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STOCHASTIC MONOTONICITY AND SLEPIAN-TYPE
INEQUALITIES FOR INFINITELY DIVISIBLE AND STABLE
RANDOM VECTORS'

By GENNADY SAMORODNITSKY AND MURAD S. TaqQQu

Cornell University and Boston University

We study the relation between stochastic domination of an infinitely
divisible random vector X by another infinitely divisible random vector Y
and their corresponding Lévy measures. The results are used to derive a
Slepian-type inequality for a general class of symmetric infinitely divisible
random vectors.

1. Introduction. The Slepian inequality (Slepian [19]) and its modifica-
tions are an essential ingredient in the proofs of many results concerning
sample path properties of Gaussian processes. The inequality compares the
behavior of the suprema of two Gaussian processes and is based on properties
of the covariances. One version, due to Fernique [5], Corollaire 2.1.3, is as
follows.

THEOREM 1.1. Let X =(X,,...,X,;) and Y =(Y,,...,Y;) be zero-mean
Gaussian random vectors, such that for every i, j =1,...,d,
(1.1) E(X,-X,)’>E(Y, - V)"
Then

E max X; > E max Y.
l<i<d l<i<d

(We have stated Theorem 1.1 for finite-dimensional Gaussian vectors and not
for infinite-dimensional Gaussian processes in order to avoid considering
suprema of random variables taken over an uncountable set. Slepian’s inequal-
ity deals with qualitative properties of Gaussian processes, and thus there is
no loss of generality in restricting our discussion to the finite-dimensional
case. We shall do this throughout the paper.)

Note that condition (1.1) can be written succinctly as

ETX > ETY,

where T: R% - R4~/ j5 defined by

T(%y, ..., %) = ((% = x5)°, (% — x5)%, ..,

X (%; = %)% (%5 = x3)2_, oo (®gog — xd)z)
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and where an inequality between two vectors means inequality between each
component. The transformation T' is used many times in the sequel.

Theorem 1.1 can be explained roughly as follows: If, on average, the
components of the vector X are more different from each other than the
components of the vector Y, then they are likely to fluctuate more and hence
the maximal component of X is likely to be greater than the maximal compo-
nent of Y. ,

There is a diﬁ'erent version of the Slepian inequality [19]: Assume (1.1) and
EX?=EY? i= ,d. Then EX;X; <EY,Y,, i,j=1,...,d, and for every
—00</\<oo P{maxl1 X>A}>P{max dY>)t}

Theorem 1.1 compares E max;_;_q X; W1th E maxlﬂ <a Y;. The following
corollary, which compares E max1<,<d|X | with E max1<,<d|Y| is obtained
by applying Theorem 1.1 to the (d + 1)-dimensional vectors (X, 0) and (Y, 0).

COROLLARY 1.1. Let X and Y be zero-mean Gaussian random vectors in R°.

If
E(X,-X,)=E(Y,-Y)°, i,j=1,..,d,
and
EX?>EY?, i=1,...,d,
then
E max [X,| > +E max |Y|.

1<i<d l<i<d

Being stated in terms of covariance matrices, Slepian’s inequality is, in the
preceding forms, a very specific property of Gaussian random vectors. Never-
theless, the inequality is so important that attempts have been made to
generalize it to other random vectors and processes. What was striking to the
authors was the absence of any positive results for symmetric a-stable pro-
cesses, which are, in a sense, very close relatives of Gaussian processes.

A random vector X = (X,,..., X,) is called a-stable, 0 < a < 2, if for any
A >0, B> 0thereis aD € R? such that

1.2 + =;(A* + B~ + D,
AXD 4+ BX® = (A* + B)/*X + D

where XM, X® are independent copies of X. An a-stable random vector is
called strictly a-stable if D = 0 for every A and B. An a-stable random vector
X satisfying X =; — X is called symmetric a-stable (SaS). Clearly, an S2S
vector is zero-mean Gaussian. Of course, one cannot use covariances or the L,
distance in the SaS case, because E[X[P < « only when p < a, but one can try
to mimic (1.1) by regarding it as a comparison between the scale parameters of
X, — X, and Y, — Y, respectively. Scale parameters do make sense in the
stable case too, and the scale parameter of an SaS random variable X is equal
to c(p,a) EXP)'/P, 0 < p < a, where ¢(p,a) is a finite positive constant.
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Therefore one might guess that the condition
EX,-XP = ElY, - Y[

forall i, j = 1,...,d implies the conclusion of Theorem 1.1 in the stable case.
Unfortunately, this is not likely to be true, because in the SaS case, the scale
parameters of the preceding differences give very little information on the
actual distribution of the vectors X and Y. Linde [13] (the title of his paper
notwithstanding) demonstrates that a version of Slepian’s inequality different
from that of Theorem 1.1 fails in the stable case under these circumstances.

