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TRANSIENCE / RECURRENCE AND CENTRAL LIMIT
THEOREM BEHAVIOR FOR DIFFUSIONS IN RANDOM
TEMPORAL ENVIRONMENTS

By MARK PiNsky AND Ross G. PINSKY

Northwestern University and Technion—Israel Institute of Technology

Let o(t) be an ergodic Markov chain on a finite state space E and for
each o € E, define on R? the second-order elliptic operator
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Then for each realization o() = o(¢, ») of the Markov chain, L, ,, may be
thought of as a time-inhomogeneous diffusion generator. We call such a
process a diffusion in a random temporal environment or simply a random
diffusion. We study the transience and recurrence properties and the
central limit theorem properties for a class of random diffusions. We also
give applications to the stabilization and homogenization of the Cauchy
problem for random parabolic operators.

1. Introduction and statement of results. Let o(¢) be an ergodic
Markov chain on a finite state space E with generator G and for each o € E,
define on R¢ the second-order elliptic operator
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Then for each realization o(¢) = o(¢, ) of the Markov chain, L,,, may be
though of as a time-inhomogeneous diffusion generator [with coefficients
a;{(x;0(t, ) and b/(x;0(f, ))]. Without further mention, we will always
assume that a(x; o) = {a, (x; a)}{f j—1 is continuous in x and positive definite
and that b(x;0) = {b,(x; o)}%, is bounded on compacts and measurable. It
then follows from [9] that L,,, generates a unique time-inhomogeneous
diffusion process X(¢) = X(¢; o(-)). We will call such a process a diffusion in a
random temporal environment or simply a random diffusion. Note that in fact
X(¢) may be thought of as the first component of the Markov process
(X(),0(2)) € R? X E generated by L_ + G. This is a special case of a class of
processes that has been studied recently by Freidlin and Eizenberg (see, e.g.,
[1] and [2]).

In this paper we study the transience and recurrence properties and the
central limit theorem properties for a certain class of random diffusions.
Denote by u the invariant probability measure for the Markov chain o(¢) and,
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for fe B(E),let{f)=X,cpf(o)u,.Alsolet r = |x| and ¢ = x/|x| € S¢~ 1.
We will consider random diffusions satisfying the following hypothesis.

HypotHESIS A. L, = 3A+V for large |x| on R? d > 2, where V=
lxI°6(x/lxl;0) - V, & e[ 1 1), b(¢;0) £ 0, b(d;0) € ci(ge1) for each o €
E and {b(¢; - )Y = 0 for each ¢ € S~ 1.

Hypothesis A states that for |x| sufficiently large, the drift field is homoge-
neous of degree § € [—1,1) and mean zero. Actually the proof of our main
result will reveal that it still holds when the conditions on the coefficients are
relaxed somewhat. These weaker conditions appear as Hypothesis A’ at the end
of this section. At the end of this section we also discuss what occurs if
8 € R—[—1,1). It turns out that the cases § < —1 and § > 1 are trivial and
uninteresting; on the other hand, the case § = 1 remains an open problem.

Now if the drift were identically 0, then X(¢) would of course be recurrent
for d = 2 and transient for d > 3. With the introduction of the asymptotically
homogeneous mean zero drift field, transience or recurrence will depend not
only on d but also on & and on b(¢; o).

Before describing our results, we recall several facts concerning the genera-
tor G. We have uG = G1 = 0 and, by the ergodicity assumption, 0 is a simple
eigenvalue for G. By the Fredholm alternative, the equation Gu = v is solv-
able if and only if {(v) = 0 in which case z = G~ v is unique up to the addition
of a multiple of the vector 1. When we write vG~'v, we mean the product of
the two functions v(o) and G~ 'v(o) and not the quadratic form in v. That is,
vG~ v = (WG w)o) = v(e XG*v)(o). Since {v) = 0, it follows that (vG~'v)
is well defined, that is, is independent of the arbitrary multiple of 1 appearing
in G~ v. Finally, we have

1.2) (vG~'v) < 0 for all v satisfying (v) = 0 and equality holds
(1:2) " if and only if v = 0 [4].

We first consider the problem of transience and recurrence. It turns out
that the transience and recurrence properties of random diffusions satisfying
Hypothesis A may be described entirely in terms of the behavior of the
generator

1A, if-1<8<0,
(1.3) L={iA-—(VG"W), ifs=0,
—(VG~WV), if0 <6 <1.

Substituting V as given in Hypothesis A into (1.3) and using (1.2) and the
fact that differentiation with respect to x; of a function depending only on
¢ € S9! yields the product of 1/r and another function depending only on
¢, one finds that L may be written in the general form
c ) 19

A(8) 0

——Dd+ Ldl
r or . rar 57 sp

(1.4) L=r" cl(cb)a—rg
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where

_/0, -1<s<0,
Y7 \2s, ifo<s<i,

c(¢) = 0, Dge-1 is a first-order operator on S¢-! and Lga-1 is a (possibly
degenerate) diffusion generator on S9! .

From here on, when considering the problem of transience and recurrence,
we shall assume the following hypothesis.

Hyporuesis B. Either L is nondegenerate or, in representation (1.4),
c($) >0 forall € S~ and (cy/c,X) is constant.

REMARK. From (1.2) and (1.3), it follows that L is always nondegenerate if
—1<46 <0.If0 <8 < 1, then it is easy to see from (1.3) that the nondegener-

acy of L is equivalent to the nondegeneracy of the matrix
A d
{Bi(o: )G 8,005 D), -,
for all ¢ € S¢-1,

If L is nondegenerate, then so too is L sa-1 in which case the diffusion it
generates possesses a unique invariant probability density on S¢-1. Let v(¢)
denote this invariant probability density with respect to normalized Lebesgue
measure (which we denote by d¢). Define

f (co(¢) —ci(d))v($) dob, if Lgais nondegenerate,
Sd—l

if Lga-1 is degenerate

= -1, C2 .
c and — is constant.
c
1

The probabilistic import of p is as follows:

ProposiTioN 1. Let X(¢) denote the diffusion generated by L.

