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BROWNIAN SURVIVAL AMONG GIBBSIAN TRAPS

By ALAIN-SOL SzZNITMAN!

Courant Institute of Mathematical Sciences

We consider Brownian motion evolving among killing traps. We develop
a technique of ‘“‘enlargement of obstacles.” This technique allows us to
replace given trap configurations by configurations of enlarged traps, when
deriving upper estimates on the probability that Brownian motion survives.
Applied in a context of random obstacles, this reduces the complexity of the
description for the environment seen by Brownian motion. We apply the
method to the case where traps are distributed according to a fairly general
Gibbs measure and obtain a result in the spirit of Donsker—Varadhan’s
theorem on Wiener sausage asymptotics.

0. Introduction. We study here the long time survival probability of a
Brownian motion Z. on R?, d > 1, moving among random obstacles con-
structed by translating a model nonpolar compact set K at the points of a
Gibbs point process independent of Z.. We assume that the law P of this point
process satisfies the Dobrushin-Lanford-Ruelle (DLR) equations relative to
an activity number » > 0 and a suitable translation invariant pair potential
V(x — ), V(-) symmetric, compactly supported. Precise assumptions on P are
given in Section 2. Let us simply mention at this point that we do not require
translation invariance of P, nor uniqueness for the solution of the DLR
equations.

If T stands for the entrance time of Z. into the obstacles, and P, for
standard Wiener measure, we show that,

(0.1) tlir&t‘d/(d”) log(P ® P[T > ¢t]) = —c(d, p),
with

d+2)\(24, ¥
(0.2) c(d,p) = (pwd)z/(d+2)(7)(7) .

Here wg, A, stand, respectively, for the volume of the unit ball of R? and the
principal Dirichlet eigenvalue of —(1/2)A in the unit ball of R%, and p € (0, »)
is the pressure:

(0.3) p = lim N~?log(Z([0, N1%)),
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where for A a bounded Borel subset of R,

(0.4) Z(A) = f dz, -+ dz, exp{— Y V(z; — zj)}.

nZO i<j
Our assumptions on V(-) ensure the existence of such a p. The constant
c(d, p) arises in fact from the minimization problem

(0.5) o(d, p) = inf{plUl + A(V)},

where U runs over the bounded open sets in R¢ with negligible boundary. In
(0.5), |U| stands for the volume of U and A(U) for the principal Dirichlet
eigenvalue of —(1/2)A in U.

When V = 0, we are in the case of a Poisson cloud with intensity v, and in
this case p = v. The asymptotic result (0.1) in this context can be found in
Donsker and Varadhan [2], when K is a ball of arbitrary radius, and in [11]
when K is an arbitrary nonpolar compact set.

Our results include, for instance, Poisson point processes with exclusion at
arbitrary activity v > 0 (see Gallavotti and Miracle-Sole [3], Miirmann [6],
Preston [8] and Ruelle [10]). In this case V is the hard core potential which is
infinite on B(0, a) and 0 elsewhere. If K is precisely B(0, a), we have the case
of nonoverlapping traps, at arbitrary activity v, and (0.1) recovers a result
which was argued by Kayser and Hubbard [5] on physical grounds. We also
treat cases of potentials which are sufficiently repulsive at the origin but may
take negative values.

There seemed to be some questions on whether or not the asymptotics (0.1)
would be influenced by the occurrence of a ‘‘phase transition” (nonuniqueness
of the solution of the DLR equations). We work here with possibly large values
~of v where such nonuniqueness of P is expected.

Let us give some ideas of the proof of (0.1). The main difficulty lies in the
proof of the upper bound part of (0.1). The existing proofs in the case of a
Poissonian cloud (see [2] and [11]) crucially involve a step in which one
dominates the survival probability P N Py[T > t] by a similar quantity, where
now R? is replaced by a torus. This step creates a strong rigidity of the proof,
and does not seem to be available in the present situation.

Here we build up on the ideas of [11, 12, 13] and bypass the projection
argument. The heart of the matter is a technique developed in Section 1. This
technique, when applied to our problem, allows one to work with much bigger
obstacles modeled on a ball B(0, b) instead of K, and to restrict our attention
to what happens in a certain open subset of diameter ~ const. t1/(?*2 inside a
cubic box of size t(@+1/@+2 centered at the origin, instead of the whole of R?.
Thanks to this reduction one has a good control on thé “number of possibili-
ties”’ for this modified obstacle environment.

Let us briefly describe the “enlargement technique” of Section 1. We start
with a deterministic cloud configuration of “true traps” of size ae (¢ small; in
the application to our problem & = ¢~1/(@*2) and with a possibly unbounded
subset 7 of R )
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First we replace at every point of the cloud the true traps by enlarged
obstacles which are balls of radius be. Then we chop R¢ into cubes of unit side.
We say that a point of the cloud x; in such a cube is “good” if the fraction of
volume occupied by enlarged obstacles in successive concentric balls
B(x;,10'b¢), I > 0, 10'be < 1, intersected with the cube, is nonvanishing. It
turns out that thanks to a covering argument, one has a good control on the
volume of enlarged traps at bad points.

