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THE HAUSDORFF METRIC OF o-FIELDS AND THE VALUE
OF INFORMATION

By TmmoTrHY VAN ZANDT!

Princeton University

Using a result by Landers and Rogge, it is shown that the Hausdorff
metric of o-fields is uniformly equivalent to the metric induced by the
Hausdorff distance between sets of measurable functions. An application is
given to the continuity of the value of information with respect to the
Hausdorff metric of o-fields.

Let {Q,3, ) be a probability space and let § be the set of (relatively)

complete sub-o-fields of 3. Define three metrics on :

1.

Each complete sub-o-field is a distinct closed subset of the pseudometric
space (3, p), where p(F,G) = u(FAG). Then the Hausdorff distance be-
tween closed subsets of (3, p) induces the following metric on F:

SYF, &) = { inf u(FAG), sup inf FAG}.
( ) = max sup_in f n( ) sup. Anf_u( )

This metric was introduced by Boylan (1971), and is referred to as the
Hausdorff metric of o-fields.

. Each complete sub-o-field . can be identified with the expectations opera-

tor E[-|%]: L, — L,. Then uniform convergence on the set ® of measur-
able functions taking values in [0, 1] induces the following metric on F:

(T, Z) = ilelgllE[fI?] - E[ fIZ]]..

. Let {X,d) be a separable metric space with more than one element. Let

V(X) be the set of equivalence classes of measurable functions from
(Q, 3, uy into X. Let 0 be the metric defined by

0(f,g) = inf{e > 0l u{w € Qld( f(w), g(w)) > &} <&},

which induces the topology of convergence in measure on V(X). Each
complete sub-o-field & can be identified with the set of Y measurable
functions into X, which we denote by (%) and which is a closed subset of
(V(X), 0), distinct for each # € F. Then the Hausdorff distance between
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162 T. VAN ZANDT
closed subsets of {V(X), 8) induces the following metric on &:

8NF, &4 =max{ sup inf 6(f,g), sup inf 0(f,g }
( ) feM(F) EEML) ( ) geM(L) FETUF) ( )
Rogge (1974) showed that 8' and & are equivalent, and Rogge (1974),
Theorem 4, and Landers and Rogge (1986), Corollary 5, established the
following uniform bounds:

SUF, &) < 6UF,F) < 85 F, F).

These inequalities have made 8' useful for studying uniform rates of martin-
gale convergence. Significantly, 8! also characterizes uniform convergence of
expectations for nonnested sequences of sub-o-fields. -

In this article, I show that 8! and 6° are also equivalent, with the following
uniform bounds:

(D min{y/2,8Y(F, £)} < 83(F, &) < 48(F, 4),

where y = sup, , < x d(x,y) is the diameter of (X, d). These inequalities are
closely related to the bounds on 82, since when X = [0, 1], I(F) = E[®|F].
However, these inequalities also relate 8! to the measurability of functions
even when X is not a convex subset of a linear space or conditional expecta-
tions are not defined.

An application to the lattice properties of 8! is given, using the duality
between the sup (join) of two sub-o-fields and the sup (sum) of the correspond-
ing subspaces of measurable functions into R. We obtain uniform bounds on
the continuity of the join operation that are tighter than those derived by
Zbaganu (1986).

The result is also applied, more directly, to the comparison of information
structures, including nonnested information structures. When the sub-o-fields
are interpreted as information structures and X is interpreted as a set of
available actions, IM(F") is the set of informationally feasible decision rules
given information %. Then, heuristically, our bounds on 8° imply that two
sub-o-fields are close according to the Hausdorff metric 6' if and only if the
corresponding sets of informationally feasible decision rules are close.

The main result of this note is then the following theorem, from which (1)
follows immediately.