@) If p > 0, then starting from outside the unit ball, X(¢) hits the unit ball
with probability less than 1.
(i) If p = 0, then starting from outside the unit ball , X(¢) hits the unit ball
with probability 1 and reaches the origin with probability 0.
(iii) If p > 0, then starting from outside the unit ball, X(t) reaches the
origin with probability 1.

REMARK. In case (i), X(¢) is transient to ® and in case (i), X() is null
recurrent. In case (iii), the question of whether X(¢) must remain at 0 for all
t > 7, or whether it can pass through 0 is a delicate one. This question was
investigated by Williams [10] in the special case I, = 3A + w(8)/2rd/or. She

identified a value p, < 0 such that if p < p,, then X(¢) must remain at 0 for



436 M. PINSKY AND R. G. PINSKY

all ¢ > 7, while if p, < p < 0, then one can define X(¢) so that it reaches 0
with probability 1 but spends Lebesgue measure zero time there. Presumably a
similar phenomenon occurs for L as in (1.4). Thus, in case (iii), X(¢) is null
recurrent or transient according to whether it can pass through 0 or must
remain there. (However, if we were to amend the radial part of the drift of L
in a neighborhood of the origin so that the resulting operator, call it. I/, had a
bounded radial drift, then I’ would generate a transient process if p > 0 and a
recurrent one if p < 0.)
We can now state the following theorem.

THEOREM 1. Let X(¢) = X(¢;0(+)) be a diffusion in a random temporal
environment generated by L, and assume that Hypotheses A and B are
satisfied. Then for almost every realization o(-), X(¢) is recurrent or transient
according to whether p < 0 or p > 0.

There are certain interesting particular cases in which Theorem 1 may be
used to give a very simple criterion for transience or recurrence.

CoroLLARY 1 (Negative homogeneity). If —1 <8 <0, then the random
diffusion is recurrent if d = 2 and transient if d > 3.

ReEMARK. Thus, if —1 < 8 < 0, the homogeneous, mean zero drift is suffi-
ciently weak so as not to affect the transience or recurrence of the random
diffusion. In contrast, in the nonrandom case, one needs § < —1 to guarantee
that the drift does not influence transience or recurrence.

CoroLLARY 2 (Radial case). Let the vector field V be radial, that is
V =r’b(¢;0)3/9r, where b(¢p; o) is a scalar. If 0 <8 <1, assume that
(b(p, - )G b(¢, - )> + 0 for each ¢ € S¥~1,

@) If 6 =0, then the random diffusion is recurrent if d <2 + 2c and
transient if d > 2 + 2c¢, where ¢ = — [ga-1{b(¢, - )G~ 'b(, - )> dd > 0.

(i) If 0 < 8 < 1, then the random diffusion is recurrent in all dimensions
d=> 2.

ReEMARK 1. Corollary 2 shows that in the radial case, the randomness
introduced through the homogeneous, mean zero drift yields recurrence in
higher dimensions than one would normally expect.

REMARK 2. In the radial case, one can check that Theorem 1 holds even if
6 = 1. Thus the random diffusion is recurrent for all d > 2 if § = 1.

CoroOLLARY 3 [Vector field divergence free up to the homogeneity term and
Markov chain o(¢) reversible]. Assume that the Markov chain o(¢) is re-
versible and let the vector field V = r®b(sp; o) - V satisfy V - b(¢, o) = 0. Also,
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in Hypothesis B, assume that L is nondegenerate (which is always true if
8=0).

() If 6 = 0, then the random diffusion is recurrent if d = 2 and transient
ifd > 3.

(i) If 0 < 6 < 1, then the random diffusion is transient in all dimensions
d=>2.

REMARK 1. It is interesting to note that in the case of positive homogene-
ity, the vector fields of Corollary 3 (along with the reversibility assumption)
yield transience in all dimensions, whereas the radial vector fields of Corollary
2 yield recurrence in all dimensions.

RemARk 2. Corollary 3 covers, in particular, the case of the ‘“‘gradient
vector field” in which V = r°b(¢) - V.

REMARK 3. Consider the case —1<8<0, d=2 and V=r%(s) -V so
that there is no ¢-dependence in &. If & = 0, also assume that o(¢) is
reversible. Then it is trivial to check that for each fixed o, L, generates a
transient diffusion. However, this transience is cancelled out and by Corollary
1 (in the case —1 < 6 < 0) or Corollary 3 (in the case § = 0), it follows that
the random diffusion is almost surely recurrent. It is natural then to ask
whether the random diffusion must necessarily be recurrent if L, is a
recurrent generator for all o € E. It turns out that even on the half-line,
where the topology plays no role, one can construct a random diffusion which
is almost surely transient but for which each L is positive recurrent. For this
result and other related ones, see [7].

Now, in the general case, one would ideally like the transience or recurrence
criterion of Theorem 1 to be given explicitly in terms of the following objects:
the statistics (b,(¢; - )G_lgj(d); -)), the dimension d and the homogeneity
parameter 8. It is easy to see that c(¢) and c,(¢) are given in terms of the
above objects; however v(¢), which solves the adjoint equation Lga-1wv = 0,
cannot be written down explicitly in general, except in the case d = 2. When
d = 2, we have the following proposition.

PrOPOSITION 2. Let Lgi = cy(¢)9?/9d* + c($)9/3¢p be a nondegenerate
diffusion generator on S'. Then the corresponding invariant probability den-

sity is given by
_ k ¢ Cq ] tCy ld
0= el o n el LG )

'[;2772—:(3) ds)_/:"exp(—/ot—:(s) ds) dt],

where k is the appropriate normalization constant.