In fact, in contrast to the Gaussian case, a multivariate stable law cannot be
specified in general by a finite number of numerical parameters, because every
SaS random vector X has characteristic function of the form

d
Jj=1 d

where I is a finite symmetric measure on Borel subsets of the unit sphere S,
in R, called the spectral measures of X. Relation (1.3), moreover, defines a
one-to-one correspondence between SaS laws in R?¢ and finite symmetric
measures I' on S;. See Kuelbs [9] for details. Since it is the spectral measure I'
that specifies the SaS law, it is in terms of the spectral measures that one
should try to compare two different stable random vectors.

Another argument supports this point. Joag-dev, Perlman and Pitt [6] have
discovered a close relation between Slepian’s inequality and association in the
Gaussian case. We remind the reader that random variables Z,,...,Z; are
associated if cov(f(Z,,...,Z,),8(Z,,...,Z;)) = 0 for all pairs of functions
f,g: R?* - R' which are nondecreasing in each argument and for which the
covariance exists. It has been proved by Pitt [16] that jointly Gaussian random
variables are associated if and only if all covariances are nonnegative. Now, the
question of association of (not necessarily symmetric) stable random variables
has been completely solved in Lee, Rachev and Samorodnitsky [11], and the
criterion involves the spectral measure. This motivated the present research.

Technically, our approach is based on two key ideas. First, we derive a
relation between Slepian’s inequality and stochastic ordering in the context of
positive random vectors. Then we exploit the fact that any SaS random vector
is a mixture of zero-mean Gaussian vectors. This fact was brought to the
consciousness of the mainstream of probability theory by LePage [12] and
Marcus and Pisier [15]. Second, we derive a relation between Slepian’s inequal-
ity and stochastic ordering, in the context of positive stable random vectors.

Although our original motivation did come from the stable case, it turns out
that a similar approach works for a more general class of infinitely divisible
random vectors, the so-called type G vectors, introduced by Marcus [14], using
@ series representation of these vectors given by Rosinski [18].

Our main results on Slepian’s inequality in the stable and, more generally,
in the infinitely divisible case seem to be among the very few positive results
available so far in this context. The only other positive result we are aware of
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is due to Brown and Rinott [2], who consider infinitely divisible random vectors
of a very special ‘“linear”’ form, which makes their structure close to the
structure of Gaussian random vectors.

A random vector X = (X,,..., X,) is infinitely divisible (without Gaussian
component), or simply i.d., if there exists a o-finite measure v on the Borel
subsets of R — {0}, called the Lévy measure of X, satisfying [ra(1 A
[x®)v(dx) < =, and a vector b in R? such that the characteristic function of X
has the form
i(0,x)

(ei(°’x) -1- m)l/(dx) + l(e,b)}

(1.4) 06x(0) exp{fRd_(O}
Stable random vectors constitute a subclass of i.d. random vectors, with Lévy
measures of a special form, which we will describe later.

In the next section we discuss stochastic ordering of stable and, more
generally, i.d. random vectors. In Section 3 we apply the results of Section 2 to
derive our version of Slepian’s inequality.

2. Stochastic ordering of stable and infinitely divisible random
vectors. Let X = (X;,...,X,;) and Y = (Y,...,Y;) be random vectors in
R?. We say that X dominates stochastically Y (denoted X >_, Y) if there is a

random vector Z = (Z,,..., Z,;) on R?? such that
(2.1) (Zyy... Z)) = X,
(2.2) (Zgs1s--+32Z2q) =a Y,
(2.3) ZiZZi+d a.S.,i= 1,...,d.

A set A in R? is called increasing if x € A and y > x (componentwise)
implies y € A. The following is fundamental.

THEOREM 2.1. The following are all equivalent:

HX=>,Y.
(ii) For any function f: R® — R,, nondecreasing in each argument,
E(fX)) = E(f(Y)).
(iii) For any increasing Borel set A in R?, P{X € A} > P(Y € A}.

Proor. The implications (i) — (ii) and (ii) — (iii) are trivial. For the impli-
cation (iii) — (i), see Strassen [20], Theorem 11. (In connection with Theorem
2.1, see also [7] and [8].) O

The third equivalent condition of Theorem 2.1 is a natural test for X >, Y
because it involves explicitly the probability laws of X and Y. However, it is, at
best, practical only when the distribution functions of X and Y are available in
an explicit form. When these distributions do not have a nice form, one has to
obtain an alternative test which uses the information available on the random
vectors X and Y. For example, in the case of an infinitely divisible random
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vector the information commonly available is the Lévy measure of the vector
(the distribution functions are unfortunately computable only in very few
cases, even when d = 1).