The next step is to determine which cubes of R? are of “clearing type”or of
“forest type.” This is done purely in terms of enlarged traps, by picking a
small number r and asking that in a box of forest type the total volume left
unoccupied by enlarged obstacles sitting at good points is smaller than the
volume of a ball of radius r. The other boxes are said to be of ‘“clearing type.”

Now one introduces 0,, the open set obtained by considering the neighbor-
hood of size 1, of the union of ‘“clearing boxes” in 7, and deleting from it
enlarged obstacles sitting at good points. The real open set under study is 0,
the complement in 7 of true traps. The main point is that by making r small,
one can pick ¢ sufficiently small so that uniformly on the cloud configuration
and the open set 7, the bottom of the Dirichlet spectrum of —(1/2)A in 0, is
not really bigger than the bottom of the Dirichlet spectrum of —(1/2)A in O,
provided the bottom of the spectrum in ® has a reasonable value.

This enables us to detect clearings of unit size left open by true obstacles in
T by restricting to a neighborhood of size 1 of the “clearing boxes” in 7~ and
by working with enlarged traps.

In fact one can enlarge at a faster rate. If ¢ denotes the size of enlarged
obstacles and ¢'(¢) < ¢ the size of true obstacles, the critical condition when
d > 2 is that the “capacity of the true trap per volume of the enlarged trap”
ratio tends to infinity, that is,

lim [log(1/¢')] ~'/&% =, when d = 2,
-0

lim (¢')% */¢? = , when d = 3,
e—0

(when d = 1, the true obstacles can be points).

1. Some uniform exponential and eigenvalue estimates. The object
of this section is to derive uniform estimates which allow us to replace small
obstacles or traps, for instance in a bounded open set of R¢, by obstacles of a
larger size without noticeably raising the principal Dirichlet eigenvalue of the
part of the open set occupied by the obstacles, provided the principal Dirichlet
eigenvalue for the initial configuration has a reasonable value.

The methods we use are inspired by the techniques developed in [11, 12, 13].
The main improvement here shows how to get rid of the compactness assump-
tions present in [11, 12]. When we come back in Section 2 to the trapping
questions described in the introduction, we do not need to dominate the initial
problem on R? by a problem on a torus, as required in [11] or [12].
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Let us first describe our setting. We denote by  the set of simple pure
point Radon measures in R?. An element w = X8, of Q, will describe the
cloud of points, where obstacles fall on R¢. The obstacles will be the translates
of ¢K, where K is a nonpolar compact set of R? and ¢ a positive number, at
the points x; of the support of w.

We shall study the effect of these obstacles in a nonempty possibly un-
bounded open set 7~ of R%. This open set should not be viewed as being fixed.
As a matter of fact, our controls will be uniform on 7, and for the application
to the original trapping problem, we shall pick J = (—N[¢t?/@*+2]
N[t¢/@+D]d and ¢ = t~1/*?, for ¢ going to infinity.

For each multiindex m € 7%, C,, stands for the cube

(1.1) C,={zeRim;<z,<(m;+1),i=1,...,d}.
We also set (K is the model for the obstacles),
(1.2) a = sup{lzl, z € K}.

The enlarged obstacles are obtained in the following fashion. We have two
numbers, b and 8, where b > a and 0 < § < 1. We say that a point x, € C,,,
in the support of w, is good, see [11], if for all closed balls C = B(x;, 10'*1b),
0<!/and10' b < 1/2,

5
(1.3) > 5alCn N CI.

C,nCn ( U E(xj,ba))

x,€C,

Here | - | denotes Lebesgue volume. We let Good(m ) be the set of good points
in C,, and G be the union U,, Good(m). From (2.4) in [13], by a covering
argument, we know that the union of balls of radius be centered at ‘“bad
points” of C,, covers a small fraction of the volume of C,,, namely,

Cmn( U E(xi,bs)) <élC,| =8,

x,€Bad(m)

(1.4)

if Bad(m) stands for the bad points of C,,. We also chop identically each
segment [k, £ + 1] into at most [Vd /be] + 1 intervals of length be/ Vd each,
except perhaps the “last one.” This yields closed boxes of diameter less than
be, with union C,,.