+exp




438 M. PINSKY AND R. G. PINSKY
Proor. We leave the calculation to the reader. O

Thus, in the two-dimensional case, Theorem 1 gives a criterion (albeit a
rather complicated one) for transience or recurrence explicitly in terms of the
above-mentioned objects.

We now turn to the central limit theorem. The operator [, which deter-
mined transience or recurrence of the random diffusion will also determine the
limiting process in the central limit theorem. Let X, (¢;0(:)) denote the
random diffusion starting from x € R% — {0} and define

t t
81/2X€—1/2x(—;0'(—)), if-1<6<0,
€ €

(1.5) (X:(¢),0%(2)) = t

—)), if0 <68 <1.

gl _8)X8—1/2(1—8)x( E ; 0'(
€ £
The scaled random diffusion can now be written as X;(¢; o°(+)).

Let Q = C([0, »), R%) denote the space of continuous functions, w(-), from
[0, ®) to R? with the usual o-field & and filtration %, ¢ > 0. Let 7, = inf{t > 0:
w(¢) = 0} and let & be the o-algebra up to time 75. Denote by P; the
probability measure on (Q, &) induced by the random diffusion X:(¢; 0'5( )
and let P;|s_ denote its restriction to (Q, 7). Since the drift of the original
generator La(t) is bounded on compacts, it follows that Pi(ry = ) = 1. Thus,
the P;-completions of . and & coincide and the restriction above is in
name only. Let X, (2) denote ‘the process generated by L for x € R? — {0).
Recall that by Propos1t10n 1, X .(¢) reaches 0 with probability 0 or 1 according
to whether p > 0 or p < 0. If p >0, let P denote the measure on (Q, %)
induced by the process X L) If p <O, then as noted in the remark following
Proposition 1, the process may or may not become stuck once it reaches 0. For
our purposes, however, the behavior after time 7, will be irrelevant. For
p<0,let P |5, denote the measure induced by X.(t) on (Q, ).

For the central limit theorem, we replace Hypothes1s B by the following
hypothesis.

Hypothesis C. For each starting point x € R?, there is a unique solution
to the martingale problem for L up to time 7.

THEOREM 2. Assume that Hypotheses A and C hold. Let x € R — {0} let
X:(¢) denote the scaled random dszuszon obtained from (1.5) and let X (2)
denote the diffusion generated by L asin (1.3).

() If p = 0, then w-lim__,, P = P That is,
{Xe(t)0<t<oo} {X(t)0<t<oo}

: Gi) If p < 0, then w-lim_ _, , P} Iy_— Psly That is,
{(X:(), 0 st <mo}=—> {X (¢),0 <t <}
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REMARK 1. Note that if —1 < § < 0, the scaling is classical and the limit is
Gaussian; if § = 0, the scaling is classical but the limit is non-Gaussian; if
0 < 6 < 1, the scaling is nonclassical and the limit is non-Gaussian. In the case
0 <& <1, the diffusion in a random temporal environment grows more
quickly than in the classical central limit theorem. In contrast to this, in the
case of diffusion in a random spatial environment, the diffusion grows more
slowly than in the classical case—in the random spatial environment case, the
scaling is X(¢/¢)/(log £)? [8].

REMARK 2. The reason that we can obtain a central limit theorem for the
process only up until time 7; is that Hypothesis A holds only for large |x|. If
we require that Hypothesis A hold for all x € R? then if —1 <& <1 and
possibly if § = —1, the random diffusion will have a positive probability of
becoming stuck at 0.

We now give an application of transience and recurrence for random
diffusions to the stabilization of the Cauchy problem for the random parabolic
equation u, = L, u in an exterior domain D. First, recall that if L is a
strictly elliptic homogeneous diffusion generator, then the solution to the
Cauchy problem

w,=Lw in D X (0,),
w(x,0) = f(x) in D,
w(y,t) =g(y), ye€oD,t>0,
where f is bounded, can be represented probabilistically as

w(x,t) =E(f(X(¢));p>1t)+ E(g(X(7p)); 7p < t),

where X(¢) is the process generated by L. Now if X(#) is recurrent, then
P(rp <o) =1 and w(x)=E, g(X(rp)) = lim,_,, w(x,?) exists and is the
unique bounded solution of the exterior Dirichlet problem Lw = 0 in D and
w = g on dD. On the other hand, if X(¢) is transient, then P(r, = ©) > 0 and
lim, ,, w(x,?) will not exist in general and in any case will depend on the
initial data. (For the limit to exist, the behavior of f at « must be compatible
with the Martin boundary at « for L.)

Now consider the Cauchy problem for the random parabolic operator 9 /9t —
L, in an exterior domain D:

u,=L,,u in DX (0,x),
(1.6) u(x,0) =f(x) in D, i
u(y,t) =&(y), ye€dD,t>0,

where f is bounded. Because L,, is a time-inhomogeneous operator,
lim, ,,, u(x, t) will never exist, so the type of stabilization described above will
never occur. However, an ‘“‘ergodic stabilization” will occur if the random
diffusion is almost surely recurrent. )
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THEOREM 3. Let L, be as in (1.1), assume that o(t) is reversible and
assume that the random diffusion generated by L, is almost surely recurrent.
Then for each x € D, the solution u(x,t) = u(x,t; o(-)) satisfies

lim = [* d
1m;f0u(x,s) s =w(x),

t—> oo

for almost every environment o(-), where w(x) =X gu (x,0), p is the
invariant probability measure for o(t) and v is the unique bounded solution of
the exterior Dirichlet problem

(L,+G)v=0 inDXE,
(1.7)
v(y,0) =g(y) ondD XE.

