I-PROJECTION AND CONDITIONAL LIMIT THEOREMS FOR DISCRETE PARAMETER MARKOV PROCESSES #### By Carolyn Schroeder ## University of Massachusetts, Lowell Let (X,\mathscr{B}) be a compact metric space with \mathscr{B} the σ -field of Borel sets. Suppose this is the state space of a discrete parameter Markov process. Let C be a closed convex set of probability measures on X. Known results on the asymptotic behavior of the probability that the empirical distributions \hat{P}_n belong to C and new results on the Markov process distribution of $\omega_0,\ldots,\omega_{n-1}$ under the condition $\hat{P}_n\in C$ are obtained simultaneously through a large deviations estimate. In particular, the Markov process distribution under the condition $\hat{P}_n\in C$ is shown to have an asymptotic quasi-Markov property, generalizing a concept of Csiszár. **1. Introduction.** Suppose X_1, X_2, \ldots is a sequence of independent random variables taking values in an arbitrary measure space (S, \mathcal{B}) with common distribution P_X . The empirical distribution of a sample $s = (s_1, \ldots, s_n) \in S^n$ is the discrete probability measure defined by $$\hat{P}_n(s, B) = \frac{1}{n} \sum_{i=1}^n \chi_B(s_i).$$ If P_X^n is the *n*th Cartesian power of P_X , the probability that the empirical distribution \hat{P}_n of (X_1, \ldots, X_n) belongs to a set C of probability measure on (S, \mathcal{B}) is given by $$P\{\hat{P}_n \in C\} = P_X^n(A_n), \qquad A_n = \{s \colon \hat{P}_n(s,\cdot) \in C\}.$$ This last probability is well defined if $A_n \in \mathcal{B}^n$. Csiszár (1984) defines a set C of probability measures as having the Sanov property if (1.1) $$\lim_{n\to\infty} \frac{1}{n} \log P\{\hat{P}_n \in C\} = -h(C, P_X),$$ where $h(C, P_X) = \inf_{Q \in C} h(Q, P_X)$ and $$(1.2) h(Q, P_X) = \begin{cases} \int \log(dQ/dP_X) dQ, & \text{if } Q \ll P_X, \\ +\infty, & \text{otherwise.} \end{cases}$$ In the event $A_n \notin \mathscr{B}^n$, the Sanov property is interpreted to mean that the limit relation holds for both the upper and lower probabilities $\overline{P}\{\hat{P}_n \in C\}$ and Received April 1990, revised October 1991. AMS 1991 subject classifications. Primary 60F10, 60J05, 60G10; secondary 62B10, 94A17. Key words and phrases. I-projection, large deviations in abstract space, asymptotically quasiMarkov. $P\{\hat{P}_n \in C\}$. Here $$\overline{P}\{\hat{P}_n \in C\} = P_X^n(\overline{A_n}), \qquad \underline{P}\{\hat{P}_n \in C\} = P_X^n(A_n),$$ where $\overline{A_n} \supset A_n$ and $\overline{A_n} \subset A_n$ respectively are sets in \mathscr{B}^n having minimum, respectively maximum, P_X^n measure among all such sets. The limit relation (1.1) is often referred to as Sanov's theorem due to the importance of Sanov (1957). An alternative definition to (1.2) is $$(1.3) \quad h(Q, P_X) = \sup_{\mathscr{P}} h_{\mathscr{P}}(Q, P_X), \quad h_{\mathscr{P}}(Q, P_X) = \sum_{i=1}^k Q(B_i) \log \frac{Q(B_i)}{P_X(B_i)},$$ where $\mathscr{P}=(B_1,\ldots,B_k)$ ranges over all finite measurable partitions. Here the conventions $0\log 0=0\log 0/0=0$ and $a\log a/0=+\infty$ if a>0 apply. A proof of the equivalence of (1.2) and (1.3) is given in Pinsker (1964), Theorem 2.4.2. A set of probability measure Π on (S, \mathscr{B}) is completely convex if for every probability space $(\Omega, \mathscr{A}, \mu)$ and \mathscr{A} -measurable mapping $\omega \to \nu(\omega, \cdot) \in \Pi$, the probability measure $\mu\nu$ defined by $$\mu\nu(B) = \int_{\Omega} \nu(\cdot, B) d\mu, \qquad B \in \mathscr{B},$$ also belongs to Π . A convex set of probability measures Π is almost completely convex if there exist completely convex subsets $\Pi_1 \subset \Pi_2 \subset \cdots$ of Π such that $\bigcup_{k=1}^\infty \Pi_k \supset \Pi \cap \Lambda_f$, Λ_f the set of probability measures on (S,\mathscr{B}) whose support is a finite subset of S. Csiszár (1984) shows that the Sanov property for an almost completely convex set C of probability measures implies that the X_1,\ldots,X_n are asymptotically quasi-independent under the condition $\hat{P}_n \in