We can now decide whether a cube C,, is of “clearing type” or “forest type”
as follows. We introduce a number r > 0, and set CI,, to be the event, “there
is a clearing of size r in the cube C,,:”

(1.5) Cl,, = {w, 10, (o) = 274B(0,r)| = 27%,r?},

if wUm(w) is the open subset of Com obtained by taking the complement in the
interior of C,, of the closed boxes where a good point of C,, [x; € Good(m)]
falls. We then set A(w) to be the closed set union of all closed cubes C,, in R?
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where there is a clearing of size r:

(1.6) Lywy(2) = 216,,,(2) ) 1czm(“’)~

We now define A' as the open set of points at distance less than 1 from A. If
A is empty, so is Al. '

At this stage, let us mention that the closed set A(w) as well as the open
sets U, (w), m € 7%, have been defined purely in terms of the enlarged
obstacles without any reference to the ““true obstacles” built on ¢ K. Following
[13], we introduce the successive excursions of the canonical process Z.(w) on
C(R,,R?) at distance 1 from A(w):

D, =inf{v=0,2, e (A)°) <,
Ry=inflv>D,Z, €A} =H,°60, + D, <,

where H, is the entrance time in A and 6 the canonical shift. By induction,
for n > 1, we set

Dn+1 = H(A1)c°0Rn + Rn < 00’
R, = }IA°0D,,Jrl + D, <.

If U is a nonempty open set, and T, denotes the entrance time of Z. in U*,
we set

(17) rU(t’x’y) =pt(x’y)th,y[TU>t]’ t>0’

where p,(-, ) is the Brownian transition density and P! , the Brownian
bridge measure in time ¢ from x to y. If x or y is not in U, ry(¢,x,5) = 0. In
what follows, we will tend to use the letter “H” to denote entrance times in
closed sets and “T" to denote exit time from open sets. Of course it is in the
nature of things that the exit time from an open set is also the entrance time
in the complement.

Formula (1.7) defines the symmetric kernel of a C, self adjoint contraction
semigroup in L*U,dx), and AM(U) will stand for the bottom (> 0) of the
spectrum of the generator of the semigroup. If U is bounded, the semigroup is
of trace class and A(U) is the principal Dirichlet eigenvalue of —(1/2)A in U.
If U is empty, we set AMU) = «. Finally, we introduce ©,, the open set
complement in N A" of U, . B(x;, be), and T =T, A T, where T, is the
entrance time in ¢ and T the entrance time in the true obstacle set
F=U,(x; + eK). 3

+»We are now ready to derive exponential estimates for the exit time T of
0 = I\ %, which as a byproduct will show that when ¢ is small, A, =;.; A(0;)
is not significantly bigger than A(®), provided A(®) is not too large. In what
follows, P, stands for Wiener measure starting from z.
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THEOREM 1.1. Pick M > 0, p > 0.

lim sup sup lim sup sup Ez[exp{()\b AM —p)ff}]
(]_‘8) r—»0 b>a,K,0<6<1 e-0 z,0,7

<1+ 3C(d,M,p),
where C(d, M, p) is defined in (1.9).

For the reader puzzled by the statement of Theorem 1.1, it is may be helpful
to give the translation of (1.8) in quantifier language. It means that for any
M>0,p>0,7>0, wecan find r, > 0, such that for r < r, for any K and
b>al=a(K), see(1.2)],0 <8 <1, thereisan g, > 0, such that for 0 < ¢ <
gy, and any z,w, 7, EJexpl(a, A\M —p)T}H <1+ (8/3)C(d,M,p) +n. In
fact we shall see that we can pick n = 0 in the previous statement. It should

also be mentioned that we could assume z = 0 without any loss of generality,
since the cloud configuration w is arbitrary.

Proor. We start with the following lemma.

LEmMma 1.2. Forany M > 0, p > 0,
(19) sup Ez[eXp{(M A A(U) _p)TU}] v “def C(d’M’p) < ®.

UcR open, z

Proor. With no loss of generality, we assume (M A AM(U) — p) > 0, and
U+ Ot

E,[exp{(M A MU) - p)Ty}]

1.10 ®
(1.10) =14+ (MU)AM~- p)f dsf dy eMDNM=p)sp (s 2,).
0 R¢

Now if R, denotes the semigroup with kernel ry(t, -, ) on L*(U, dx) for
t>2and x € U,

ro(t,x,x2) = (rg(1,x, ), B, _o(ry(1, %, *))) 2w, ax
<exp{ —AMU)(t — 2)}Iry(1, x, 2w, ax)
< (2m) 2 exp{ ~MU)(t - 2)),

since ry is dominated by the Brownian transition density. As follows classi-
cally from Cauchy-Schwarz inequality and the Chapman-Kolmogorov rela-
tion, applied at time £/2,

rU(t’ x’y) < SuprU‘(t’ z, Z).
z



496 A.-S. SZNITMAN

It follows that for ¢ > 2, x,y in R%:
ru(t,x,y) < ((2m) " exp{ —A(U)(t - 2)})

(1.11)
A

For convenience, let us write A = A(U) A M. From (1.10) and (1.11) we see
that with o,;_; = vol(§¢~1):
E, [exp{(A — p)Ty)]
<1+ 2(M—p)e2M=—»

(1.12) + /\foods fwdr a'd_lrd_l[((27r)_d/ze_"(s_z))
2 0

A ((2773) _d/2e_’2/2s)]e("‘p)s.