Using Theorem 2, we can prove a homogenization result for the solution to
the Cauchy problem for the random parabolic equation u, = L,u in all of
R?. Let f be a bounded continuous function on R?. Let o*(¢) = o(¢ /&) denote
the rapidly fluctuating environment and let u*(x, t) = u*(x, t; 0°(-)) denote the
solution to

ui =L,u® inR? X (0,),

(1.8) (x,0) f(e/%x), if-1<6<0,
u®(x,0) = .
f(eM21=9%) if0 <6 <1.

THEOREM 4. Let L, be as in Theorem 2, let L be as in (1.8) and assume
that o(t) is reversible and that p > 0. Let (x,t) denote the solution to

W, =L in R? x [0, ),
w(x,0) = f(x).
The solution u®(x,t) = u*(x,t; 0°(+)) of (1.8) has the following behavior:

@ If -1<6 <0, then for each (x,t) € (R® — {0}) x [0, »),
lim, | o u(e™"2x, 67 t) = W(x,t) for a.e. environment o°(-);

(i) If 0 < & < 1, then for each (x,t) € R? x [0, »),
lim, ,,u®(e™220"9, ¢~ 1) = ii(x, t) for a.e. environment o°(-).

We now turn to the proofs of the corollaries to Theorem 1.

ProoOF oF COROLLARY 1.

C 92 d—-139 1A
r 2r 5+§Sd_l’
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Proor or CoroLLARY 2. We have

(VG™W) = —(b G yr2e il + b9

B (5 (¢5-)or ar2  ror|
If0<6<1,then L = —(VG V) and thus (cy/c,X¢) is constant and, by
assumption, ¢,(¢) > 0 forall ¢ € S*~*. Thus p = cy/c; —1 =8 — 1.If § = 0,
then L = 1A — (VG™W). Thus ¢, = 3 — (b(¢; - )G7b(¢; - )), ¢y =
(d — 1)/2 and v(¢) = 1. The positivity of ¢ in the statement of the corollary
follows from (1.2) and the fact that, by Hypothesis A, b(¢; o) # 0. O

ProoF OF COROLLARY 3. To prove Corollary 3, we need to express L
explicitly in terms of Euclidean coordinates. Making a straightforward calcula-
tion with the appropriate algebraic manipulations to insure that the lead order
term is in divergence form with respect to a symmetric matrix, one finds that
if 0 < 6 < 1, then

D] =

d
- r%[v a(@)V+ 5 X (V- b(d; )G 6,(e5 7))
Jj=1

A d
+<6;(63 )GV - b(5 )5

J

(1.9) 1 d d 66j i
+§j§1(i§1(<axi(¢;')G bi(¢;')>
By _lai;j a A
(Bl 0G0 (83) gjw(alogr)a(«ﬁ)v,
where
— (<683 )G 10;($;)> + <b;(5 )G b)) + 31,
o, () - _if8=0,
N —3(<Bi(85 )G B,(d5 ) + <b;(; )G (85 ),
ifo<s<1,
and

—(by($; )G b,(¢;)) + LI, if 5 =0,

a;;(¢) = .
1) {—<bi(¢; G5 4)), if0<6<1.

Now since o(¢) is reversible, G is symmetric with respect to the inner product
(-, and thus so is G~'. Consequently, the terms on the right-hand side of
(1.9) containing 83j/8x,~ cancel, and also a = 4. This, together with the fact
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that V - b(¢; o) = 0, yields

(1.10) L =r%®[V-a($)V + V(5log r)a($)V] = r’V - a(¢)rV.

Now, by Proposition 1, p is positive or nonpositive according to whether the

process X(#) generated by L and starting outside the unit ball hits the unit

ball with probability less than 1 or probability 1. In light of (1.10), it suffices to

consider this property for the process Y(¢) generated by r~°V - a(a)r®V, since

this process is obtained from X(¢) via a time change. By the nondegeneracy .
assumption on L and the continuity of a(¢) (this latter following from

Hypothesis A), it follows that mI < a(¢$) < MI for all ¢ € S°~! and constants

0 <m <M < . By the work of Ichihara [3], it then follows that starting from

outside the unit ball, Y(¢) will hit the unit ball with probability 1 if and only if
the process Z(t) does so, where Z(t) is generated by r=°V:Ir’V =A +

(8/r)d/or. But Z(t) is a Bessel process with parameter d — 1 + §. Thus,

starting from outside the unit ball, Z(¢) will hit the unit ball with probability 1

if and only if d — 2 + § < 0. We conclude that p < 0 if and only if d — 2 +

8 < 0. This proves the corollary. O

We now indicate what happens for other values of the parameter §.
If 6 < —1, then the drift vector field V is weaker than the vector field
((d — 1)/2r)3/dr contributed by the term %A. It is easy to check then that V
has no bearing on transience or recurrence even if it is not assumed to be
mean 0; thus X(¢) is recurrent for d = 2 and transient for d > 3. Similarly,
one can check that the central limit theorem goes through as in the case
—1 <8 < 0even if V is not necessarily mean 0. Now consider the case § > 1.
If 6(¢; o) satisfies x/r - b(¢; ) = 0, for all ¢ € S? ! and all o € E, then the
vector field V has no radial component —it is always tangential to S¢~!. In
this case, it is easy to see that V has no bearing on transience or recurrence;
thus X(#) is recurrent for d = 2 and transient for d > 3. On the other hand, if
V has a nonzero radial component, then by continuity and the mean zero
assumption, there exists an open set U C S -1 a g, € E and an ¢ > 0 such
that x/r - b(¢; o,) > ¢ for all ¢ € U. Using thls and the fact that § > 1, it is
easy to show that X(¢) explodes to « with probability 1 for almost every
realization o(-); thus X(#) is transient for all d > 2. By the same reasoning, if
V has a nonzero radial component, then as ¢ —» 0, the process X:(¢,°(+))
converges to the process which is at x for £ = 0 and at « for all £ > 0. The case
6 =1 is an open problem both for transience and recurrence and for the
central limit theorem. (But see Remark 2 following Corollary 2.)