C$. To describe this result, a probability measure P^* is called the I-projection of P_X on C if $h(P^*,P_X)=h(C,P_X)$. A probability measure P^* is called the generalized I-projection if any sequence of $P_n \in C$ with $h(P_n,P_X) \to h(C,P_X)$ converges to P^* in variation. For C a convex set of probability measures, the generalized I-projection exists [Csiszár (1975), Theorem 2.1 and Remark]. If $X^n = (X_1,\ldots,X_n)$ and $P_{X^n|\hat{P}_n \in C}$ denotes the conditional P_X^n distribution of X^n under the condition $\hat{P}_n \in C$, a completely convex set, the asymptotic quasi-independence shown by Csiszár (1984), Theorem 1, is (1.4) $$\lim_{n\to\infty}\frac{1}{n}h(P_{X^n|\hat{P}_n\in C},(P^*)^n)=0,$$ where P^* is the generalized *I*-projection of P_X on C. Here an analogous result is formulated for a discrete parameter Markov process with state space a compact metric space X with its σ -field of Borel sets. We assume the Markov process has stationary transition probability function $\pi(dy|x)$. In addition, we assume for $\lambda(dx)$ a probability measure on X that: - 1. $\pi(dy|x) = \pi(y|x)\lambda(dy)$. Then $\pi(y|x)$ may be chosen jointly measurable in x and y. - 2. There exist constants a and A such that $0 < a \le \pi(y|x) \le A < \infty$ for all $x \in X$ and almost all λ (measure) $y \in X$. - 3. For any continuous function f(y) $$\int_X \pi(dy|x) f(y)$$ is a continuous function of x. Under assumptions 1 and 2, the same will hold for any $f(y) \in L^1(\lambda)$. Let (Ω_x,\mathscr{B}) denote the measure space of all sequences $(\omega_0,\omega_1,\omega_2,\dots)$ with $\omega_0=x\in X, \omega_j\in X$ and \mathscr{B} the Borel sets of Ω_x . Then $(\Omega_x,\mathscr{B})=\prod_{i=0}^\infty(X_i,\mathscr{B}_i)$, where $X_i=X$ and \mathscr{B}_i the Borel sets on $X,i=1,2,\dots$, and $X_0=x,\mathscr{B}_0=\{x\}$. The transition function $\pi(dy|x)$ induces a probability measure on Ω_x ; call it P_x . Impose the weak topology on the space $\mathscr{M}(X)$ of probability measures on X. Let $\hat{P}_n(\omega,\cdot)$ be the empirical distribution of $(\omega_0,\dots,\omega_{n-1}),\ \omega\in\Omega_x$. Then for each $n,\hat{P}_n(\omega,\cdot)$: $\Omega_x\to\mathscr{M}(X)$ is a continuous map on $(\omega_0,\dots,\omega_{n-1})$, so for any measurable $S\in\mathscr{M}(X),\{\omega:\hat{P}_n(\omega,\cdot)\in S\}$ is measurable. Donsker and Varadhan (1975, 1976) described the asymptotic probabilities that $\hat{P}_n(\omega, \cdot)$ lies in closed and open sets of $\mathscr{M}(X)$. For any open set $G \subset \mathcal{M}(X)$, (1.5) $$\liminf_{n\to\infty} \frac{1}{n} \log P_x \{ \hat{P}_n(\omega, \cdot) \in G \} \ge -\inf_{\mu \in G} I(\mu),$$ uniformly for $x \in X$ [Donsker and Varadhan (1976), Corollary 3.4]. Here (1.6) $$I(\mu) = -\inf_{u \in \mathcal{U}_1} \int_X \log\left(\frac{\pi u}{u}\right)(x)\mu(dx),$$ where \mathscr{U}_1 is the set of continuous positive functions on X and $$\pi u(x) = \int_{Y} u(y)\pi(dy|x).$$ Also for any closed set $C \in \mathcal{M}(X)$, (1.7) $$\limsup_{n \to \infty} \frac{1}{n} \log \sup_{x \in X} P_x \{ \hat{P}_n(\omega, \cdot) \in C \} \le -\inf_{\mu \in C} I(u)$$ [Donsker and Varadhan (1976), Theorem 4.4]. We first define an *I*-projection appropriate to this context. In the literature, an *I*-projection is a minimizing element of a divergence or a measure of entropy [Csiszár (1975), (1984) and Csiszár, Cover and Choi (1987)]. Under assumption 3 on $\pi(dy|x)$, $I(\mu)$ defined by (1.6) is a lower semicontinuous function of μ so that if C is a closed set in $\mathscr{M}(X)$, (1.8) $$I(C) = \inf_{\mu \in C} I(\mu) = I(\mu^*)$$ for some $\mu^* \in C$. Let Λ_0 be the set of probability measures on $X \times X$ whose marginals are equal. A theorem of Donsker and Varadhan (1976), which is precisely stated as part of Theorem 2.2, is that there is some element P^* of Λ_0 with marginals equal to μ^* which is naturally associated with $I(\mu^*)$. We define such a P^* to be an I-projection of π onto C. We establish the uniqueness of P^* in Theorem 2.3 under the additional assumptions