(h)/h'/? = a, we have
(2.61) lim sup IGI% , = (1 + c)aPaEnl’.

9= e,

We now show that this implies that

(2.62) lim sup I1GZII2,, = (1 + ¢)(2a) ElnP [ 1G(x)P dx as.

q2® re I, 0
The proof of (2.62) follows from (2.61) (in the case @ = @ = 1), in the same way
that (1.13) follows from (1.12) in (2.25)-(2.27). It is actually easier in this case
because the sets of partitions Il are nested as ¢ increases. Let ¢’ and r be
positive integers. Let {11, j}f;l be a set of partitions of the form of II , on the
interval [(j — 1)/27, j/2"] = I, , (rather than on [0, 1] as we did earlier in this
proof). For ¢ =¢q' +r, w€1l, is a partition of [0,1] formed by putting
together one partition from each {II " J-}J-Z; .- We have

or
limsup sup [IG2Z,, = limsup Y, sup [IG2lI%,

q—o® ‘n-el'lq g—o®  j=1 'rrqu,,J_

27‘
< ¥ lim sup [IGIIZ,, sup [2G(x)[
" j=197®ren, ; x€l; .
2" » 1
= (1 +¢)2”Elnl ¥ sup |G(x)[ .
j=1 xEIj,r 2
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Since we can get the opposite inequality with the limit superior and supremum
replaced by the limit inferior and infimum, we get (2.62) by the definition of
Riemann integration. Also, as above, we can modify the partitions such that
m(w,) < b/log n for any b > 0.

ReMARK 2.7. For later use let us note that (2.62), and the final comment in
the above proof, imply that for any b > 0, we can find a sequence of partitions
{m,} with m(m,) < b/log n such that

(2.63) limsup IIG2IIZ, , = (1 + c)(za)”E|n|P[0“|G(x)|" dx as.,

for some ¢ > 0. Also, by the proof of Theorem 2.5 and in particular (2.43), we
see that (2.63) is also true with G and a replaced by G, and a5z and

p=2/(B—1.

3. Local times. Our main tool is Lemma 4.3 in Marcus and Rosen (1992).
The next result is an immediate corollary of this lemma.

LemMA 3.1.  Let {L% (¢, x) € R*X R} be a jointly continuous local time of a
real-valued symmetric stable process of index 1 < B <2 and let G = {G(x),
x € R*} be the associated Gaussian process. Let (Qg, Pg) be the probability
space of G. Let B € €, where ¢ is the o-algebra generated by the continuous
functions on R, be such that Pg(G%/2 € B) = 1. Then for almost all w € Qg
with respect to Pg,

P*|L;+

G?*(w)
2 € B foralmostallt] =1,

where P* is the probability measure corresponding to the symmetric stable

process starting at x at time 0.

Proor. This is a minor modification of Lemma 4.3 of Marcus and Rosen
(1992). In that lemma the spatial variable is countable but since these pro-
cesses are continuous on R we can think of them as defined on all of R. Also
in that lemma, which is applicable in a more general setting than the one
considered here, we are concerned with the lifetime of the Markov process, but
this is infinite for Lévy processes. O

A good part of Theorem 1.1 can be obtained with no further consideration of
local times.
* Proor or THEOREM 1.1(ii), (iii) and (iv). We will first prove (ii). Let G; be
the Gaussian process associated with the symmetric stable process of index B.
It follows from Theorem 2.5 that, under the condition on m(m(n)) given in (i),
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we have

a 1/p
(31) lim |||G,§/2|||,,(n),p=\/Ea(EW)V"(/O |G,§(x)/2|P/2dx) as.,

where « is given in (2.40) and p = 2/(B — 1). Therefore, by Lemma 3.1, for
almost all w € Qg ,
lim [|Z. + GE(@) /2| cny,
1/p
(3.2) = @a(E|n|P)V”([O“|Lf + G¥(x, w) /2" dx)
for almost all ¢ a.s.
It follows that for almost all w € QGB’

limsup | L, Il ¢ny, p

1 a 9 1/p a /2 1/p
(3.3) <V2a(EnlP) /”(([ | Lz P/ dx) + ([ |G2(x, w) /2] dx) )
0 0
+ lim sup ||| Gg(w)/2|||ﬂ(n)’p for almost all ¢ a.s.

Using (3.1) on the last term in (3.3) we see that for almost all w € QGs’

lim sup || L, ll ¢ny, p

n—o

(34) _ ﬁa(Elnlp)l/P((j;alLflp/z dx)l/p . 2(f0a|Gg(x,w)/2|p/2 dx)l/P)

for almost all ¢ a.s.