The proofs of Theorems 1 and 2 will reveal that they still hold with the
same operator I if Hypothesis A is replaced by the following weaker hypothe-
sis. :

HyprOoTHESIS A
62

d a
a;(x; —+ b(x;,0)—,
”( ) dx; 0x; i::‘l i(%50) dx;

1
L,==
2

7 M=

i,j=1
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where a and b are given as follows:

()@ If 6 > 0, mI < a(x;0) < MI, for constants 0 <m < M < o
M Ifé6<0and p+#0, alx;o) =1+ 0(1) as |x| — o;
@If6<0and p=0,a(x;0) =1+ o(1/loglx]) as x| = o;
(ii) With b(¢;0) and § as in Hypothesis A,
@ Ifp+0, b(x;0) = le’sb(x/lxl ) + o(lx| 1P gs x| — oo
M) If p = 0, b(x;0) = |xI°6(x/|x|;0) + o(|x| " /loglx]) as IxI — oo,

Theorems 1, 2 and 3 are proved in Sections 2, 3 and 4 respectively. We have
omitted the proof of Theorem 4 as it is similar to that of Theorem 3. The proof
of that part of Proposition 1 concerning the hitting of the unit ball will follow
from Lemma 1 which is used in the proof of Theorem 1. The proof of the part
concerning the reaching of the origin is proved similarly and has been omitted.

2. Proof of Theorem 1. We consider X(¢) as the first component of the
Markov process Z(t) = (X(¢), o(¢)) generated by A = L_ + G. Since o(¢) is
ergodic and has a compact state space, it is easy to see that X(¢) is recurrent
(transient) for almost every realization o(-) if and only if Z(¢) is recurrent
(transient). Thus it suffices to consider the transience or recurrence of the
Markov process Z(t). We will investigate this by the method of Lyapunov
functions:

A sufficient condition for the recurrence of Z(#) is the
(2.1) existence of a function f <€ C%R? X E) such that Af(x, o)
< 0 for |x| sufficiently large and lim,, _,., f(x,0) = .
A sufficient condition for the transience of Z(¢) is the
existence of a function f & C%R? X E) such that Af(x, o)
<0 and f(x,0) >0 for |x| sufficiently large and
lim, . f(x,0) =

Conditions (2.1) and (2.2) appear in [5], Section 3, where diffusion processes
were treated. An almost identical proof works for the generator A. The first
step toward constructing an appropriate Lyapunov function is the following
lemma.

- (2.2)

LEMMa 1.

@) If p > 0, there exist an ¢ > 0, a constant k > 0 and a strictly positive
functzoz g2 eC 2(S 4-1) such that the function f(r, $) = r*g(s) satisfies Lf <
—ghkr~R2%Y,

(ii) If p < 0, there exist an & > 0 and a function g € C*(S?~") such that
the function f(r, ) = log r + g() satisfies Lf < —er=2*".

Gii) If p = 0, there exist an & > 0 and functions g, h € CA(S?~1) such that
the function

(¢) h(d)
log r (log r)2

f(r,¢) =loglog r +
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satisfies

8r—2+y

< - )
(log r)?

ReEMARK. This lemma in conjunction with [5], Section 3, gives a. proof of
that part of Proposition 1 concerning the hitting of the unit ball. Actually, to
prove Proposition 1 in the case p = 0, the rather long and delicate proof of
the lemma is unnecessary—rather one can find a g € C%(S?™!) such that
L(og r + g(¢)) = 0 and use the Lyapunov function f(r, ) = logr + g(¢).

for larger.

Proor. First assume p > 0. Let f(r,¢) =r*g(¢), with £ > 0 and g as
yet undetermined. From (1.4), we have

Lf = r*=2+7[k(k + 1)c,g — kcyg — kDga1g + Lga-1g8].

We look for an appropriate g in the form g = 1 + kg,. Substituting, we obtain
Lf = kr~*=2*"[¢c, — ¢y + Lga-18; + O(k)] as k — 0. Thus if we can solve

(2.3) Lsd—lgl < 02 - 01 - 28,

then by picking sufficiently small we would have g strictly positive and
Lf < —gkr~*72*7 ag desired. If Lga-1 is degenerate, then by Hypothesis B,
¢,/c, is constant and c; is strictly positive. Since in this case p = c3/¢; = 1> 0,
(2.3) holds for small enough ¢ and g; = 1. On the other hand, if Lgi-1 is
nondegenerate, then, by the Fredholm alternative, (2.3) is solvable if and only
if p — 2e = [ga-1(cg — ¢, — 2eNP) v(d)dd = 0.

Now assume that p < 0. Let f(r,¢) = log r + g(¢), with g as yet undeter-
mined. Then, by (1.4), we have Lf =r 2*[—c, + ¢y + Lga-18]. If Lga-1 is
degenerate, then again by Hypothesis B, ¢,/c; is constant and ¢, is strictly
positive. Since p < 0, picking g = const. gives Lgi-1§ —¢; + ¢3 < —¢ for
some &> 0. On the other hand, if Lgs-1 is nondegenerate then, by the
Fredholm alternative, Lgs-1 < ¢, — ¢, — & can be solved ifand only if —p — & =
Jga-ie; — ¢y — eXPIv(d) dop = 0.