that C is convex, C^0 is nonempty and $I(C^0) < \infty$. The I-projection thus defined stands in clear relation to that of Csiszár, Cover and Choi (1987) in their study of second-order empirical distributions of a finite-state Markov chain. Theorem 2.9 of this paper, which identifies P^* for a convex set of C of interest, is a partial generalization of one of their examples (cf. Theorem 4 and the remarks following it). It is related to earlier results for finite-state Markov chains obtained by Justeşen and Hoholdt (1984) and Spitzer (1972). Let $\Omega = \prod_{i=-\infty}^{\infty} X_i$, $X_i = X$ for all i, and let \mathscr{B} be the σ -field of Borel sets of Ω . As before, $(\Omega, \mathscr{B}) = \prod_{i=-\infty}^{\infty} (X_i, \mathscr{B}_i)$, where for each i, \mathscr{B}_i is the σ -field of Borel sets on X. Ω is a compact space with metric $$ho(\omega,\omega') = \sum_{i=-\infty}^{\infty} rac{1}{2^{|i|}} rac{d(\omega_i,\omega_i')}{1+d(\omega_i,\omega_i')},$$ where $d(\cdot, \cdot)$ is the metric on X. Now for $\omega \in \Omega$, define ω_n by $$\begin{split} & \omega_n(i) = \omega(i), \qquad 0 \leq i \leq n-1, \\ & \omega_n(i+n) = \omega_n(i) \qquad \text{for all } i, \, -\infty < i < \infty. \end{split}$$ Let $(\theta_i \omega_n)(j) = \omega_n(i+j)$, $0 \le i \le n-1$, and for a Borel set A in Ω define $$R_{n,\omega}(A) = \frac{1}{n} \sum_{i=0}^{n-1} \chi_A(\theta_i \omega_n).$$ $R_{n,\,\omega}$ is the nth-order empirical distribution of ω_n . For each $\omega \in \Omega$ and n>0, $R_{n,\,\omega}(\cdot)$ is a stationary process. Impose the weak
topology on the set $M_S(\Omega)$ of stationary processes on $(\Omega,\,\mathcal{B})$. For each $n,\,R_{n,\,\omega}(\cdot)\colon\Omega\to M_S(\Omega)$ is a continuous map of $(\omega_0,\ldots,\omega_{n-1})$. Let C be a closed convex set with nonempty interior satisfying $I(C^0)<\infty$. Let P^* be the I-projection of π onto C. Then P^* defines a stationary Markov process on $(\Omega,\,\mathcal{B})$ which we again denote by P^* . We now add the assumption that $I(C) = I(C^0)$ so that we have the Markov process analog of the Sanov property. Lemma 3.1 proves that in terms of the metric for the weak topology on $M_S(\Omega)$, $R_{n,w}$ converges to P^* in conditional P_x -probability given $\hat{P}_n(\omega,\cdot) \in C$, uniformly for $x \in X$. Also for each A a Borel set in \mathscr{B} and each n > 0, $R_{n,w}(A)$: $\Omega \to \mathbb{R}$ is a measurable function of $\omega_0,\ldots,\omega_{n-1}$. Then it is possible to define stationary processes $$R_{n,x}^{C}(\cdot) = E^{P_x} \{ R_{n,\omega}(\cdot) | \hat{P}_n(\omega, \cdot) \in C \}.$$ Theorem 3.2 shows that the processes $R_{n,x}^{C}$ converge weakly to P^* . Let u(x) be a probability density function with respect to $\lambda(dx)$. Let P_u be the Markov process on $\prod_{i=0}^{\infty}(X_i,\mathscr{B}_i)$, $X_i=X$, \mathscr{B}_i the σ -field of Borel sets of X, with initial distribution $u(x)\lambda(dx)$ and probability transition function $\pi(dy|x)$. The results of Section 3 imply that the measures $$(1.9) R_{n,u}^{C}(\cdot) = E^{P_u} \{ R_{n,\omega}(\cdot) | \hat{P}_n(\omega, \cdot) \in C \}$$ converge weakly to P^* (cf. the remarks prior to Corollary 5.2). Suppose that each $(\omega_0,\omega_1,\omega_2,\dots)$ is a sequence of independent, identically distributed random variables with the common distribution $\lambda(dx)$, that is, $\pi(y|x)=1$. Let \mathscr{F}_m^n denote the sub- σ -field of \mathscr{B} generated by ω_i , $n\leq i\leq m$. Suppose $B\in F_{n-1}^0$. Setting u(x)=1, $$E^{P_1}\!\!\left\{R_{n,\,\omega}(B)|\hat{P}_n(\omega,\,\cdot\,)\in C\right\}=P^{\lambda^n}\!\!