THEOREM 1. Let vy be the diameter of {X,d). For all ¥, € §:

min{y/2, sup inf u(FAG }s su inf 6 <4 sup inf u(FAG).
{‘)’/ FepyGeJ#( ) (a) fegm(py‘)gew?(f) (fjg)(b) Fey—Gef'u( )

PROOF. Proof of inequality (a): Let x,y € X. For F € &, let £5: QO — X be
the function that is equal to x on F and to y on F°. Then

2 su inf 0(ép,8) < su inf 0(f,g).
(2) Fep?gem?(f) (ér 8) fefm({)?)geim(.%) ( )
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We show below that for any F € % and g € J(¥),
(3) min{d(x,)/2, inf u(FAG)} < 0(ér, &)

Taking the infimum of 6(¢5, g) in (3) over g € M(#) and then the supremum
of both sides of (3) over F € & yields

(4) min{d(x,y)/z,;?} ng;u<FAG>}<;gpy _nf_0(¢r,8).

After combining this with (2) and taking the supremum of d(x,y) over
x,y € X, we get (a).
Here is the explanation of (3): Let F € % and let g € M(#). Let

G = {0 € 0ld(x, g(w)) <d(x,7)/2},

which belongs to . By the triangular inequality, d(y, g(w)) > d(x,y)/2 for
allw € G.If w € Fand w ¢ G, then éx(w) = x and d(x, g(w)) > d(x,y)/2. If
o & F and o € G, then ¢p(w) =y and d(y, g(w)) > d(x,y)/2. In either case,
d(¢p(w), g(w)) > d(x,y)/2. Thus

wlo € Qld(£p(), g(w)) = d(x,7)/2) = u(FAG).
Then, by the definition of 6,
(5) min{d(x,y)/2, u(FAG)} < 0(&5,8).

Since G € #, (3) holds.
Proof of inequality (b): Let f: O - X be Ssimple, so that there is an
F~measurable partition {Fy,..., F,} of (), indexed so that F; # F; for i # j,

~ such that f is constant on each F;, for i = 1,...,n. We will show that
(6) 1;)21{; 0(f,g) < inf{u{w € Qlf (0) # g(w)}lg is Zsimple}

< inf{,u,( U (F, AGi))’Gi edfori=1,....n
i=1

(7)

(8) sinf{,u(U(F}AGi))‘Gieffori=1,...,n}
i=1 '

9) <4 sup inf [.L(FAG)

Fe 7Ge&

Since (X, d) is separable, the Fsimple functions are 6-dense in I(F).
Therefore, the LHS of (6) is less than or equal to the RHS of (9) for all
F-measurable functions f, and thus (b) holds.
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Here are the explanations of inequalities (6) through (9):

(6): This holds because 6(f, g) < ulow € Qlf(w) # g(w)}.

(7: Let G, € & for i = 1,...,n be such that G, N G; = D if i # j. (Note
that for arbitrarily many i €({1,...,n}, G; may be empty. Thus, such a
collection does exist.) Let g: Q - X be a #simple function that is equal to
f(F)on G, foreach i = 1,...,n.If f(w) # g(w), then o € F;\ G;, where j is
the unique element of {1, ..., n} such that F; contains w. Thus,

n

{0 € Qlf(0) # g(w)} © U (F; AG,).

i=1

Since g is #“simple, (7) holds.

8): Let G;e# for i=1,...,n. Let G;=G;\U,,,G; for each i=
1,...,n. Let je€({l,...,n}. Since G;CG;, Gi\F; is a subset of G, \
F;. F; \ G is also a subset of U?_,(F; AG,), as follows. :

If o € F; \ G}, then either w € F;\ G;, or there is k #j
such that o € G,. In the latter case, since {F,,..., F,} is a
partition and w € F;, w € G}, \ F},.

Thus, U™ (F; AG) c U™ (F; AG)). Since G} N G, = @ if i # j, (8) holds.