Since the associated Gaussian processes have continuous sample paths, for all
>0,

(3.5) P( sup |Gg(x)| < e) >0

x€[0,a]
[see, e.g., Theorem 2.6, Marcus and Rosen (1992)]. Therefore we can choose w
in (3.4) so that the integral involving the Gaussian process can be made
arbitrarily small. Thus

. . 1/p
lim sup Il L, mny, p < V2 a(EInI")”"(fo L3 P d")

n—o

(3.6)
. ’ for almost all ¢ a.s.

By the same methods we can obtain the reverse of (3.6) for the limit inferior.
Since ¢(B) = (V2 a)?E|n|?, we obtain Theorem 1.1(ii). We will postpone the
verification of (1.4) until the end of this section.
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To simplify the notation we denote, for real-valued functions {r(x), x € R*}
and {f(x), x € [0,a]},

(3.7) V()= lim sup T (| F(x) ~F(x:0)]).

TEQRLS) x, €™

The proof of (iv) is basically exactly the same as the proof of (ii). It follows
from Theorem 2.5 that

(3.8) v, .(G2/2) = (@a)pLa|G§(x)/2|P/2 dx as.,

where ¢ is given in the statement of Theorem 2.5, « is given in (2.40) and
p = 2/(B — 1). Therefore, by Lemma 3.1, for almost all v € QGB’

V, oL+ G-, 0)/2) = (\/ia)”f“|L;{+ G2(x,w)/2["” dx
0

for almost all ¢ a.s.

We note that for all ¢ > 0, ¢(clx]) < (1 + 8)cPe(|x|) for any & > 0, for all x
sufficiently small. Using this and (2.44) we see that for almost all w € QGﬂ and
0<ex<1/2,

V, L) < (1+8)(1—e)®P2V, (L + Gi(:,0)/2)
+(1+8)e® P2V (G3(+,w)/2) foralmostall ¢ as.
Therefore by (3.8) and (3.9) for almost all w € Qg ,

‘Zl,,a(Lt) < (1 + 5)(1 — 8)(2—P)/2(‘/§a)P(j;)a|LJ; N Gg(x, w)/2|p/2 dx)

(3.9)

+(1+8)e?P2(2a)” [ |GA(x, w) /2" da
0

for almost all ¢ a.s.

Using (3.5), we can choose an @ such that sup, (g ,)|Gz(x, ®)| can be made
arbitrarily small. It follows that

(3.10) V, L, < (@a)pfa|Lf P72 dx  for almost all £ a.s.
0

A similar argument gives (3.10) with a greater than or equal sign. Thus we
have

(311)  V, (L) = (V2a)"[ |L;P"*dx for almostall ¢ as.
0

We now show that (8.11) holds for all ¢t € R*. Let @ be a countable dense
subset of R™*. It follows from (3.11) that there exists a ¢, € R* such that

(3.12) V, o(L,) = (\/Ea)PfObIL’;O]p/‘Z dx VbeQ as,

and hence, since V‘p, »(L;,) is monotone in b, for all b € R* almost surely.
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Using (3.12) and the fact that ¢ is regularly varying at zero we see that for any
te R,

~

th,C(to/t)l/B((t/tO)l/ﬁLto)
= (t/t0)""PV, ety ey/8(Ley)

3.13 B P ret,/OVB) - . p/2
(8.13) =(t/t0)P/“(\/§a)f0‘/ Lz [* da

_ /2
- (@a)pfc,(t/to)VﬂLgVO(to/t)‘/" |p dy forallc> 0a.s.,
0

where 1/8 + 1 /E_ = 1. As is well known, by rescaling the stable process, one
sees that (z/¢,)"/PL;¢0/ 9% is equal in distribution, as a function of x, to LZ.
Therefore, by (3.13), we get that

(3.14) V, (L, = (ﬁa)pfclLflp/z dx forall c > 0a.s.
0

Thus we get (1.7) except for verification that (V2 a)? = ¢'(B8). We will do this at
the end of this section.
Finally we note that (iv) clearly implies (iii).