\left\{B|\hat{P}_n(\omega,\,\cdot\,)\in C\right\},$$ where λ^n is the *n*th Cartesian power of $\lambda(dx)$ (cf. Lemma 4.3). Csiszár, Cover and Choi (1987), Theorem 1, show that for sequences of independent, identically distributed random variables on a finite set X, the joint distribution of $\omega_0, \omega_1, \ldots, \omega_m$ under the condition $\hat{P}_n \in C$ converges to $(P^*)^m$ as $n \to \infty$, P^* the *I*-projection of λ on C. Thus the weak convergence established here in Section 3 is a generalization of this result to discrete parameter Markov processes on a compact state space. We introduce the new definition asymptotically quasi-Markov as follows. A sequence of measures P_n on (X_0, \ldots, X_{n-1}) , $n=1,2,\ldots$, is said to be asymptotically quasi-Markov if there exists a stationary transition probability function Q(dy|x) such that (1.10) $$\lim_{n\to\infty} \frac{1}{n} h(P_n, \overline{Q_n}) = 0,$$ where $\overline{Q_n}$ is the probability measure on (X_0,\ldots,X_{n-1}) defined by the transition probability function Q(dy|x) with initial distribution given by the first marginal of P_n . In Lemma 4.4 a large deviations estimate is proved which establishes the asymptotic quasi-Markov property for certain sequences of measures. Suppose that the probability density function u(x) is bounded from above. Then Theorem 4.5 establishes that the measures $R_{n,u}^C$ defined by (1.9) on $\prod_{i=0}^n (X_i \mathscr{B}_i)$ give a sequence which is asymptotically quasi-Markov with respect to the transition probability function of P^* which is uniquely defined a.e. λ . When the sequence of measures P_n in the definition comes from the restriction of stationary processes R_n on Ω to $\prod_{i=0}^{n-1} (X_i, \mathscr{B}_i)$, as is the case with the measures $R_{n,u}^C$, the asymptotic quasi-Markov property with respect to the transition probability function $P^*(dy|x)$ is a stronger property than the weak convergence of R_n to P^* . The sense of this is made precise in Corollary 5.2. Under the additional assumption that u(x) is bounded away from 0, Corollary 5.3 shows that the conditional P_u distribution of X_0, \ldots, X_{n-1} under the condition $\hat{P}_n(\omega, \cdot) \in C$ is asymptotically quasi-Markov with respect to the probability transition function $P^*(dy|x)$. This is a generalization of Csiszár's limit (1.4) for independent, identically distributed random variables to Markov processes on a compact metric space. These conditional measures do not enjoy the same properties as the measures $R_{n,\,u}^{\,C}$ described above, so the implications of the asymptotic quasi-Markov property are less significant. However, one consequence is as follows. Let $$(1.11) P_n(\cdot) = P_u\{(\cdot)|\hat{P}_n(\omega,\cdot) \in C\}.$$ Let $\overline{Q_n}$ be the Markov process with transition probability function $P^*(dy|x)$ and initial distribution given by the first marginal of P_n . Then if $B_n \in \mathcal{F}_{n-1}^0$, $$\lim_{n\to\infty} P_n(B_n) = 0$$ if $$\overline{Q_n}(B_n) \le \exp(-\alpha n), \qquad n = 1, 2, \dots,$$ for some $\alpha > 0$. This follows from (1.10) since (1.3) implies that $$P_n(B_n)\log\frac{P_n(B_n)}{\overline{Q_n}(B_n)} + (1 - P_n(B_n))\log\frac{1 - P_n(B_n)}{1 - \overline{Q_n}(B_n)} \le h(P_n, \overline{Q_n}).$$ **2.** I-Projection of π onto C. Let C be a closed set of $\mathcal{M}(X)$. Let M_C be the subset of Λ_0 whose marginals are equal to an element of C. For $Q \in \Lambda_0$, define $$h^1(Q|\pi) = h(Q, \overline{P}),$$ where \overline{P} is the measure $q(dx)\pi(dy|x)$, q(dx) the marginal of Q. An I-projection P^* of π onto C is defined as an element of M_C for which $$\inf_{Q\in M_C}h^1(Q|\pi)=h^1(P^*|\pi).$$ Donsker and Varadhan (1975), Lemma 2.1, show that for P and Q probability measures on a Polish space X with σ -field given by the Borel sets, then h(Q, P) defined by (1.2) can alternatively be defined as $$(2.1) h(Q,P) = \sup_{\mu \in \mathcal{U}_1} \left[\int_X \log u(x) Q(dx) - \log \int_X u(x) P(dx) \right],$$ where \mathcal{U}_1 is the set of continuous functions on X for which there exist constants c_1 and c_2 such that $0 < c_1 \le u(x) \le c_2 < \infty$. In particular, for fixed P, h(Q, P) is a lower semicontinuous function of Q in the weak topology on $\mathcal{M}(X)$ and for fixed Q, h(Q, P) is a lower semicontinuous function of P. Lemma 2.1. Under assumption 3 on $\pi(dy|x)$, $h^1(Q|\pi)$ is a lower semicontinuous, convex function of Q. PROOF. Let q(dx) denote the marginal