We will investigate in this section whether one can derive a test for
stochastic domination of one i.d. random vector by another i.d. random vector
in terms of their corresponding Lévy measures. We will see that this is possible
in some cases, and the characterization is complete when the random vectors
are strictly a-stable with a < 1.

Consider an i.d. random vector X whose Lévy measure v satisfies

(2.4) fRd(1 A lxD)v(dx) < .

In this case the characteristic function of X can be written in the form

(2.5) ox(0) = exp{/Rd_(o}(ei(o,x) - 1)r(dx) + i(ﬂ,b)}

after changing the shift vector b in (1.4). In particular, all positive i.d. vectors
are of this form, as well as all a-stable random vectors with @ < 1. In the
latter case, strict stability occurs if and only if b = 0 in (2.5) (see Feller [4] and
Kuelbs [9)]).

The following theorem gives criteria for X >, Y.

THEOREM 2.2. Let X and Y be two i.d. random vectors satisfying (2.4),
and let (vg,by) and (vy, by) be the corresponding parameters of their charac-
teristic functions given in the form (2.5). Assume that v and vy are concen-
tratedon RE ={x€R% x,>0,i=1,...,d}. If

(2.6) vg(A) > vy(A) for every increasing Borel set A in R,
and
(2.7 bx > by componentwise,

then
X>,Y.

Proor. Fora § > 0 let
(2.8) A3={x€Rd:xi25forsomei=1,...,d}.

Observe that A; is an increasing set and A; > R% \ {0} as o — 0.

Let v§’ and v’ be the respective restrictions of vx and vy to A;. Let X©®
and Y® be i.d. random vectors in R? with Lévy measures v$’ and v’ and
shift vectors by and by, respectively. By (2.6), for every increasing set
A C R¢,

(2.9) YP(A) = vx(ANA,) 2 vy(ANA,) = vP(A).
In particular,
= v(A,) — vP(A,) =2 0.
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Both X® and Y are compound Poisson in the following sense. Let
(2.10) ¢ = vP(A,) = vP(A,) + A
and

F® = 1,Q),

G® = c (v + Ady).
These are probability measures on RJ because, by (2.10), F®(R?) =
cW(RY) = ¢ W(A;) = 1and GP(RI) = ¢ 1(vP(A,) + A) = 1. By (2.9),
(2.11) FO(A) > GO(A)
for every increasing Borel set A in R%. This is clearly true if 0 ¢ A. If 0 € A,
then A = R? because A is increasing, and so (2.11) still holds because

F®(R?) =1=G®(R).
It is easy to check that

X® =,V + - +V,,
Y® =dW1 + "’WM,

where V,,V,,... and W,,W,, ... are sequences of i.i.d. random vectors in R
with common laws F® and G, respectively. M is a Poisson random variable
with parameter ¢, independent of the vectors V;,V,,... and W;,W,,... . It
follows from Theorem 2.1 that V; >, W, and from the definition of stochastic
dominance that X® >_ Y® for every 8 > 0. Since A; > R \{0} as § - 0,
we have X©® = X and Y® = Y, establishing the theorem. O

ReMARK 1. Theorem 2.2 has the following extension to the case where vy
and vy are concentrated on R? U R?. (A set A in R? is called decreasing
if —A is increasing.)

If
vx(A) = vy(A) for every increasing set A in R,
vx(A) < vy(A) for every increasing set A in R?,
bx = by componentwise,
then

X>_.Y.

=st

Suppose indeed that X and Y are concentrated on RZ. Since v_x(—A) =
vx(A) < vy(A) = v_y(—A) for any increasing set —A, we have - X <, — Y
by Theorem 2.2; that is, X > Y. This observation and Theorem 2.2 imply the
general case since we can write X = X, + X_and Y = Y, + Y_, where X, and
Y. are concentrated on R%, X_ and Y_ are concentrated on R% \ {0}, X, is
independent of X_ and Y, is independent of Y _.

REMARK 2. Theorem 2.2 fails in the case of i.d. random vectors whose Lévy
measure does not satisfy (2.4). In fact,” even a much weaker (and, at first
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glance, plausible) statement is false. Namely, it is not true, in general, that if
the Lévy measures vy and vy of i.d. random vectors X and Y satisfy (2.6) and
are concentrated on R?, then there is a vector a € R¢ big enough so that
X + a >, Y. For a simple counterexample (with d = 1), let 1 < a < 2, and let
X and Y be totally skewed to the right a-stable random variables with scale
parameters o, and o, correspondingly. That is, the (one-dimensional) Lévy
measures vy and vy are concentrated on (0, ©) and

vy(dx) = cofx~ M+ dx,  vy(dx) =cofx " dx, x>0,
for some positive constant ¢. Now suppose
oy >0y > 0.