REMARK 3.2. We cannot use an argument similar to the one used to prove
Theorem 1.1(iv) to show that Theorem 1.1(ii) holds for each ¢ € R* almost
surely. This is because in (ii), as stated, the subsets of R* of measure zero for
which (1.5) may not hold could depend on the particular sequence of partitions
{m(n)}. Thus we cannot use scaling because we do not know if a sequence of
partitions for which (1.5) holds for L; will allow (1.5) to hold when they are
rescaled, as we did above, to consider L;. Of course, what we can say is that for
any ¢t € R*, there are many sequences of partitions {w(n)} with m(m(n)) =
o(1/log n)/A=1 for which (1.5) holds.

Before we can complete the proof of Theorem 1.1, we will need the following
lemmas about the local times-of symmetric stable processes of order 8 > 1. For
a random variable, say Z, on the probability space of the Lévy process X, we
denote by [|Z||, the L™ norm of Z with respect to P, the probability measure
of the process which is zero at time zero.

LEmMMA 3.3. Let X ={X(t), t € R*} be a real-valued symmetric stable
process of index 1 < B < 2 and let (L%, (t,x) € R*X R} be the local time of X.
Then for all x,y € R, s,t € R* and integers m > 1,

(3.15)  ||LZ — L?|,,, < C(B)((2m)!)/®™tB-D/@B)y _ 5|B-1/2
and '

(316) 1%~ Lzl < C(B)(m )"t - 5777,

where C(B) and C'(B) are constants depending only on B.
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Note that since (3.15) only depends on |x — y|, the inequality remains the
same if we take the norm with respect to P for any z € R. The inequality in
(3.16) also remains unchanged if we take the norm with respect to P? for any
z<R.

Proor oF LEMMA 3.3. Let p,(u) = p,(x,x + u) denote the transition proba-
bility densities of X. By Lemma 1 of Rosen (1990b), we see that

I1L; = LY lgm = 2m)! [ [ (pofx) + Pe(9))
0<t;< -+ <ty,, <t
(3.17) o |
XTI (Pae(0) = (=)™ "'pu(x = 3)) d,
im
where A¢; = ¢; — t,_,. Writing p,(x) as the Fourier transform of its character-
istic function, it is easy to see that p,(x) < p,(0). Thus we have that (3.17) is

(318) < @m)2( [0 ds) ([ (o0~ pix -3y ae)

We obtain (3.15) from (3.18) by using (3.3) and (3.4) of Rosen (1990b).
To obtain (3.16) we note that
x x 1/m
(3.19) ILE = Lzl =1 L5 2 0]l = (E{E*(LF_)™})

where 6 denotes the shift operator on the space of paths of X and without loss
of generality, we assume that ¢ > s. Note that for any z,

Ez(Lf_s)m=m!Ez( f[ )

O<t;<--- <t,<t—
: =m! P (x —2)
(3.20) Ostls/m si,st—s B
. Xptz—tl(o) te ptm—tm_l(o) dt, -+ dt,

t—s "
<m! 0)dr| .
m ( fo p,(0) r)
Using (3.19) and (3.20) and (3.3) and (38.4) of Rosen (1990b), we get (3.16). O

LemmA 3.4. Let X ={X(¢), t € R*} be a real-valued symmetric stable
process of index 1 < B < 2 and let {L}, (¢, x) € R*X R} be the local time of X.
Let p =2/(B — 1). Then for all partztzons m of [0,al, s,t € R, with s <t,
and integers m > 1,

[ %, — i Ls Iz ol

(3.21)
< C(B, m,p)t(p—l)(ﬂ—l)/(ZB)lt _ SI(B_I)/&B)a.
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In particular,

(3.22) T2 L7 < C'(B, m, p)tB=1/@gi/p,

where C(B,m,p) and C'(B, m, p) are constants depending only on B, m
and p.

Proor. For a partition 7, we set
(3.23) AL} = L§i — L¥i-1, i=1,...,k,.
By the mean value theorem,
|u? —vP| <p(uP™' + vP Hlu —vl.

Since s < ¢, we see that

Iz, 2, = ez,
< ALEP —|AL%
(324) < xéﬂ“l t | | s l ”m
< T p(llacz =y, + 1ALz P, ) IALy — ALZ|,,.
x, €T

Let r be the smallest even integer greater than or equal to 2m(p — 1). Then
by Holder’s inequality and (3.15), we see that

p—1 _
laLsp =y, <jaLsz |
< D(B, m, p)tP-DB-D/CB)Y(y xi_1)<p—1)(3—1)/2’

where D(B, m, p) = (C(BX(2r))/@M)P~1 and C(B) is the constant in (3.16).
We also have that

my\1/2m
(3.26) ALy — AL¥ |y, =|ALF, <0, ],, = (E{EX(aLy,)™")) .