of Q. Then from (2.1), $$h^{1}(Q|\pi) = \sup_{u \in \mathcal{U}_{1}} \left[\iint_{X \times X} \log u(x, y) Q(dx, dy) - \log \iint_{X \times X} u(x, y) q(dx) \pi(dy|x) \right],$$ where \mathcal{U}_1 is the set of continuous functions u(x, y) > 0 on $X \times X$. For each $u \in \mathcal{U}_1$, $$\iint_{X\times X} \log u(x,y) Q(dx,dy) - \log \iint_{X\times X} u(x,y) q(dx) \pi(dy|x)$$ is a continuous, convex function of Q. The lemma follows. \square For C a closed set, M_C is a compact set of probability distributions on $X \times X$, and the existence of an I-projection of π onto M_C follows from Lemma 2.1. To relate an I-projection as defined above to I(C) defined by (1.8) requires a result of Donsker and Varadhan (1976), Theorem 2.1. This and a further result of theirs that will be required [Donsker and Varadhan (1976), Lemma 2.5] are stated as the following theorem. Theorem 2.2. Let (X,\mathcal{B}) be a Polish space with \mathcal{B} the σ -field of Borel sets. Let M_{μ} be the set of probability measures on $X \times X$ having both marginals μ . If $\pi(dy|x)$ is the transition probability function of a discrete parameter Markov process with (X,\mathcal{B}) as state space, then $$I(\mu)=\inf_{P\in M_\mu}h^1(P|\pi).$$ Suppose that $\pi(dy|x)$ satisfies assumption 3, so that there is a $P \in M_{\mu}$ for which the infinimum is actually achieved. If there exists a reference measure λ on X such that $\pi(dy|x) = \pi(y|x)\lambda(dy)$, if $I(\mu) < \infty$ and $\pi(y|x) > 0$ a.e. $\mu \times \mu$, then there are measurable functions a(x) and b(y) such that $$P(dx, dy) = \frac{a(x)}{b(y)} \pi(y|x) u(dx) \lambda(dy),$$ where $0 \le a(x) < \infty$ a.e. μ and 0 < b(y) a.e. λ . Now $$\begin{split} \inf_{Q \in M_C} h^1(Q|\pi) &= \inf_{\mu \in C} \inf_{Q \in M_\mu} h^1(Q|\pi) \\ &= \inf_{\mu \in C} I(\mu) \\ &= I(C). \end{split}$$ For C a closed set, an I-projection P^* of π onto C is an element of M_C satisfying $$I(C) = h^1(P^*|\pi).$$ The marginals of P^* minimize $I(\mu)$ for $\mu \in C$. In this section we establish the following theorem. Theorem 2.3. Let C be a closed convex set with nonempty interior C^0 . Suppose that $I(C^0) < \infty$. Then an I-projection of π onto C is unique. It is a measure P^* having probability density $P^*(x, y)$ with respect to $\lambda \times \lambda$ which is positive a.e. $\lambda \times \lambda$. Further, for any $Q \in M_C$, $$h^1(Q|\pi) \ge h^1(Q|P^*(\cdot|\cdot)) + h^1(P^*|\pi).$$ For the proof of Theorem 2.3, we establish the following lemmas. LEMMA 2.4. Let $Q \in M_a$. If $h^1(Q|\pi) < \infty$, then $Q(dx, dy) \ll \lambda \times \lambda$ and $$h^{1}(Q|\pi) = \int \int_{X \times X} Q(x, y) \log \frac{Q(x, y)}{q(x)\pi(y|x)} \lambda(dx) \lambda(dy),$$ where Q(x, y) is the density Q with respect to $\lambda \times \lambda$ and q(x) is the density of q with respect to λ . PROOF. Since $h^1(Q|\pi) < \infty$, it follows that $Q(dx, dy) \ll q(dx)\pi(y|x)\lambda(dy)$. Further from Theorem 2.2, $I(q) < \infty$. It can be shown [cf. the proof of Lemma 4.1 in Donsker and Varadhan (1975)] that $I(q) < \infty$ implies that $q \ll \lambda$. Then $Q(dx, dy) \ll \lambda \times
\lambda$ and the rest of the lemma follows from (1.2). \square LEMMA 2.5. Let C be a measurable set in $\mathcal{M}(X)$ such that C^0 is nonempty and $I(C^0) < \infty$. Then there is a measure Q in M_C with a positive density with respect to $\lambda \times \lambda$ satisfying $h^1(Q|\pi) < \infty$. PROOF. Let $\mu \in C^0$ satisfy $I(\mu) < \infty$. Then $\mu \ll \lambda$. Let $$\mu_n = (1 - 1/n)\mu + (1/n)\lambda.$$ Then $d\mu_n/d\lambda \geq 1/n$ λ -a.e. The sequence μ_n converges in variation to μ so for sufficiently large $n, \, \mu_n \in C^0$. Let $\overline{\mu}$ be such a μ_n and suppose $d\overline{\mu}/d\lambda = m(x) \geq \eta$. Let $$m_n(x) = \frac{m(x) \wedge n}{\int_X [m(x) \wedge n] \lambda(dx)},$$ where n is chosen greater than or equal to η and so large that $\int_X [m(x) \wedge n] \lambda(dx) \geq 1/2$. Let $\overline{\mu}_n(dx) = m_n(x) \lambda(dx)$. Then $\overline{\mu}_n$ converges in variation to $\overline{\mu}$ so for sufficiently large n, $\overline{\mu}_n \in C^0$. By construction, $\eta \leq m_n(x) \leq 2n$. Let $\nu(dx)$ be such an element $\overline{\mu}_n$ and let $d\nu/d\lambda = u(x)$. Define $Q(dx, dy) = u(x)u(y)\lambda(dx)\lambda(dy)$. By the bounds on u(x) and $\pi(y|x)$, it follows that $$h^{1}(Q|\pi) = \int\!