Finally, assume that p = 0. Let

g(é)  h(4)
logr  (logr)®

f(r,¢) =loglog r +

with g and % as yet undetermined. By (1.4), we have
If= r‘2+7[(Lsd-1g — ¢, +cy)(logr)”!
+(Lgah + ¢c;8 — c38 — Dga-18 — ¢;)(log r) 2+ 0((log r)_S)],

as r — . Since p = 0, by the same reasoning as above, we can choose g such
that Lga-1g = ¢, — ¢,. Thus, to prove the proposition, it suffices to find an A
and an ¢ > 0 such that

(2.4) Lsd—lh < (02 - Cl)g + cl + Dsd—lg - 28.
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If Lga-1 is degenerate, then by Hypothesis B, ¢; = ¢;. Thus g = const. and
Dga-1 = 0, so (2.4) reduces to Lga-1h < c; — 2¢. Since, by Hypothesis B, c, is
strictly positive, this will hold with A = const. and ¢ sufficiently small. On the
other hand, if Lgs-: is nondegenerate, then (2.4) may be solved for » and
some ¢ > 0 if and only if

(2.5) {(cg — )8 + ¢4 + Dga-18) > 0. :
[We note that if the term Dga-1g were missing, then (2 5) would follow easily.
Indeed, one can show, analogous to (1.2), that —{ fLga gi-1f> =0 for all f with
(f> =016]. Thus

{(eg —c)gr» = —{(cz — 01)L§‘}—1(02 —¢)>=0

and ¢, > 0 by the nondegeneracy of Lga-1.]

To show (2.5), we proceed as follows. The function m(r,$) = log r + g(¢),
where g is as above, satisfies Lm = 0. Thus, from [5], Theorem 3, the process
generated by L, starting outside the unit ball, will hit the unit ball with
probability 1. Now let

Y (O NLIC)
logr (logr)®> (logr)®’
with A as yet undetermined. We have

Lih = r_z[(Lsd—lh + 2¢, + 2Dga-18 + 2(cy — ¢;1)g)(log r)_3

ﬁ‘l,(r,(ﬁ) =

+0((log r)_4)] as r - .

Now if instead of (2.5), we had {(c, — ¢;)g + ¢; + Dga-18) < 0, then, by the
Fredholm alternative, we could solve

Lsd lh _2((02‘cl)g+cl+Dsd 1g)—8
for sufficiently small ¢ > 0. But then we would have L < 0 for large r and,
from [5], Section 3, it would follow that the process generated by L, starting

from outside the unit ball, will hit the unit ball with probability strictly less
than 1. This is a contradiction. We conclude then that

(2.6) {(cg — )8 + ¢; + Dga-18) = 0.

To complete the proof of (2.5), we must show that equality cannot hold in
(2.6). Note that for fixed c;, ¢, and Lga-1, (2.6) holds for any first-order
operator Dgs1 on S? ! for which the corresponding operator L in (1.4) is
elliptic and nondegenerate. Thus, by the nondegeneracy assumption and com-
pactness, we have

(2.7 {(cg—c))g+cy+ (1 +1t)Dga1g) >0 for sﬁfﬁciently small ¢ > 0.

Now, assume that equality holds in (2.6). Then (Dga-18) = —{(c; — ¢))g) —
(cl) < 0, by the parenthetical remark following (2.5). Substituting this into
(2.7) gives a contradiction. Thus, in fact, (2 5) holds. This completes the proof
of the lemma. O
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In the sequel,

r_kg(d))’ lfp>0,

g¢) | R .
fo(x) = fo(r,¢) = {loglog r + Tog + oz )’ if p=0,
logr + g(¢), ifp<o0,

will always refer to the Lyapunov function constructed in Lemma 1. Also, in
order to treat all values of p simultaneously, we define & = 0 in the case
p < 0. Note the following important fact which will be used extensively in the
sequel:

o O(r~*=m), ifp #0,
28) F >1, 0 = —k—m
(2.8) Form o, 9%, <+ 0%,

Tog 7 ), if p=0.

We will now prove the theorem by constructing an appropriate Lyapunov
function satisfying (2.1) if p < 0 and (2.2) if p > 0. We must treat different
ranges of the parameter § separately. We will treat the case p # 0. If p =0,
the proof is amended by replacing every term of the form o(r=% by
O(r~'/log r).

CasE 1: § = 0. We look for a Lyapunov function in the form f(r,¢,0) =
for,®) + fi(r,,0) + fo(r,¢,0), with f; and f, as yet undetermined. Since
f, is independent of o € E, Gf,, = 0. Thus, for large r,

(2.9) Af=3Afo+ 3AfL+ 3Afy + Vi + VL + Vi, + Gfy + G
Note that 1A f, = O(r~*~2) and Vf, = 0(r*~"). In order to eliminate this
latter term, we choose f; so that

This is possible by the Fredholm alternative since (Vf,) = 0 (which follows
from (V) = 0 and the fact that f, is independent of o). Now Vf, is a linear
combination of functions of the form w(r)z(¢, o), where lim, _, w(r) =0.
Thus f, = —G~Vf, will be a linear combination of functions of the form
G 'w(r)z(¢, o) = w(r)G~'2($, o). Now G~ '2(¢, o) is uniquely defined up to
the addition of an arbitrary function depending only on r and ¢. We will
always choose G~ '2(¢, o) to be independent of r so that the decay rates of
w(r) and G~ 'w(r)z(¢, o) coincide.
From (2.8) and the above discussion, it is clear that

(2.11) fi(r ¢,0) =O0(r™*1),Vfi=0(r™*7%) and 3Af;=O0(r™*7%).
+ We now want to pick f, so'that

(2.12) Gf, = —3Afo — VI + Lfo.

This is possible if and only if {( — 3A fy —Vf; + Lf,> = 0, that is, if and only if
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Lfy = 3Afo + (V) = A fo — (VG 1V)f0 This is how we were led to define
L as we did in (1.3). By the same reasoning as above, we may select f, so that
(2.13)  fo,=0(r*72),Vfy=0(r %73 and ;Af,=0(r**).