It follows from (3.15) and the remark immediately following the statement of
Lemma 3.3 that for all z € R,

(3.25)

z x 2m\1/2m x;
(E (ALF,) ) =[AL% [z

(3.27) . _
< D'(ﬁ, m)It _ sl(B 1)/(2B)|xi _ xi—ll(B 1)/2,

where D'(B8, m) = C(B)(2m))H/@™ Combining (3.24)-(3.27) we see that
L Z = WL E ol ‘
< 2pD(B, m, p)D'(B, m)t(p—l)(B—l)/(2B)|t _ s|(B—l)/(2B)

: B-1)/2 (p—1XB-1)/2
X X (xi—xi—l)B /(xi_xi—l)p povrz,

x; €

This gives (3.21) since the sum in (3.28) is equal to a. The statement in (3.22)
follows from (8.21) by setting s = 0. O

(3.28)
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Proor oF THEOREM 1.1 (i). Although in (i) we are dealing with a weaker
form of convergence than in (ii), the only way that we know to prove (i) is
through (ii). The main point is to show that for any sequence of partitions
{m(n)} of [0, @] with lim,, _,, m(7r(n)) = 0, || L, lll 7(n), » converges in probabil-
ity for each t € R*, where p = 2/(B8 — 1). Suppose that this is not the case.
Then there exists a subsequence {w(n(k))} of {w(n)} with m(m(n(k))) =
o(1/log k)*/#~1 with further subsequences {m(n(k )}7_, and {m(n(k,)};-, for
which

(3.29)  P({1L, M wtackpp = WL, M ainctsp] > ) > Vi1,
It follows from (8.21) that we can find a & > 0 such that for all s € [¢,¢# + 6],

P LW acnctpp = WL M aiur | > 6/4) <e/4 Vij=1,

and similarly with %; replaced by k’. Therefore we have, for all s € [, + 5]
and all j greater than or equal to 1, that

P(| N Ly W acnciy o = WL W nii | > €/2)
> P(| 1Ly W rtncy,p = I L iy, | > €)
= P(| I Ly W aince p, p = WLy M .| > £/4)

- P(| ||| Ls ||| m(n(k)),p ||| Ltlllﬂ(n(k"])),p| > 8/4)28/2'

This implies that ||| L, Il 7xy, » does not converge in probability for any of the
values of s € [t,¢ + 8]. This is not possible since the fact that m(m(n(k))) =
o(1/log k)'/#=1 implies by (ii) that [l L, Il z(n(zy,» converges, as k goes to
infinity, for almost all s € R, almost surely. Therefore we see that

(3.30) L.l #ny,p converges in probability for each ¢ € R™.

Also, by (3.22), for fixed ¢ there exists a constant C(m), depending only on m,
such that

I sy, pl,e < C(m) ¥V m> 1,

Therefore {|l| L, [l 7(n), pJ5—1 is uniformly integrable. This fact and (3.30) give
(1.3) for each ¢ € R*. Uniformity in ¢ on bounded intervals of R™ follows
easily from (3.21). All that remains in (i) is to evaluate the constant, which we
will do below. O

THEOREM 3.5. For all b > 0, we can find a sequence of partitions {m,};_,
with m(1,) < b/log n such that, almost surely, the sequence

- { z ILf"—Li“"llz/‘B_”}

x,em(n) n=1

does not converge whatever the value of 1< B <2
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Proor. By Remark 2.7 and Lemma 3.1, we see that for all b6 > 0, we can
find a sequence of partitions {m,});_; with m(w,) < b/logn such that for
almost all w € Qg

limsup || L, + GZ(w) /2|

Tns P

(331) \/—a(l " c)l/Z(EI P 1/P(f |Lx + G2(x )/2| )l/P

for almost all ¢ a.s.,

where ¢ > 0. L, is as given in (1.5), G, is the associated Gaussian process and
p = 2/(B — 1). Therefore for almost all w € Qg

limsup | L, Il ~, »

n—o

1/p
(3.32) > V2a((1 + ¢)ElnP) V”(/ L7 + G¥(x, ) /2] )
— lim sup |||G§(w)/2|||ﬂmp for almost all ¢ a.s.