\!\int_{X\times X}\!\! u(x)u(y)\log\frac{u(y)}{\pi(y|x)}\lambda(dx)\lambda(dy) < \infty. \qquad \Box$$ Lemma 2.6. Let C be a closed convex set with nonempty interior C^0 satisfying $I(C^0) < \infty$. Suppose $P^* \in M_C$ is such that $$I(C) = h^1(P^*|\pi).$$ Then P^* has a density $P^*(x,y)$ with respect to $\lambda \times \lambda$ which is positive a.e. $\lambda \times \lambda$ and for any $Q \in M_C$, $$h^1(Q|\pi) \ge h^1(Q|P^*(\cdot|\cdot)) + h^1(P^*|\pi).$$ PROOF. Suppose $P \in M_C$ satisfies $h^1(P|\pi) < \infty$. Consider $h^1(\varepsilon P + (1-\varepsilon)P^*|\pi)$, $0 \le \varepsilon \le 1$. By the convexity of $h^1(Q|\pi)$ as a function of Q, this is a convex function of ε . Since $h^1(P^*|\pi) \le h^1(\varepsilon P + (1-\varepsilon)P^*|\pi)$, $h^1(\varepsilon P + (1-\varepsilon)P^*|\pi)$ is a nondecreasing function of ε . Then (2.2) $$\lim_{\varepsilon \to 0} \frac{d}{d\varepsilon} h^{1}(\varepsilon P + (1 - \varepsilon) P^{*}|\pi) \ge 0,$$ provided the derivatives exist. For $Q \in M_C$, let q denote its marginal. Then $I(q) \leq h^1(Q|\pi)$ so that if $h^1(Q|\pi)$ is finite, so is I(q). It is an easy consequence of the bounds on $\pi(\cdot|\cdot)$ and (1.6) that $$h(q, \lambda) - \log A \le I(q) \le h(q, \lambda) - \log a$$ [Donsker and Varadhan (1975), Lemma 2.8] so that if $I(q) < \infty$, $h(q, \lambda) < \infty$. Writing $P_{\varepsilon}(x, y) = \varepsilon P(x, y) + (1 - \varepsilon) P^*(x, y)$ and using the same notation for the marginals, $$h^{1}(\varepsilon P + (1 - \varepsilon)P^{*}|\pi) = \int \int_{X \times X} P_{\varepsilon}(x, y) \log \frac{P_{\varepsilon}(x, y)}{p_{\varepsilon}(x)\pi(y|x)} \lambda(dx) \lambda(dy)$$ $$= \int \int_{X \times X} P_{\varepsilon}(x, y) \log \frac{P_{\varepsilon}(x, y)}{\pi(y|x)} \lambda(dx) \lambda(dy)$$ $$- \int_{X} p_{\varepsilon}(x) \log p_{\varepsilon}(x) \lambda(dx).$$ Further, for $0 \le \varepsilon \le 1$, (2.4)(i) $$\int \int_{X \times X} P_{\varepsilon}(x, y) \left| \log \frac{P_{\varepsilon}(x, y)}{\pi(y|x)} \right| \lambda(dx) \lambda(dy) < \infty,$$ (2.4)(ii) $$\int_{X} p_{\varepsilon}(x) |\log p_{\varepsilon}(x)| \lambda(dx) < \infty.$$ For each integral in (2.3) a derivative exists for $0 < \varepsilon < 1$. Consider the first integral. Here $$\frac{d}{d\varepsilon}P_{\varepsilon}(x,y)\log\frac{P_{\varepsilon}(x,y)}{\pi(y|x)} = (P(x,y) - P^{*}(x,y))\log\frac{P_{\varepsilon}(x,y)}{\pi(y|x)} + P(x,y) - P^{*}(x,y).$$ Using the bounds $$\log^{+} \frac{P_{\varepsilon}(x,y)}{\pi(y|x)} = \log^{+} \left[\varepsilon \frac{P(x,y)}{\pi(y|x)} + (1-\varepsilon) \frac{P^{*}(x,y)}{\pi(y|x)} \right]$$ $$\leq \log^{+} \left[\frac{P(x,y)}{\pi(y|x)} + \frac{P^{*}(x,y)}{\pi(y|x)} \right]$$ $$\leq \log 2 + \log^{+} \left[\frac{P_{1/2}(x,y)}{\pi(y|x)} \right]$$ and $$\log^{-}\frac{P_{\varepsilon}(x,y)}{\pi(y|x)} = \log^{-}\left[\varepsilon\frac{P(x,y)}{\pi(y|x)} + (1-\varepsilon)\frac{P^{*}(x,y)}{\pi(y|x)}\right]$$ $$(2.5)(ii) \qquad \leq \log^{-}\left[\min(\varepsilon,1-\varepsilon)\left(\frac{P(x,y)}{\pi(y|x)} + \frac{P^{*}(x,y)}{\pi(y|x)}\right)\right]$$ $$\leq \log^{-}\left(2\min(\varepsilon,1-\varepsilon)\right) + \log^{-}\left[\frac{P_{1/2}(x,y)}{\pi(y|x)}\right]$$ combined with (2.4)(i) shows by dominated convergence that the derivative can be taken inside the integral sign and is $L^1(\lambda \times \lambda)$. Thus $$\frac{d}{d\varepsilon} \iint_{X \times X} P_{\varepsilon}(x, y) \log \frac{P_{\varepsilon}(x, y)}{\pi(y|x)} \lambda(dx) \lambda(dy) = \iint_{X \times X} (P(x, y) - P^{*}(x, y)) \log \frac{P_{\varepsilon}(x, y)}{\pi(y|x)} \lambda(dx) \lambda(dy).$$ Arguing similarly with the second integral in (2.3) shows that $$\frac{d}{d\varepsilon}h^{1}(\varepsilon P + (1-\varepsilon)P^{*}|\pi)$$ $$= \iint_{X\times X} (P(x,y) - P^{*}(x,y))\log\frac{P_{\varepsilon}(x,y)}{\pi(y|x)}\lambda(dx)\lambda(dy)$$ $$- \iint_{Y} (p(x) - p^{*}(x))\log p_{\varepsilon}(x)\lambda(dx).