The last term of (1.12) is bounded by
2

[e e} o] r
Al d d d-1cg —d/2 I Y
/(; 8'[,/278 ro,_r* " 1(2mws) exp) — o ( p)s

A d/2 ©
+ Awd(—) f sde PsTIM (g
ko 0

S

© Ao d/2
=/\/;) f\/}\_o-d_l(;) r¢ texp{—(r® — A + p)s}drds

/2
+ 2e?My d!- p_(d“)(—) .
™

Setting r — VA = u, and using r?2 — A > (r — YA)?, when r > VA, the last
expression is smaller than

)tj:j:ood_l(s/w)d/z(u + \//T)d_lexp{—(u2 +p)s}duds
+ e2My dlp~ @D M /7)Y - M

o (u + \/IW)‘H

42571 du

d
<Moo, T'|= +1|74/2
d1(2 ) /(;(u2+p)

+Me*Me,dlp~ @D M /7)Y < .

This, together with (1.12), proves our claim. O

o

Let us now prove Theorem 1.1. We define
(1.13) c,(d) = 3 inf PJ[Hp < Hy] > 0,
Fe?¥
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where ¢ is the class of compact subsets F in B(0,2) such that |F| > 27¢(1 —
2-9|B(0,2)| and H; = inf{u > 0, |Z, — Z,| > 3} (and similarly for H,, ¢ > 0).
We will also need

(1.14) B(d, M, p) = 1/[24C(d, M, p) + 2],

so that 38/(1 — 2B) = [8C(d, M, p)] .
Now we pick 0 < r < 1/4 small enough so that

(115) (1 _ cl)[l/(4\/F)] < B’
(1.16) Elexp{MH;}| <1+8, zeR”
We also set
a(6,b,K,d) = inf P|[Hp < H,]
lzl <1, Fe€'
(1.17)

X inf P,[Hg < Hy 34| > 0,

|zl <b
where ¢” is the class of compact subsets of B(0,1) with relative volume no
smaller than 8/6¢%. We then introduce m(M, p, 8, b, K, d), the smallest inte-
ger such that

(1.18) (1-a)" < [8C(d,M,p)] "
Suppose now ¢ is small enough, which we will assume from now on, so that
(1.19) 10™*1be + be <r < 1/4.

Then exactly as in [13], (2.19)-(2.22), if z is at distance smaller or equal to be
of a good point x,,

Pz[Hr > T’] 2PZ[ILIIO"”LIIu—:+b.92T"]

%

1-(1-a)”
(1.20)
1-[8C(d, M,p)] ' =1/2,

as follows by looking at the successive times of escape of the process Z. from
the balls B(x,,10'"1eb), 1 < I < m. Moreover, when (1.19) holds, if z € C,, N
A°¢ for some m € 7%, then the intersection of B(z,2r) with the union of
(closed) subboxes in C,, containing some good point has volume bigger than
IB(z,2r) N C,| —274B(0,r)l = (1 — 27%)279B(0,2r)|,

since r < 1/4. It now follows as in [13], (2.16), that P[Hg\ g, < Hj, ]2 2¢;.
Combining with (1.20), this yields under (1.19):

(1.21) forzeA°, P[T<H,]=>c,.

[\

We will now prove the following lemma.

LEMMA 1.3.
(1.22) ForzeR?, E,(exp(M(H, A T)}] <1+ [8C(d,M,p)] "
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Proor. Ifz€ AU I°U ¥ (X%, werecall is Ui(x; + K ), the true obstacle
set), (1.22) is immediate. Otherwise, denote by H', i > 0 the successive times
of travel of Z. at distance Vr:

H°=0, H"'=H'+Hg0y, 120
We have

Ez[exp{M(HA A T)}] = kZOEZ[Hk <H, AT <H*, eM(HAAT’)]
=

< Y E[H*<H, AT, eMHY| Bl M),
k=0

Now when % > 1,
E|H* <H, A T,eM™|

CE[E < Hy A T oM, [(H < Haon T o]

(1.23) <E [Hk—l <H, A T eMHk—l(E [H <H. A T]
- A ’ Zygk-1 Jr A

+Esz—1[eMH¢;] - 1)]

Now on the set H*"! < H, AT, k = 1, Zyi-1 belongs to A°. Using (1.21)
together with the strong Markov property at the successive times of travel at
distance 4r, we find

B Hyp <Hu A T] < (1-c)V/* < p(d, M,p)

on H* ' <H, A T [see (1.15)]. If we now use this last inequality together
with (1.16) in (1.23), we obtain for £ > 1:

E[H' < Hy AT, ™) < E[H*' < Hy A T, ™| (28)
< (ZB)k, by induction.
It then follows that

+ B 3B
-1+ ,
1-28 1-28

E[exp{M(H, A T))] < (1 +8) L (2)" =
k=0
which proves our claim, thanks to the choice (1.14) of B. O

We shall now give a bound on E [exp{(A, A M —.p)T}, z in R It is enough
to study the case where A, AM —p > 0. In this case we introduce the

rgtopping time
r=inf{u > 0,1Z, — Zyl = r} AT, when Z, € A!
=H, AT, when Z,¢& A"
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T, will stand for the exit time from ©,:

= inf{u >0,Z,¢A'nJorZ, e | E(xi,bs)}.

x,€G
Similarly as in [12], we define
S0=0, S1=T°0Tb+Tb7 Sk+1=Sk+SI°BSk’ kZl.