By (2.63) we see that the final term in (3.32) is also equal to an integral with
respect to G,(x, ) and, as we have already seen many times, we can take
SUP, (0, 01| Gp(%, @)| arbitrarily small. [For example, see the proof of Theorem

1.1(Gi).] Thus we get

limsup | L, I5, »

n—o

(3.33) e
> (1+c¢)(V2a) Elnlp/ |LZ[P”? dx  for almost all ¢ a.s.
0

We will show below that (Y2 a)?E|nl’ = ¢(B). Accepting this we see by (1.5)
that the limit of the left-hand side of (3.33) exists almost surely along some
subsequence of {w,} and is not the same as the right-hand side of (3.33). Thus
we have established Theorem 3.5. O

It is interesting to note and easy to see that we actually have equality in
(3.33).

ProorF oF THEOREM 1.1 (Constants). In order  to complete the proof of
Theorem 1.1, we need to show that

(3.34) c(B) = (V2a,) ElnP and c(B) = (V2a,)",

where a, is given in (2.40), n is a normal random variable with mean 0 and
variance 1 and p = 2/(B8 — 1).
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We will first consider the case B = 2 and show that a, = 1. One sees from
(2.39) and (2.40), by a change of variables, that

2(u'(0) — u'(h)) d+
2 _ 1 = _9___ 1
(3.35) af = lim - 2——u €3]y

where u!(x), the 1-potential density of the Markov process defined in (1.1), is
the covariance of the associated Gaussian process. [See (1.10) and (1.11), where
u'(x) = g(0, x).] By definition,

ul(x) = f:e“p,(x) dt,

where p,(-) is the probability transition density of the process defined in (1.1).
Now, note that in the definition of standard Brownian motion, that is,
normalized so that EB(1)? = 1, ¢ is replaced by ¢#/2 in (1.1). Let p, and #* be
the transition probability density function and a-potential density of standard
Brownian motion. Then, clearly p,(x) = p,,(x) and

(3.36) ul(x) = g[ome-w%,(x) dt = 1a'/2(x).
By It6 and McKean [(1965), (31), page 17],
io(x) = exp(—V2ax)
V2a
and so
+
(3.37) —4%(%)|yeg= =1 Va>o0.

dx

It follows from (3.35)—(3.37) that a2 = 1 which gives us ¢(2) = ¢'(2) = 2 in
agreement with the values given in Theorem 1.1.

Referring to (1.13) and the proof of Theorem 1.1, we see that (1.3) holds, in
general, with the constant c(2) replaced by (V2a)? for a as given in the
statement of Theorem 1.2 for the associated Gaussian process. We have just
shown that for standard Brownian motion,

+
d_xizl(x)|x=0 = - 1;
so by (3.35) a® = 2 in this case. Thus, if in (1.3) we considered the local time of
standard Brownian motion, in place of ¢(2) = 2, we would have the constant 4.
This is the result mentioned in (1.9).
We now consider the case 1 < 8 < 2. By Ibragimov and Linnik [(1971),
2.6.32, page 88],

(ap)” = —%cos(g(ﬁ - 1))r(1 —B).
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Since

MBI -B) = o
[see,. e.g., (30), page 198, Ahlfors (1966)] and
T T
o 0-1) - 30}

we see that

b

) 9 1/(B—-1
(V2ay) = (r(g)sin((w/Z)(B - 1) )

which is the value given for ¢’(8) in Theorem 1.1. Also, since

B = 20 (p * 1)
n - ‘/; 9 )
we get the expression for c¢(B) given in (1.4). This completes the proof of
Theorem 1.1. O

REMARK 3.6. We noted in the Introduction that Theorem 1.1, with conver-
gence in L?, is given in Rosen (1990) in the case 8 = 1 + (1/k), where % is an
integer greater than or equal to 1. In Rosen (1990) the constant c¢(1 + (1/k))
is actually written as

&, = (2k — 1)(2k — 3) --- 3 - 1(4p)"* = Eln|*(4p)*,

where
o 1 0 1—e? 1 cosA a?
= -p(1))dt = — = =
p= [0 ~p) i = 5 [T = — [
Thus

(4p)" = (VZar,)"

and consequently,
k 1
é, = Elnlzk(\@aﬂ)z = c(l + E)

This follows from (3.34) because when B8 =1 + (1/k), p = 2k.

Lastly let us note that the discrepancy between (1.3), in which ¢(8) = 2 and
(1.9), is due to the fact that Brownian motion is defined with a different scaling
in (1.1) than usual. This is explained just above in the portion of the proof of
Theorem 1.1 that deals with evaluation of the constants c() and c(8').
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