$$ Now using the bound (2.5)(i) and the bound $$\begin{split} \log^{-} \frac{P_{\varepsilon}(x,y)}{\pi(y|x)} &\leq \log^{-} \biggl[(1-\varepsilon) \frac{P^{*}(x,y)}{\pi(y|x)} \biggr] \\ &\leq \log^{-} (1-\varepsilon) + \log^{-} \biggl(\frac{P^{*}(x,y)}{\pi(y|x)} \biggr) \end{split}$$ shows by dominated convergence that $$\lim_{\varepsilon \to 0} \iint_{X \times X} P^*(x, y) \log \frac{P_{\varepsilon}(x, y)}{\pi(y|x)} \lambda(dx) \lambda(dy)$$ $$= \iint_{X \times X} P^*(x, y) \log \frac{P^*(x, y)}{\pi(y|x)} \lambda(dx) \lambda(dy).$$ Similarly, $$\lim_{\varepsilon \to 0} \int_X p^*(x) \log p_{\varepsilon}(x) \lambda(dx) = \int_X p^*(x) \log p^*(x) \lambda(dx).$$ It follows from (2.6) and (2.2) that $$\lim_{\varepsilon \to 0} \iint_{X \times X} P(x, y) \log \frac{P_{\varepsilon}(x, y)}{p_{\varepsilon}(x) \pi(y|x)} \lambda(dx) \lambda(dy)$$ $$\geq \iint_{X \times X} P^{*}(x, y) \log \frac{P^{*}(x, y)}{p^{*}(x) \pi(y|x)} \lambda(dx) \lambda(dy).$$ Rewriting the integral on the left-hand side as $$\int_{X \times X} P(x, y) \log \frac{P(x, y)}{p(x)\pi(y|x)} \lambda(dx) \lambda(dy)$$ $$- \iint_{X \times X} P(x, y) \log \frac{P(x, y)}{p(x)P_{c}(y|x)} \lambda(dx) \lambda(dy)$$ shows that (2.7) $$\lim_{\varepsilon \to 0} \int_{X \times X} P(x, y) \log \frac{P(x, y)}{p(x) P_{\varepsilon}(y|x)} \lambda(dx) \lambda(dy)$$ $$\leq h^{1}(P|\pi) - h^{1}(P^{*}|\pi).$$ We can write the integral on the left-hand side of (2.7) as $$\int_X p(x)\lambda(dx)h(P(dy|x),P_{\varepsilon}(dy|x)),$$ where $P_{\varepsilon}(dy|x) = P_{\varepsilon}(y|x)\lambda(dy)$. Clearly $h(P(dy|x), P_{\varepsilon}(dy|x))$ is defined for p(dx) a.e. x. By Fatou's lemma. (2.8) $$\int_{X} p(x)\lambda(dx) \liminf_{\varepsilon \to 0} \left(h\left(P(dy|x), P_{\varepsilon}(dy|x)\right)\right) \\ \leq \lim_{\varepsilon \to 0} \int \int_{X \times X} P(x, y) \log \frac{P(x, y)}{p(x)P(y|x)} \lambda(dx)\lambda(dy).$$ Now on the set of p(dx) measure 1 where $P_{\epsilon}(dy|x)$ is defined, we see that as $\epsilon \to 0$, $P_{\epsilon}(dy|x)$ converges in variation to $P^*(dy|x)$ when $p^*(x) > 0$ and $P_{\epsilon}(dy|x)$ is P(dy|x) when $p^*(x) = 0$. By the lower semicontinuity of h(Q, P) as a function of P for fixed Q, it follows that (2.9) $$h(P(dy|x), \lim_{\varepsilon \to 0} P_{\varepsilon}(dy|x))$$ $$= \begin{cases} h(P(dy|x), P^{*}(dy|x)), & p^{*}(x) > 0, \\ h(P(dy|x), P(dy|x)) = 0, & p^{*}(x) = 0, \end{cases}$$ $$\leq \liminf_{\varepsilon \to 0} (h(P(dy|x), P_{\varepsilon}(dy|x))).$$ Let E be the set in X, where $p^*(x) > 0$. In view of (2.7) and (2.8) it follows that $P(dy|x) \ll P^*(dy|x)$ for p(dx) a.e. x in E. Since by Lemma 2.5 there is a Q in M_C with a positive density with respect to $\lambda \times \lambda$ satisfying $h^1(Q|\pi) < \infty$, it follows that $P^*(y|x) > 0$ for $\lambda \times \lambda$ a.e. (x, y) in $E \times X$. Then $\int_E p^*(x) P^*(y|x) \lambda(dx) = p^*(y)$ for λ -a.e. y so that $p^*(y) > 0$ for λ -a.e. y. It follows that E = X/N where N is a $\lambda(dx)$ null set. This establishes the positivity of $P^*(x, y)$ a.e. $\lambda \times \lambda$. To conclude the proof of Lemma 2.6, it follows from (2.7), (2.8) and (2.9) that $$h^{1}(P|P^{*}(\cdot|\cdot)) \leq h^{1}(P|\pi) - h^{1}(P^{*}|\pi)$$ or (2.10) $$h^{1}(P|\pi) \geq h^{1}(P|P^{*}(\cdot|\cdot)) + h^{1}(P^{*}|\pi)$$ for $P \in M_C$ satisfying $h^1(P|\pi) < \infty$. For the general case, $P^*(dy|x)$ is only defined λ -a.e. x. Extend it arbitrarily to make it a transition probability satisfying $P^*(dy|x) = P^*(y|x)\lambda(dy)$. Then $h^1(P|P^*(\cdot|\cdot)) < \infty$ for $P \in M_C$ implies the marginal p of P satisfies $p \ll \lambda$ so $h^1(P|P^*(\cdot|\cdot))$ is well defined. Since (2.10) is obviously true if $h^1(P|\pi) = \infty$, the lemma is established. \square COROLLARY 2.7. Let C and P^* be as in Lemma 2.4. Then an I-projection P^* of π onto C is unique. Proof. Suppose that P_1^* and P_2^* both satisfy $$I(C) = h^{1}(P_{1}^{*}|\pi) = h^{1}(P_{2}^{*}|\pi).