Then condition (2.6) of Theorem 2.2 is satisfied. We claim that there is no real
a such that X + a > Y. Indeed, as x — o,

—log P(X < —x) ~ kx*/©@™ D /gp/@"D ~ —log P(X + a < —x),
—log P(Y < —x) ~ kx®@~D /gg/(@=D,
for some positive constant k. Since o; > o, > 0, no matter what a is,
P(Y< —x)=0o(P(X+a< —x)), x— o,

so that X + a >, Y is impossible. [In this example, the Lévy measures are
concentrated on (0, ») but the distributions have support on R'.]

REMARK 3. Since the structure of i.d. random vectors considered in Brown
and Rinott [2] is very simple, one can explicitly compute the Lévy measure of
these vectors and then apply Theorem 2.2 to obtain conditions for these
vectors to be stochastically ordered. We will not state these conditions here.

The following is a partial converse to Theorem 2.2.

THEOREM 2.3. Suppose X and Y are a-stable random vectors with a < 1.
Then X > Y implies

(2.12) vg(A) = vy(A) forevery increasing set A in R?,
(2.13) vg(A) <vy(A) forevery decreasing set A in R°.
Proor. Let X and Y be a-stable, 0 < @ < 1, with X > Y and let Z be a

random vector on R?? satisfying (2.1), (2.2) and (2.3). Note that Z =;(X,Y) is
not necessarily a-stable. Let Z0,Z®, ... be i.i.d. copies of Z. For n > 1 let

. n
S =p-le y A%
Jj=1

and write S™ = (S(™,...,S{). Two things are clear about the sequence
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{S™);_, ,, ... First, for every n > 1,
(S(,..., 8) = X + (n1"V/* = )by,
(8%, 889) = Y + (n'7V* = 1)by,
SM > 8™, as.foreveryi=1,...,d.

Second, the sequence {S™;_, ,  is tight because 0 <a <1 1mp11es that the
d-dimensional marginals of S(“) converge weakly. Therefore, there is a subse-
quence {8}, _, , .. converging weakly to a probability law H on R??. Let

=(U,...,U,;) be a random vector in R2? with the law H. Clearly,
(Ul, Ud) =3 X and (Uy,y,..., Uzy) =; Y. Moreover, the set C = {x € R%*:
X, 2 Xy g, L= ,d} is closed and so by Theorem 29.1 of Billingsley [1] we
have H(C) = 1 and hence U, > U, , a.s. forevery i = 1,...,d.

It also follows that the original vector Z belongs to the domaln of partial
attraction of the distribution H, so that H must be infinitely divisible. Let v
be the corresponding Lévy measure.

By the uniqueness of the Lévy measure,

(2.14) vg =voTx!, vy =voTyl,

where T and Ty are the projections of R?? on the first d and the last d
coordinates respectively. The Lévy measure v satisfies (2.4) because vx and vy
do and

fde(l A lzl)v(dz) S\fRd(l A X)) vg(dx) + [Rd(1 A lyDvy(dy).
Therefore, the characteristic function of H can be written in the form (2.5).

Let ¢ be the corresponding shift vector.
We obtain

d
EeXPi{kZ 0,(U;, — Uk+d)}
=1

d
(2.15) = exp{f (exp(i Y 0,(x, — xk+d)) - 1)V(dx)
R2d_o B=1
d
+i 2 0(c, — Ck+d)}-
k=1
Therefore,
d

Eexpi{ Y 0,(U, — Uk+d)}

(2.16) k=t

= exp{fRd_o(ei(o,y) -1- ;(f,;)ﬁ )n(dy) + i(ﬂ,’y)}

for every 8 € R? for some y € R?, where the Lévy measure 7 is given by
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n =veoT ! and where T: R?>? - R? is given by
T(xl""’xd’xd+1""7x2d) = (xl T Xd+15%2 T Xgig,-- Xg _xzd)‘

Since the i.d. random vector (U, — U, ,, U, — Uy, ,,...,U; — U,,) is concen-
trated on R, we conclude that n(R% — R%) = 0, which is, of course, equiva-
lent to

(2.17) vix € R*:x; <x;,,forsomei=1,2,...,d} = 0.
Let A be an increasing Borel set in R?. Then by (2.17) and (2.14) we get
vy(A) =v(R¢xA) =v((R*xA) N C)
=v((AXA)NC)=v(AXA) <v(AXR?) =vg(A),
where C = {(x € R%%: x, > x,,, for every i = 1,2,...,d}, thus proving (2.12).