Under the assumption that A =4+ (A, A M — p) > 0, the S, are easily seen to
be finite, thanks to Lemma 1.2 and 1.3. We set J = inf{k > 0, ZS e J°uU XY}

then S, > T and from what follows next, o/ is finite almost surely Indeed, for
k=1,

E,[Zs,....Zs, & T°U X, ] = EZ[ZSO,...,ZS L& T UX,

k
eAS"‘lEsz_l[e)‘TbEZTb[eMl{ZT & I°U ,}2/}]”
Now one has

Ey,, [e"Eg, |12, & T U X¥}]]
< By, [e(Ep[e¥] =1+ By, [Z, ¢ 00 X)),

Using (1.16) or Lemma 1.3, as well as the definition of C(d, M, p) in Lemma
1.2, this is smaller than

(1.24) o+ By, [TEg, (2,2 TV x|

Now Zj, belongs to (A)°U J° or UGB(xL, be). Consider the expression
Ez [Z 65 ?"’UJ,V] If ZT e ¢, it is zero. If ZT belongs to (A)* N I,
theh 7 = H . A T and the expression is

(1.25) Py, [Ha < T] < (1 -c)"*" < [8C(d, M,p)] ",

using the strong Markov property at the successive times of travel of Z. at
distance 4r, as well as (1.21) and (1.15). Now if Z;, € U ¢ B(x;, be) N Al, the

expression is
Py [H, < T] < Py, [Hignoperp < T] < (1 —a)™'< [8C(d, M, p)] ",

thanks to (1.20). In any case, we see that the expression in (1.24) is smaller
than 1/4. From this we deduce that

E,[Zs, ..., 2, & T°U X, e < (1/4)", k=0,
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which also yields the finiteness of ¢/, since A > 0. We can now write

E,[exp{AT}] < E,[exp{AS,}]
<1+ Y E|Zs,...,Zs & T°U X,
k=0
e*eal(Zg, € TU X))
<1+ L E|[Zs,....Zs & T°U X, E, [e"TbEZT[e”]”.
k=0 k b
Using (1.16) or Lemma 1.3, and then Lemma 1.2, this is smaller than
1+20(d,M,p) ¥ ()" =1+ 2C(d, M,p),
£E=0
which completes the proof of Theorem 1.1. O

Theorem 1.1 will now be applied to show that when r is small, for
sufficiently small ¢ the bottom of the Dirichlet spectrum of —(1/2)A is not
significantly raised when replacing ® by ©,, provided the bottom of the
spectrum in ® has a reasonable value. The proof is very similar to that of [11],
except for the fact that ® and ®, in our present setting can be unbounded and
we cannot use eigenfunction expansions any more.

COROLLARY 1.4. For M > 0,

lim sup lim sup sup (A(®,) AM — A(0) AM),=0.
r=0p>q K, 0<5<1 £-0 o,

Proor. To prove the claim, it is enough to check that for p >0,
sup, E [exp{(A, A M — p)T] < « implies A, A M — p < A(O).

Suppose A, A M — p > M0) (> 0). Then we can find an L? unit continuous
function f with compact support in ® and in H(R") such that

(1.26) . A(©) sfoud(E#f,f)</\b/\M—p,
if E, is a resolution of the identity corresponding to the self adjoint Dirichlet

semigroup in L%(®, dx). Since the Dirichlet form decreases under absolute
values, we can assume f > 0. Then, setting A = A, A M — p,

o > || llull f Il sup E, [exp{AT}] = f:ds )\e"sf@X@dxdyr@(s,x,y)f(x)f(y)

= j:dsz\e)‘sj:e_“sd(E#f, )= f:dsz\exp{[)t - f:ﬂd(E,Lf,f)]S}»

using Jensen’s inequality in the last step. But the last inequality is impossible
in view of (1.26). This proves our claim. 0O
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Although this will not be needed for our application in Section 2, one can
refine Theorem 1.1 and Corollary 1.3 in the following way. The ‘‘true obsta-
cles” can be picked of a much smaller size ¢ K than ¢ K. The natural condition
in order to be able to replace at good points the obstacles built on &K by
obstacles built on the larger £ B(0, b) is that the ratio of “the capacity of the
true obstacle” to the volume of the enlarged obstacle goes to infinity. That is
(¢)%72/e? > w when d > 3, [log(1/¢)] !/e? - © when d = 2. In dimension
1, Theorem 1.1 already includes the case of K = {0}, that is, ‘¢’ = 0.” If this
condition is violated, one has the following counterexample.