(9): Note that

o

< inf{ Y. u(F, AGL-)'GZ. e fori= ln}
i=1

C=

(F; AGi))‘Gieffori= 1,...,n}
1

n
= inf F, AG).
El Jnf_u(F; AG)
Landers and Rogge (1986), Theorem 1, prove that if {F,,...,F,} c & is
disjoint, as assumed here, then this last quantity is less than or equal to
4suppc & infge o w(FAG). O

ZbAganu (1986), Proposition 8, has shown that the join operation on
sub-o-fields is uniformly continuous in the metric 8%, with the following

bounds:
(10) 51( V&,V fn) <16 ) 8Y(Z,, %)
n=1 ‘n=1 n=1

In the first corollary to Theorem 1, we tighten this bound, replacing 16 by 4
for finite sequences of sub-o-fields. This is extended to infinite sequences using
Zbaganu’s result. )
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COROLLARY 2. Let (F;, F%y,...) and (F,&,,...) be sequences in F.
Then

(V5 V] sa L asma.
n=1 n=1 n=1

Proor. Let X = R. Then for #, and &#, in §, M(H#,) and M(H#,) are
closed linear subspaces of (V(X), ), and

(11) WM(H, v H#y) = sp(M(H#7) U D(Hy)) = l(T(H)) + M(H3)).
Recall also that 6 then satisfies the following triangular inequality:

(12) 0(f1+f2, 81+ 82) <0(f1,81) +0(fs,82).
Let %, F5, Z1, Z» € §. Then, as explained below,

sup inf  0(f,g)

FEM(F,V Fp) EEM(A VL)
= sup inf 0(f,+ 15,8 +82)
FLEMT, fLePUTF,) 81ETULD), g, €TUH) Lomet ?

(13) .

< sup inf 0( f1, 81) + 0(f2, 82)

FLED(FD, f€MUFy) £1€MUHD), g,€M(H)

sup inf 0(f,,8,) + sup inf  0(f;,8,)-
fLEM(F,) 81 ETUH) foEM(Fy) 82€TUL)

The first equality in (13) follows from (11), the inequality follows from (12),
and the last equality is by simple rearrangement.

Because (13) also holds when the roles of %, and &, are reversed, we can
write

(14) STV Ty GV &) < 8(Fy, H) + 84T, £).

Since V5 _1#, = (VY_H#) v (V% _y.17,), we can apply (14) inductively to
obtain

(15) 63(§7z, Q%)s f:aa(z,%waa( V #, V f)
n=1 1 n=1

n= n=N+1 n=N+1
for any sequences (%, %,,...) and (#}, &,,...» in § and for any positive
integer N. Theorem 1 and ZbAganu’s result [(10)] imply that
o Vs Vog)sa| VsV g
n=N+1 n=N+1 n=N+1 n=N+1
<64 ¥ 84T, 4).

n=N+1

The limit of this last term as N — o is 0 if ©2_,6(F,, £,) is finite, and so in
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the limit (15) becomes

s V fn) < X 0, L)

n=1

Now apply Theorem 1 to complete the proof. O

Our second application is to static decision theory. Interpret w € Q as a
state, x € X as an action, f € V(X) as a decision rule that specifies the action
to be taken in each state, and ¥ € § as an information structure or an
experiment. A decision rule is informationally feasible given % if and only if it
is Fmeasurable.

Let u: V(X) — R be a uniformly continuous utility function that is bounded
above. Note that u may have an additively separable representation such as

fr> = [ L(o, f(0)) du,

where L: Q) X X — R is interpreted as a loss function, but that this is not
necessary. Let

0(F)= sup u(f).
feM(s)

Let &, be the null information structure, that is, the complete sub-o-field
generated by {Q, @}. The value of F € § is defined to be

v(F) =0(F) - 0(FH);
it is the difference between the attainable utility given information % and the

attainable utility given no information.

COROLLARY 3. The value of information map v: § — R is uniformly contin-
uous with respect to the Hausdorff metric 8 on §.

(The continuity of the value of information has been shown by Allen (1983)
for u additively separable and X a compact, convex subset of R”, using the
continuity of conditional expected utility.)

Proor oF COROLLARY 3. Let € > 0. Let § be such that

0(f,8) <d=lu(f) —u(g)l<e.

Suppose &, £ ¥ are such that 61, ¢) < 6/4. By Theorem 1, for f &
IMM(F) there is g € M(#) such that 6(f, g) < 8, and thus u(f) — u(g) <e.
The converse also holds. Thus, |0(F) — 0(#£)| <e. O

The two corollaries taken together indicate that the value of information is
continuous when information is combined from finitely many sources.
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