Thus we have f = f, + O(r~*~1), and, substituting (2.10)-(2.13) into (2.9), we
have Af = Lf, + O(r~*~3). This proves the theorem in light of (2.1) and (2.2
and Lemma 1.

CasE 2: 0 <& < 1. Again we look for a Lyapunov function in the form
f(r,d, o) = fo(r,o) + f(r,,0) + fo(r, ¢, o) and thus Af is again as given in
(2.9). We have

(2.14) IAf,=0(r*2).
We choose f; so that
(2.15) Gfy = ~ Vo,

which is possible since (Vf,> = 0. As in the previous case, we may select
fi = —G Vf, so that

(2.16) f1=0(r %" 1%%), Vfi = O(r*72+2) and jAf, = O(r *7%+%).
Now pick f, so that
(2.17) Gf, = —Vf, + Lf,.

This is possible if and only if { — Vf; + Lf,y =0, that is, if and only if
Lf0 = (Vf,) = —{VG~'V)f,, which is how we deﬁned L in (1.3). As before,
we may select f, so that

(2.18) f, = O(r—*=2+28) Vf, = 0(r~*~3+3%) and LAf, = O(r~*-4+%),

Thus, we have f=f, + O(r~*~1*?) and, substituting (2.14)-(2.18) into (2.9)
gives Af = Lf, + O(r9), where q = max(—k — 2, —k — 3 + 35). As before,
the theorem now follows from (2.1) and (2.2) and Lemma 1.

CasE 3: —1 <8 < 0. This time it suffices to look for a Lyapunov function
in the form f(r,¢,0) = f(r,¢) + fi(r, ¢, o). Thus

(2.19) Af = LA fy + 30y + VFo + Vi + GF.
We have

(2.20) Vofo =O0(r *-1%2).

Choose f; so that

(2.21) Gf, = = Vo,

which is possible since {Vf,) = 0. As before, we may select f; so that
(2:22) f1=0(r*"1%%) Vfi =O(r*72*%) and Af, = O(r *73*%).

Thus we have f=f, + O(r~#*~1*®) and Af = ;A f, + O(r~*~2*2%)_ As before,
the theorem now follows from (2.1) and (2.2) and Lemma 1. O
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3. Proof of Theorem 2. Without loss of generality, assume that in
Hypothesis A, L, = 3A + V for |x| > 1. Then the generator of the process
(X:(2), o°(2)) is given by

1
A + 71792y 4+ @, onlx| >eif -1 <8 <0,
8 .
Ae - 86/(1—6)
2

Let f, € C5(R?) and fix 0 < y < 1. It is possible to pick two bounded functions
f1 and f, on {|x| > y} X E such that

(8) A,(fo+ 0 D/2, 4 g170F,) = Lf, + 0(s1-272)
uniformly on |x| > y,if -1 <8 < 0.

1
A+e12V+ —G, onlx|>eif0<8<1.
€

(3.1)

(0) A(fo+ & f1+efy) = Lfy + O(e/2 v £2/09)

uniformly on |x| > y,if 0 < 6 < 1.
Indeed this follows by two applications of the Fredholm alternative almost
identical to the Fredholm alternative argument in the proof of Theorem 1.

Recall the notation introduced prior to Theorem 2: Q = C([0, »), R%), F is

the usual o-field on Q, % is the usual filtration and P is the measure on
(Q,%) induced by X:(¢). Now let )’ denote the space of functions from [0, )
to R? X E which are continuous in the first variable x € R¢ and right
continuous in the second variable o € E, and let ¥’ and %, denote the usual
o-algebra and filtration. Let @ denote the measure on (V' induced by the
process (X:(¢),0%(2)); of course, Pf is the first marginal of Q. Denote
elements of (' by (X(¢), o(¢)) and elements of by X(¢). Let

- fo+ el 072f +g170f,  if —1<8<0,
T\ fo+ VR +efs, if0 <6 <1.

Fix a positive integer n and, for ¢ < vy, define H (¢) = H (¢; X(-), 0(-)) on (¥
by

H.(t) = fZ(X(t AN, AT,),0(t AT, A 'Tn))

(32) tAT, AT, -
- [TA(X (), 0(5)) ds.

It follows that
(3.3) H_(t) is a Q:-martingale.
“Now define H(¢) on Q by

Hy(t) = fo(X(¢t A7, A 7)) —‘fOtM’M"f,fO(X(s)) ds.
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From (3.1), the fact that f; and f, are bounded and the fact that ¢ < v, it
follows that

Hy(t) + O(e179/2), if-1<86<0,

3.4 H () =
(34) %) Hy(t) + O(e2/07D v el/?), if0<8<1,

uniformly over (). :

From (3.2) and (3.4) and the fact that & < &/, it follows that for each
fo € CJ(R?) there exists a constant C;, and a famlly of functions f, € C2Z[R?),
¢ > 0, which converge to f, umformly as ¢ - 0 such that f(y + X(t A7, A
7,)) + C; t is a P;-submartingale for all y € R? and all € € (0, y]. Now deﬁne
Y(t) = X(t A7, A 7,) and let R; denote the measure on ({2, #) induced by
Y(¢) under P”‘ It follows dlrectly that f,(y + X(#)) + Cst is an R;-sub-
martingale for all y € R? and all ¢ € (0, y]. This condition on {R}, ¢ > 0, is
reminiscent of the sufficiency condition for tightness in Theorem 1.4.6 of
Stroock and Varadhan [9] which we now recall: If for all f, € Cf,"(le), there
exists a constant Cy, such that fo(y + X(¢)) + C; ¢ is a submartingale for all
y € R? and all ¢ € (0, y], then {R:} is a tight family on (Q, %) as ¢ — 0, that
is, for any sequence {¢,);_; satisfying lim, e, = 0, the sequence {R}"},_,
has a convergent subsequence. Stroock and Varadhan proved tightness by
showing that their condition guaranteed that

lim inf [Ri( sup |1X(¢) — X(s)l Sp) =1
-0 ¢<(0,v] OfsstﬁT
—s=<

for all T > 0 and p > 0. Now if one replaces the Stroock—Varadhan condition
with our condition above and chases through the Stroock-Varadhan proof, one
finds that our condition guarantees that

lim lim inf RE( sup |1X(¢) — X(s)l sp) =1
y—=06-0¢e(0,y] Ofssth
—s§=<

for all T > 0 and p > 0. This is clearly enough to conclude that {R:} is a tight
family as & —» 0. Equivalently, {P}} is a tight family when restricted to