ExampLE 1.5. Pick w to be the sum of Dirac masses sitting at points of
eZ%, d > 2. The obstacles are made of balls ¢ centered at these points, where
¢ =e¥@"2 d>3 ¢ =exp{—1/¢%}, d =2. Pick b=+Vd and 9= B(0,1).
The enlarged obstacles are made of balls B(me, Vd ¢), m € Z¢, and they cover
Z (and R?). Now every point of the cloud is a good point (for any 0 < & < 1),
there are no clearing cubes and A(®,) = «. However we are, as far as the true
obstacles are concerned, in the ‘“‘constant capacity regime,” and it is known
(see Cioranescu and Murat [1] and Ozawa [7]) that A(®) converges to a finite
value, A, + 7 when d = 2 and A, + cap(B(0,1)) when d > 3, as ¢ goes to
zero. Here cap(B(0, 1)) stands for the capacity of B(0, 1) relative to (1/2)A,
and A, is the principal Dirichlet eigenvalue of —(1/2)A in B(0,1). O

We now assume that d > 2, and that the obstacles are translates at points
of the support of w of £K, where K is a nonpolar compact subset of B(0, 1)
and &' = f(e) < ae, with

lim (¢)¢ %/e¢ = w, whend > 3,
-0

(1.27) 1
lim (log1/¢') " /e% = », when d = 2.
e—0

THEOREM 1.6. Under (1.27), forany M > 0, p > 0,

lim sup sup limsup sup Ez[exp{(A(®b) ANM - p)T}]

r-0 b>2aq,K,0<6<1,f(-) -0 z,0, I
(1.28) <1+ 3C(d,M,p),
lim sup sup lim sup sup (A(®,) AM — A(©®) AM),=0.

r-0 b>2a,K,0<5<1,f(:) £-0 o,

Proor. The proof follows exactly that of Theorem 1.1, except that we now
pick a in a different way from (1.17). Indeed, from [12], Lemma 1.3 and its:
proof, we know that given b > 2a and 0 < § < 1, there is a constant a(d, §) >
0, such that for any 7 < 1/20, ‘

(1.29) liminf inf P,[T < Hp,, 10,y] > 2a,

e—0

where inf _ means that the infimum is taken.over w in Q, y € (#,1/20), z and
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y, such that |z — y| = v and
U B(x;,be) N B(y,v)| = 8- 6 B(y,7)l.

Now we pick 0 < r < 1/20 satisfying (1.15) and (1.16).

We then pick m > 1 according to (1.18) and apply (1.29) with 7=
(r/2)10~m*3 50 that we have an ¢, which can be picked so that 10b¢, <
10~m*3r /2, and for ¢ < &,

P,[T < Hp,, 1005er] = @,

whenever |z — x;| = 10'*1be € (10"™*?r/2,1/20) and x; is a good point of
the support of w. There are now at least (m + 1) points of the form 10510,
I > 0 in the interval (10~ *?r /2 r/2), from which we see, as in (1.20),

P[H,>T|>1-(1-a)"=1-[8C(d,M,p)] ",

where ¢ < ¢, and z is at distance less than or equal to be from some good
point of w. The condition ¢ < ¢, also implies (1.19) and from then on the proof
follows identically. O

2. Brownian survival among Gibbsian traps. We are now going to
apply the results of Section 1 to the trapping problem described in the
introduction. One canonical Brownian motion Z, under the law P,, will now
move among random traps in R¢, obtained by translating a nonpolar compact
set K of R? at the points of an independent Gibbs point process.

More precisely, we have a symmetric measurable function V(-) on R?, with
values in (—o, ], which is bounded below by —M (M > 0), and compactly
supported in B(0, ). We assume that V(-) is a stable potential (see Ruelle [9],
page 33), that is, there is a B > 0 such that for any z,,..., z, in R%,

Y. V(z,—2;) = —nB.

i<j

We also consider a number v > 0 and set for any bounded measurable set A
in RY:

(2.1)  Z(A) =4 ¥ %fAndzl - de, exp{— Y V(z; —zj)} < o,

n>=0 i<j

We let p,(dw) stand for e’ times the Poisson point measure on A with
intensity v. We require that P, the law of the Gibbs point process on (), satisfy
the DLR equations (after Dobrushin-Lanford-Ruelle), namely, for any
bounded measurable A, the conditional distribution of w, =4 14 - @ given
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w4 1s the law

Pa(@ae, dw) = Z(wye, A) ™

(2.2) Xexp{—j:qcwaAc(dz’)w(dz)V(z' - 2)

3] [, w(da(d)V(z - 2) fpu(do),

where Z(wyc, A) is the normalizing constant, which is finite thanks to our
assumptions on V. For A, B bounded measurable we have

(2.3) 1+ vlAl <Z(A),
(2.4) Z(A\B")Z(B) <Z(A U B),
if B” denotes the r neighborhood of B. We also assume that there is a number
p € (0, ) (the pressure) such that
(2.5) lim  |A;l" log Z(A,) = p,
Ly,..., Ly—»

ifAL=[O,L1] X -0 X [O’Ld]’ LLZ O.