12

The proof of (2.13) is similar. O

REMARK 1. Theorem 2.3 is false, in general, in the case of nonstable i.d.
random vectors, even those satisfying (2.4). For a simple counterexample
(again, with d = 1), let Y be a standard (i.e., mean 1) Poisson random variable
and X be a nonnegative i.d. random variable with Lévy measure given by

nd, o(dx), 0<x<1,

2.18 dx) =
( ) vx(d) {%x“:”/zdx, x>1,

where n is some positive integer to be specified later. Note that
X=, X, +X,,
where X; and X, are independent i.d. random variables with Lévy measures
in(dx) = n61/2(dx),

0 O0<x<1,

(2.19) ,
vx (dx) = 1x73/2 dx, x> 1.

X, and X, are both positive random variables because their Lévy measures
are supported on [0, ) and satisfy (2.4). It is simple to check that the Laplace
transform of X, satisfies

1 - Ly(6) ~ const. 8"/ as6 — 0.
Therefore, by (5.22) of Feller ([4], page 447), we have
P(X,>\) ~const. A71/2 as A - .
Hence, there is a A, > 0 such that for every A > A,
(2.20) P(X>)A)=2P(X,>A)=P(Y>)).
QOn the other hand, note that °
X, =4 3(Uy+ Uy + -+ +U,),

where U;’s are i.i.d. Poisson random varidbles with mean 1. Choose now n so
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big that
[P(U, < 24,)]" < P(Y =0).
Then for every 0 < A < A, we have
P(X>A)=2P(X;>A)=1-P(X,<1)

>1-P(U, <2\,...,U, <2)) =1 — P(U, < 2A)"

>1-P(Y=0)=P(Y>0)=P(Y>)).
Together with (2.20), this implies that X >, Y. But

vx([1,]) = 3 <1=wy([1,2]).

REMARK 2. Theorem 2.2 and 2.3 give a complete characterization of
stochastic ordering for strictly a-stable random vectors with o < 1 whose Lévy
measures are concentrated on R? (or, more generally, R? U R¢). Namely,
X >_, Y if and only if (2.12) and (2.13) hold. It is not true, however, that if X
and Y are not necessarily strict a-stable random vectors with « < 1, then
X >, Y implies (2.7) as well. For a counterexample (again with d = 1) take
0<a<1 0>0andlet X be a totally skewed to the right strictly a-stable
random variable with scale parameter o, and define Y as Y, — Y, + 1, where
Y, and Y, are independent totally skewed to the right strictly a-stable random
variables. (Of course, Y is not strictly stable.) Let Y, have scale parameter
o /2. Since totally skewed to the right strictly a-stable random variables with
a <1 are supported by (0,x), we have, for every A <0, 0 =P(X <A) <
P(Y < A). Since P(X>A) ~ko*A™® and P(Y; > A) ~ k(0/2)°A™* as A >
for some positive constant %, there is a A, > 0 such that for every A > A,

P(X>A)>P(Y;+1>A)>P(Y>)).

Finally, it is a simple observation that we can always choose the scale parame-
ter of Y, large enough so that for every 0 < A < A,

P(X<)A)<P(X<Ay) <P(Y<0)<P(Y<).
Therefore, X > Y. Since by = 0 < 1 = by, (2.7) does not hold in this case.

REMARK 3. Observe from the proof of Theorem 2.3 that if X and Y are
strictly a-stable random vectors with @ < 1 and X >, Y, then we can choose
the vector Z in (2.1)-(2.3) to be an i.d. vector. We do not yet know whether one
can actually choose the vector Z to be a-stable as well.

3. Slepian inequality for type G infinitely divisible random vec-
tors. In this section, we obtain a Slepian-type inequality for SaS random
vectors with 1 <a < 2, and also for a more general class of i.d. random
“vectors, the so-called type G random vectors, which were introduced by
Marcus [14]. As noted in Rosinski [18], the following are examples of one-
dimensional distributions of type G: the SaS distributions, convolutions of
stable distributions of different orders [whose characteristic function is ¢(s) =
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exp{— [0, 2/5|"P(dx)}, where P is a measure on (0, 2)], the Laplace distribution,
symmetrized gamma distributions (whose characteristic function is ¢(s) =
[A%2/(A%2 + s2)]?, p,A > 0), the t distribution, a variance mixture of normal
distributions X = ZS, where Z ~ N(0,1) and where S > 0 has a completely
monotone density on (0, «). Complete monotonicity will be used extensively in
the sequel. A function (0, ») is said to be completely monotone if it is. nonnega-
tive and possesses derivatives of all orders that alternate in sign ([4]).