Q, # A,)
For N<s< t, it follows from (3.3) that
(3.5) E9(H,(t); B) = E%(H,(s); B), forall Bc &,

From (3.4) and (3.5), we have
EP(Hy(¢); B)

56) EPi(Hy(s); B) + 0(s0-9/2),  if-1<8<0,
. EP:(Hy(s); B) +0(e¥/0"D v el/2) if0<s<1,
forall B € %,.
Now, if P, , is an accumulation point of P on (ﬂ, 7, ar) @s € = 0, then
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from (3.6) we conclude that
EP~(Hy(t); B) = EP~+(Hy(s); B), forall B &%.

In other words,
t/\Ty Tn
fo(X(¢ AT, AT,)) = jo "Ef(X(s)) ds

isa P, ,-martingale. Also, P, ,(X(0) = x) = 1. But Hypothesis C states that
there is a unique solution to the martingale problem for L up to time r,. Thus
we conclude that P, , = P, on (Q, T -

Thus, in fact, hms_,o P: =P, on (Q ? _ar,)- Using Lemma 11.1 in [9] in
the case P(ry = ®) =1 and a sllght variation of it if P (1o = ®) < 1, it follows
that

i P st on(ﬂ, 9-), ifpx(‘rO:oo) =1,
imP; = . A
e>0 * P,on(Q,% ), if P(ro=x) <L

This completes the proof of the theorem. O

4. Proof of Theorem 3. Let o7(t) = o(T —t), 0 <t < T. For conven-
ience, define o7 (¢) = o(0) for ¢t > T. Define X7(t) = X7 (¢;0(-)) = X(#;07(-))
and let 7} = inf{z > 0:X7(¢) € aD}. It is well known that the solution to the
time-inhomogeneous problem (1.6) may be represented probabilistically as

u(x,t) =u(x,t;0()) =E, 0( f(XH(t));mh > t) +E, O(g(Xt(*r{))); Th < t),

where Ex , indicates that the time-inhomogeneous diffusion X*(s) generated
by L,t, is almost surely at x at time 0. For any N < t, we may rewrite this as

1) u(x,t) = E, o(g(X'(7h));th <N) + E, o(g(X'(7h)); N <1h <t)
' E, o F(X4(2)); mh > t).

Now E, o(g(XN(r})); 7§ < N) is measurable with respect to {d(s), 0 < s <
N}. Let

(4.2) Hy(o(+)) =Hy(o(s),0<s<N) = Ex’o(g(XN(T})V)); Ty < N).
Then it is easy to see that for ¢ > N,
(4.3) E, 0( (Xt(ff))); 7h < N) =Hy(o(t =N+ +)).

Let M, , denote the expectation with respect to the process Z(t) = (X(@), o(®))
geherated by L, + G with initial distribution 5, X u and let 7, = inf{t > 0:
X(t) € dD}. Recall that u is the invariant probablhty measure for o(¢). By the
reversibility assumption, {o(¢), 0 < ¢ < N} with initial distribution u has the
same distribution as {oV(¢), 0 < ¢ < N}. From this, (4.2), (4.3) and the ergodic
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theorem, it follows that for each x € D,

1 .
(44) lim - ['E, o(8(X*(75))i 75 < N) ds = M, ,(8(X(7)); 75 < N),

for almost all environments o(-).
For t > N, the last two terms on the right-hand side of (4.1) satisfy

IEx’O(g(Xt(TIt))); N<71h< t) + Ex,O( F(X'(2)); mh > t)l
< CPx’O(*rf) > N),
for some constant ¢ > 0.

Now P, o(7) > N) is measurable with respect to {o(s), 0 <s < N}. Let
Ky(a(-)) = Ky(0(s), 0 < s < N) =P, o(rff > N). Then it is easy to see that
for t > N,

(4.6) P, o(7h > N) =Ky(o(t— N+ -)).
From (4.5), (4.6), respectively and the ergodic theorem, we obtain for each
x € D, analogous to (4.4),

1
(4.7) lim — ;Px,o(fg >N)ds =M, (7> N),

t—o0

(4.5)

for almost every environment o ().

By assumption, the random diffusion is almost surely recurrent and, as
noted at the beginning of Section 2, the almost sure recurrence of the random
diffusion is equivalent to the recurrence of Z(¢) = (X(¢), o(¢)). Thus

(4.8) lim M, ,(rp > N) =0

and

(4.9) lim M, ,(8(X(75)); 75 < N) = M, ,&(X(rp)).

From (4.1), (4.4), (4.5) and (4.7)-(4.9), we obtain for each x € D,
1o

(4.10) lim 7fou(x, s)ds =M, ,g(X(7p))-

Now, M, ,g8(X(1p)) = ¥, c gi, M, ,8(X(7p)), where M, , denotes the expec-
tation with respect to Z(t) = (X(¢), o(¢)) with initial distribution 6, X §,. The
proof is completed by observing that M, ,g(X(rp)) solves (1.7) (see [2], pages

381-390). O
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