We also require that —p govern the logarithmic rate of the large deviation
probability that a large ball receives no points of the cloud,

(2.6) lim |B(0, R)|"'log(P[w(B(0, R)) = 0]) = —p.

Since Plw(A) = 0] = EP[Z(w 4., A) 1], this a type of assumption, in view of
(2.5), that the interaction at the boundary is *well behaved.”

Let us mention that we do not require P to be invariant under translations.
Let us give some examples.

ExampLE 1. If V > 0 (repulsive interaction), with the special case of hard
cores V= on B(0,a), 0 elsewhere (Poisson with exclusion) and V = 0
(Poisson of intensity »). In this case Gibbs measures are known to exist (see
for instance Preston [8], Chapter 6, also Miirmann [6] for Poisson point
processes with exclusion). Moreover, when V > 0, for A, B bounded measur-
able disjoint,

(2.7) Z(AUB) < Z(A)Z(B),
(2.8) Plo(A) = 0] = E®[Z(ws, A) Y] <2(4) 7,

if A=A\ (A°) denote the set of points at distance at least { from A, [(2.8)
holds even when V changes sign]. Our assumptions (2.5) and (2.6) now follow
by classical arguments (see Ruelle [9], page 181). This class of examples
contains the situation of nonoverlapping traps, where C = B(0,a) and V is
infinite on B(0, a) and 0 elsewhere.

ExampLE 2. In the case where V(2) > ¢(Jz]), 0 < |z| < [, with ¢ > 0, de-
creasing, [(y(w)u?"! du = » (and of course V compactly supported in B(0, 1),
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bounded below by —M), one can construct Gibbs measures P for which there
exist « > 0, B > 0 such that

Pl ¥ @(B,)* = N2card Z| < exp{—(aN? - B)card %},
meR
whenever % is a finite subset of Z¢, and B,, is the cube centered at Im, with
sides of length [ (see Ruelle [10], Corollary 2.8 and Preston [8], page 108).
Assumption (2.5) now follows from Theorem 3.3 in Ruelle [10], and (2.6) is
proved by using very similar arguments as in Section 3 of [10]; see also Israel
[4], Appendix B in the case of hard cores and Ruelle [9], Theorem 3.4.6.

Let us recall that T stands for the entrance time of Z. into the obstacles
and c(d, p) is the constant introduced in (0.2). Our main result is:

THEOREM 2.1.
(2.9) lim¢~4/@+2 JogP ® Py[T > t] = —c(d, p).

t—>

ProoF. The lower bound part of (2.9) is classical (see [2] or [11]). One
simply writes that for R > 0,

P ® Py[T > t] > P[w(B(0, Rt*“*? + a)) = 0] Py[ Tpe posasn > t],
the model obstacle K being included in B(0, a). Using (2.6), one gets
liminf ¢~¢/@*D]ogP ® Py[T > ¢t] = —{pIB(0, R)| + A( B(0, R))};

t—>
optimizing over R one finds precisely —c(d, p) in the right member of the last
inequality.

Let us now prove the upper bound part of (2.9). First it is convenient to
adopt ¢/(?*2 and t2/(?*? as new space and time units, so that we now study
standard Brownian motion until time s =, t*/¢“*? among obstacles which
are translates of t~1/@*?K =, . ¢K at the points x; of the cloud governed by
the law P,, obtained by rescaling P with the factor & = ¢~ 1/@+2,

We now pick for s > 1,

7= (-N[s], N[s])*,
where N > 1 is an integer large enough (see (2.10) in [13]) so that
(2.10) limsup s 'log Py[T<s] < —(e(d,p) +1).

8§ —>

Using the notations of Section 1, let us pick r > O; b>@Vdl)Va, 0<d<
1. As a result of (1.4) (see (2.14) in [13]), for m in 7¢,

(2.11) U, < |U,| + 9,

where we recall that U, (w) is the complement in the interior of C,, of the
closed subboxes where a point of C,, falls (for U,,, where a good point of C,,
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falls). It follows that
= {0, = 274B(0, r)l}
c U, nC,l =274B(0,r)l — & — d(b/Vd)s 4},

if €, denotes the complement in C of the “last layer of subboxes” of C,,,
namely,

(218) C, ={z€R%, m; <z <m,+ [Vd /belbe/Vd i =1,...,d}.
Setting 9= (~N[s] — 1, N[s] + 1)¢, we have:

(2.12)