We shall establish the Slepian-type inequality in the context of type G i.d.
random vectors and then state as a corollary the corresponding result for SaS
random vectors. We start with a formal definition of type G i.d. random
vectors and indicate several equivalent representations (see Rosinski [18] for
details).

DEFINITION 3.1. A symmetric i.d. random vector X = (X, ..., X,;) is said
to be of type G if there is a function ¢ with completely monotone derivative on
(0, ) satisfying ¢(0) = 0, and a o-finite measure n on the Borel sets of R?
such that the characteristic function of X has the form

(3.1) dx(0) = exp{—fRd¢(2—1(e,x)2)n(dx)}.

The i.d. random vector X does not have a Gaussian component if and only if
() = 0, and this is what we shall assume throughout our discussion. In this
case one has the following representation of the function ¢:

0 u2
_ 9l/2.-1/2 _ _
(3.2) Y(s) =2"%s j;) (1 cosu)g(zs)du,
where g: R*— R* is a completely monotone function such that
foo(l A x?)g(x?)dx <
0

(Rosinski [18], Theorem 1). It follows from the proof of Theorem 1 of Rosinski
that the function ¢ admits also the representation

(3.3) w(s) = [ (1 - e~)p(du),

where p is a o-finite measure on Borel subsets of (0, ) satisfying
[5(1 A w)p(du) < . (This p is Rosinski’s p,.)
Finally, the Lévy measure v of the i.d. vector X can be represented as

(3.4) v(8) = [ [ Ta-wp(ux)g(u?) dun(dx)

'([18], relation (15)). ,
To characterize the type G i.d. random vector X, we shall use its Lévy
measure v and also the “parameters’” 7, ¢, g, p.
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ExampPLE 3.1. When X is SaS, one can write (3.1) as

ox(0) = exp{— i |<o,x>|“n<dx)},

where 7 is a finite symmetric measure concentrated on the unit ball S, of R¢.
In this case (x) = const. s*/2, g(u) = const. u=@*Y/2 and p(du) =
const. u~@®*?/2 The Lévy measure is given by

v(A) = const.jsdjo Ly_ o ux)u~*D du n(dx)
and satisfies v(tA) = t°v(A), t > 0.
. To state the main result of this section, we need the following definition.

DerFINITION 3.2. For a type G i.d. random vector X as before, the conjugate
i.d. random vector is a (symmetric) i.d. random vector W whose Lévy measure
? is given by

(35) 2(4) = [ [ Ta-o(uv)p(d(u?))n(dv).

One can easily check that the measure 7 as defined in (3.5) is indeed a Lévy
measure. W, however, is not necessarily of type G.

ExampLE 3.2. If X is SaS, then the conjugate vector W is equal in
distribution to const. X.

ExampLE 3.3. If g(x2) = const.exp{—x2/20%}, then the conjugate vector
has an especially simple form because in this case the measure p is simply a
point mass.

We are now ready to state our result.

THEOREM 3.1. Let X and Y be type G i.d. random vectors in R 4 with Lévy
measures vy and vy, and parameters nx,V¥x, &x, Px and ny, ¥y, &y, Py
[defined by (3.1), (3.2), (3.3) and (3.4)], respectively. Let Wx and Wy be the
i.d. random vectors conjugate to X and Y, whose Lévy measures are vy and
Dy, respectively. Assume E|X| < « and E|Y| < .

If for every increasing Borel set A in R4¢~1/2

(3.6) Py(x € R%: Tx € A) > py(x € R*:Tx € A),
where T: R? —» R¥4-V/2 js defined by
' T(%y,...,%4) = ((%; — 25)% (%1 — 25)%, ..,

o |
(%1 — xd)27 (%9 — xs)z, v (Xgog — %) )’
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then

E max X, > E max Y,.
l<i<d 1<ix<d

Proor. The main ingredient in our proof is a series representation of type
G i.d. random vectors first presented in Marcus [14] which allows us to regard
these vectors as a probabilistic mixture of Gaussian vectors, thus generalizing
a well-known property of SaS vectors. The form we use is due to Rosinski [18].
Define

(3.8) Rg(x) == inf{u > 0: px((u,®)) <x}, x>0,
and let Ry be defined similarly. Let Ax and Ay be probability measures on R¢
such that ngx < Ay and ny < Ay, and let

dnx dny

hy = —— - X
X dag’ Yo oday

Then X admits the series representation

n=1 hX(Sn,X)

where {Z x}n » (LX)5_, and (S, xJ,-1 are independent sequences. The se-
quence {ZX)>_, is a sequence of i.i.d. standard normal random variables; I'X,
n=12,..., are the points of a unit rate Poisson process on (0,); and
{8, xJ;-1 is a sequence of i.i.d. random variables in R¢ with the common law
Ax. Using a similar notation,

o I‘X
(39) X ¥ z:‘Rx(—")s,,,x,

® FY
- Y n
(3.10) Y =, Elz,, RY( 7v(5.7) )Sn,Y
Let %% and Fy be the o-algebras generated on the corresponding sample
spaces by {[X)>_, and {S, x);_; and by {[,Y);_, and {8, yJ;_,, respectively,
and let X and Y denote the right-hand sides of (3.9) and (3.10), respectively.
Note that the regular conditional distributions of X given %5 and Y given %y
are zero-mean Gaussian. Moreover, denoting by E5 (Eg) the conditional
expectation given % (Fy), we obtain for k&, < k, < d,

. = rx
(311)  Egx(X,, —Xk2)2 - 32(——)(3 - Sy ),

n=1 X(Sn X)
- N - ry ‘k
(312)  Egxy(¥, - 7,,) =n§=:1R (_Y(S,,_Y))(S iy — Sk ),

where X = (X,,..., X,) and S,x=(Srx, ..., Sftx).
Consider now the two nonnegative random vectors in R4@-1/2 , Ax and Ay
whose components, labeled (k,, k), k, < k, < d, are given by the rlght-hand
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sides of (3.11) and (3.12), respectively. We claim that (3.6) implies
(3.13) Ag >, Ay.

Before proving this, let us show that (3.13) implies the conclusion of the
theorem.

Suppose that (3.13) holds. The idea is to condition on Fx (respectlvely, on
Fy), view Ag and Ay as the conditional variances of X and Y and then apply
the Slepian inequality for Gaussian vectors. This will be done in a number of
steps. We first generate Ay and Ay on the same probability space such that
Ax > Ay a.s. We then construct the sequences {S, xJi_y, {TX5_y, (S, v)i-1
and {T'Y}?_, on that space. This is possible because we can regard all four
sequences as a random variable taking values in (R*)??*2, which is a Polish
space, use Thereom 10.2.2 of Dudley [3] to conclude that there exist regular
conditional probabilities of these random variables given Ay and Ay, and then
generate {S, x)r_;, {TX);_y, {S, y);_; and {I,Y);_, from these corresponding
conditional probabilities. We now have Ay, Ay, {S, xfo_1, {TXN_1, (S, v)io1
and {[Y):_, defined on the same probability space. Since Ax > Ay a.s., by
Theorem 1.1, with probability 1,

E(i I{IaX Xl{Sn X}n 1 {I‘nx}n 17{Sn Y}n 1’{ 71Y}:=1)

.....

> B(_max Vi(S,x7on (TN (S0 o (DY),

.....

so that
E max X, = EmaxX>EmaxY~ E max Y.

l<i<d 1<i<d l<i<d l<i<d
It remains, therefore, to show that (3.13) holds.

Theorem 2.4 of Rosinski [17] (see also Corollary 4.3 of Rosinski [18]) ensures
that the random vectors Ax and Ay are infinitely divisible. (Ax and Ay are
not symmetric and hence not of type G.) Let v, and v,  be their respective
Lévy measures. It follows from Theorem 2.2 that we only need to prove that
for every increasing Borel set A in R¥?~1/2

(3.14) i (A) = vy (A).

We compute first the Lévy measures v, and v, . (Ax and Ay are not
symmetric and hence not of type G.) Define a probability measure )tx on
R¥4-D/2 by Ay =Ax°T"! and let fix = nx° T~ L Clearly, iy < Ag. Let
hX = dfix/dAg. Then a version of hy is given by

(3.15) hx(y) = [ px(®)69(dx),

where 0%’ is the regular conditional distribution of the probability law Ay
given the o-algebra ;. generated by the transformation T
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We now use Theorems 2.4 and 3.2 of Rosinski [17]. Let H: (0,) X R% —
R¥@=1/2 be given by

H(u,v) = {H, o(u,v),ky=1,...,d, ky=k; +1,...,d},
where
u ,
(316) Hkl,k2(u,v) =R§(m)(vkl—vk2)2’ uZO,V=(Ul,...,Ud).
Define a measure on Borel sets in R4¢~1Y/2 by
(3.17) F(A) =f0 fRdIA_w,(H(u,v))du Ax(dv).

Let @,: (0,©) = (0,»), v € R¥?~1/2 he given by
u
= R% > 0.
@ =B )
Let m, := Lebo @, . Then, for every a > 0,

m,((a,»)) = Leb{u: R,Z((hxl(tv) ) > a}

u I
- Leb{u: px((0,9) > 77 | = hx(Vex((@ ).