LEmMma 2.2. Foranyr > 0,

2.14 limsup limsup limsups 'logP,||A N I >n,| = —o.
s 0

ng—x b—)oo)8—>0 §—>
Proor. We have
PJlA N P =n,] < (2Ns + 2)?™ sup P [ N (U, = 2-4B(0,r)| - 5}],
[#|=n, med

where .# runs over subsets of [—-N[s] — 1, N[s]]¢ with n, elements. For such
an .#, we have

s

meH

where U runs over the complement of union of subboxes in U,, ¢ /Cgm with
volume bigger than n (2~ ¢|B(0, r)| — 8). For such a U, a repeated use of (2.4)
" [see (2.8)] shows that

Plo(U) =10] < Ps[w( U (C.n U)) = o]

med

[P’[ N {|Um| > 2-9B(0,r)l - 5}] < 2no(\/¢731/d/b+1)dsupps[w(U) _ o],
U

—ngs(27¢ r)—6— s~ 1/d)y. L
< Z(b/Vd — 21) "o BODIZam AN (T

where Z(u) stands for Z([0, z]%), u > 0. It now follows that
lim sups ! log[FDS[IA NnT > nO]

§—

log Z(b/vVd — 21)
ny

< naloB 200 0)" =m0

(g‘dIB(o, r)l - 8).

Now using (2.5), we get
limsup limsups~!logP, [IA NTl > nO] < —nyp27%B(0,r)l,

b—>x0,6-0 s—ox

which now yields our claim.
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In view of our choice of N in (2.10) and of Lemma 2.2, Theorem 2.1 will

follow if we show that,
lim sup limsup limsup limsups~?!

r—0 ng—© b—-w,§->0 s—ox

(2.15)
X log(lFD ® PO[’f’ >s, AN I < nO]) < —c(d, p).

If we apply Theorem 1.1 to the bound

Ey[exp{(A, A M = p) , T}] = exp{(A, A M — p), s}Po[T > s],
where A, = M0,) and 0, = 9N A"\ U, cqB(x;, be), we see that for any
M > 0 and p > 0, the left member of (2. 15) is smaller than

lim sup limsup limsup lim sups_llog([E[exp —(Ap AM —p), s},

r—0 ng—o© b—ow,§->0 s—ow

(2.16) AN T <)

Observe now that SN A' ¢ D =, 9N (U T, 4+2Cm)’; in other words, D is
obtained by deleting in J all closed boxes C,, which are not neighbors of A.

We can also introduce U (respectively U), the complement in D of the
union over m € Z¢ of closed subboxes intersecting C and containing a point
of C,, (respectively, a good point of C,,). We now have 0, c U, and thanks to
(14)and AN I < n,,

(2.17) UcUcD, |Ul <|Ul +38D|<|Ul+ény3%

Observe that the number of possibilities for D grows at most polynomially in s
for fixed n,, and that for fixed D the number of possibilities for U and U is

smaller than 22m03°(Vds¢/b+1% Tt follows that the expression in (2.16) is
smaller than

lim sup lim sup lim sup (limsup sup {—(A(U) ANM —p)+

r—0 ng—® b—ow, §-0 s—>» D UU

(2.18)
+s M og(P,[w(U) = O])} + 2n,34 log2(1/d_/b)d),

where U, U, D satisfy the constraints (2.17) in the supremum which appears
in (2.18), and the dependence on r has in fact disappeared. On the other hand,

P,[w(U) = 0] < exp{—s(\UI - 3¢n,d(b/Vd )s~/4)/(b/Vd )"
xlog Z(b/Vd — 21)}
< exp{—s(lUl —3%,(8 + d(b/\/g)s‘l/d))

xlog Z(b/Vd - 21)/(b/Vd)"},
thanks to (2.17).
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As a result, (2.18) is smaller than

lim sup lim sup (— ir}f{()\(U) AM—p),
U

ng—o b—w,§-0

(2.19) +|Ullog Z(b/Vd — 2l)/(b/\/c7)d}
+3%n, log(Z(b/\/E - 2l))/(b/ﬁ)d)

and now U runs over all bounded open subsets of R? with negligible boundary
and volume smaller than 3?n,. For such a U we have

(A(U) A M = p), + |Ullog| Z(b/vd — 20)]/(b/Vd )"
> MN(U) A M + plUl - p - 3%n,|p — log[ Z(b/Vd — 21)] /(b/Vd)"|

> (MU) +plU)AM—p - 3dn0[p — log[Z(b/Vd - 21)]/(b/\/(7)dl.
It follows, thanks to (2.6), that (2.19) is smaller than
—inf(AlU| + plUl) AM +p,
U

U running over bounded open subsets of R¢ with negligible boundary. Letting
p go to zero and M go to infinity, we see that (2.15) is smaller than

—inf(A(U) + plUI).
U

Now using the isoperimetric inequality, Donsker and Varadhan [2] showed
that the infimum is attained when U is a ball of radius R, =
(2Ay/dpw )/ @*?, and that for such a U, M(U) + p|U| = ¢(d, p). This com-
pletes the proof of the theorem. O
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