Therefore, m (du) = hx(v)px(du), and thus

F(A) = fRd(f:IA_w)(R%(h—x%)Tv) du))\x(dv)

(3.18) - Rd(j:IA—(O)(UTV)mv(du))Ax(dv)

=f / Iy o(uTv)hx(v)px(du)|rx(dv)
R\0
B j;) (_/;edIA—(O)( uTV)hX(V))‘x(dV))Px(du).
Note that (3.15) implies that for every u > 0,
/RdIA—(o)(UTV)hX(V)Ax(dv) = fR
It follows that

F(4) = [ °°( /RMNIA_(O,(uy)ﬁx(y)ix(dy))px(dw ;

IA—(o)(uY)ﬁx(Y)Xx(dY)-

d(d-1)/2
A

w

(3.19)

o

=[] sola-0(#9)ix(d¥) px(dn).
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It is straightforward to check that [paw-1,2(I A |x|])F(dx) < . Therefore, by
Theorem 3.2 of Rosinski [17] we conclude that

(3.20)  ws(A) =F(A) = f [RW  Ja-o(uy)ix(dy)px(du).
Similarly,
(3.21) vay(4) = [ [Rd(d Ja-o(uy)iy(dy)py(du).

We conclude by (3.20) and (3.18), hx = dny/dAx and by (3.21) and (3.6) that
for every increasing Borel set A € R4@-1/2

i A) = [ o da-o(43)7x(d9)px(du)
= [ s o(uT¥)px(du)nx(dv)
=3[ Lo TV)px(d(u)nx(dv)
=3 S Lo T(9)px(d(u®)rx(dv)

= %f d[_ IT“l(A—(O))(uv)pX(d( uz))’ﬂx(dv)
= 30x(T7'A) = }og(x € R%: Tx € A)
> ;0y(x € R Tx € A) = 304(T71A)
= v (4),
thus proving (3.14). The proof of the theorem is now complete. O
REMARK. In the preceding proof, the random vector Ay is i.d. and defined
on R¥@-1/2 The i.d. random vector Wy which is conjugate to X is defined on
R¢, is symmetric and has a Lévy measure dy satlsfylng by(T71A) = 21, (A),

where A is any Borel set in R¥9~1/2 As noted in Example 3.2, Wx =,
const. X if X is SaS.

The following is an immediate consequence of Theorem 3.1 and Example
3.2. .

CorOLLARY 3.1. Let X and Y be SaS random vectors in R%, 1 <a < 2,
with Lévy measures vy and vy, respectively, and let T be defined as in (3.7). If
for every increasing Borel set A in R¥?-1/2

3.22 vx(x € R: Tx € A) >2vy(x € R Tx € A),
Y



SLEPIAN-TYPE INEQUALITIES 159

then

E max X; > E max Y.
l<i<d 1<i<d

REMARK 1. Recall that condition (1.1) in the Gaussian Slepian inequality is
E(TX) > E(TY).

REMARK 2. It is important to note that Theorem 3.1 allows us to compare
two type G i.d. vectors of different types, that is, with different functions ¢
(e.g., stable and nonstable random vectors). This is in sharp contrast to, say,
the result of Brown and Rinott [2].

ReEMaARk 3. Unfortunately, condition (3.6) is not easy to verify in practice.
Much work remains to be done in order to derive a Slepian-type inequality, at
least in the stable case, which is as useful as its Gaussian counterpart.

REMARK 4. Theorem 3.1 and Corollary 3.1 used the Gaussian Slepian
inequality given in Theorem 1.1. If we use Corollary 1.1 instead, we obtain the
following result: Let T: R¢ —» R%?+1D/2 be given by

T(xy,...,%q) = {{(xkl - xk2)2}1sk1,k25d’ {xiz}lsisd}‘

Suppose that the conditions of either Theorem 3.1 or Corollary 3.1 hold for
this new T'. Then
E max |X;| > ;E max |Y]|.
l<i<d l<i<d

REMARK 5. Using Theorem 3.15 of Ledoux and Talagrand [10], we conclude
that under the conditions of either Theorem 3.1 or Corollary 3.1, the following
holds: For every nonnegative convex increasing function ® on R,

Eo( max IX,-X|)> E@(i’jﬂﬁ’dm - y).

Conclusion. Theorem 3.1 demonstrates that Slepian-type inequalities do
exist for a wide variety of non-Gaussian infinitely divisible distributions. In the
SaS case, inequalities relating the Lévy measures replace the covariance
inequalities of the Gaussian case. In the more general case of type G id.

vectors, the inequalities relate the Lévy measures of the conjugate i.d. vectors.
These inequalities, moreover, involve only images of increasing sets.
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