$$ It follows from (2.10) that $$h^1(P_2^*|\pi) \ge h^1(P_2^*|P_1^*(\cdot|\cdot)) + h^1(P_1^*|\pi).$$ Then $h^1(P_2^*|P_1^*(\cdot|\cdot)) = 0$ or $h^1(P_1^*|\pi)$ would be strictly less than $h^1(P_2^*|\pi)$. Since $$h^{1}(P_{2}^{*}|P_{1}^{*}(\cdot|\cdot)) = \int_{X} p_{2}^{*}(dx) \int P_{2}^{*}(dy|x) \log \frac{P_{2}^{*}(y|x)}{P_{1}^{*}(y|x)},$$ it follows, using the fact that $p_2^*(x) > 0$ a.e. $\lambda(dx)$ that (2.11) $$P_2^*(dy|x) = P_1^*(dy|x), \quad \lambda \text{ a.e. } x.$$ Extend $P_1^*(dy|x)$ arbitrarily to make it a transition probability satisfying $P_1^*(dy|x) = P_1^*(y|x)\lambda(dy)$. Let I^* be the *I*-function with transition probability $P_1^*(dy|x)$. Then from Theorem 2.2, $$I^*(p_2^*) \le h^1(P_1^*
P_1^*(\cdot|\cdot)) = 0,$$ so that $p_2^*(dx)$ is an invariant measure for the transition probability $P_1^*(dy|x)$ [Donsker and Varadhan (1975), Lemma 4.1]. P_1^* defines a stationary Markov process on (Ω, \mathscr{B}) with transition probability function $P_1^*(dy|x)$ and invariant measure $p_1^*(dx)$. Using the positivity of $P_1^*(y|x)$ $\lambda \times \lambda$ -a.e., the P_1^* process is ergodic. Then the ergodic theorem and the positivity of $p_1^*(x)$ a.e. λ ensure that the transition probability function $P^*(dy|x)$ has a unique invariant measure [Harris (1956), Theorem 1]. Then $p_1^*(dx) = p_2^*(dx)$ which in view of (2.11) implies $P_1^* = P_2^*$. \square COROLLARY 2.8. Let P^* be the I-projection of π onto C as above. Then $P^*(dy|x)$ can be chosen to have the following property: There is a function b(y), $0 < b(y) < \infty \ \lambda$ -a.e. y such that if $h(y) \in L^1(1/b(y)\lambda(dy))$, then $$(2.12) \qquad \qquad \int_{V} P^*(dy|x)h(y)$$ is a continuous function of x. PROOF. It follows from Theorem 2.2 and Lemma 2.6 that there are measurable functions a(x) and b(y) such that $$P(x,y) = p(x)\frac{a(x)}{b(y)}\pi(y|x)$$ a.e. $\lambda \times \lambda$, where $0 < a(x) < \infty$ a.e. $\lambda(dx)$ and $0 < b(y) < \infty$ a.e. $\lambda(dy)$. Then $$a(x)p(x)\int_X \frac{\pi(y|x)}{b(y)} \lambda(dy) = p(x)$$ a.e. $\lambda(dx)$. Since p(x) > 0 a.e. $\lambda(dx)$, $$\int \frac{\pi(y|x)}{b(y)} \lambda(dy) = \frac{1}{a(x)} \quad \text{a.e. } \lambda(dx).$$ By altering a(x) on a set of measure 0, it is possible to assume that this equation holds for all x. Since $a \le \pi(y|x)$ for all x and λ -a.e. y and since $P(x,y) \in L^1(\lambda \times \lambda)$, it follows from Fubini's theorem that $1/b(y) \in L^1(\lambda(dy))$. It then follows from assumption 3 on $\pi(y|x)$ that a(x) is continuous. Now define $$P^*(y|x) = \frac{a(x)}{b(y)}\pi(y|x).$$ Then if $h(y) \in L^1(1/b(y)\lambda(dy))$, $$\int_X P^*(dy|x)h(y) = a(x)\int_X \pi(y|x)h(y)\frac{1}{b(y)}\lambda(dy).$$ Again using assumption 3 on $\pi(y|x)$, this is a continuous function of x. \square Consider a somewhat stronger continuity assumption on $\pi(dy|x)$ than assumption 3: 4. $\pi(y|x)$ as a map from $x \to L_1(\lambda)$ is continuous. Under assumption 4, Theorem 2.9 sharpens the results of Corollary 2.8 in a case of interest. It is a partial generalization of an example of Csiszár, Cover and Choi (1987), as explained in Section 1. THEOREM 2.9. Let $C = \{\mu \in \mathscr{M}(X): \int_X f_i d_{\mu} \geq \gamma_i, i = 1, \ldots, n\}$ for continuous, real-valued functions f_1, f_2, \ldots, f_n on X. Suppose there is some $\mu \in C$ satisfying $$(2.13) \qquad \qquad (a) \quad \int_X f_i d_\mu > \gamma_i \qquad i=1,\ldots,n,$$ $$(b) \quad I(\mu) < \infty.$$ Assume the transition probability density $\pi(y|x)$ satisfies assumption 4. Let \mathbb{R}_n^+ denote $\{\zeta \in \mathbb{R}^n, \zeta_i \geq 0, i = 1, \ldots, n\}$. Let T_{ζ} be the mapping of the set of continuous functions on X, C(X), onto itself given by $$T_{\zeta}g(x) = e^{\sum_{i=1}^{n} \zeta_i f_i(x)} \int_X g(y) \pi(y|x) \lambda(dy).$$ Let V_{ζ} be the unique positive eigenvector for T_{ζ} and let $\psi_{\zeta} \in L^{1}(\lambda)$ be the unique almost everywhere positive eigenvector for T_{ζ}^{*} , the adjoint of T_{ζ} , corresponding to the same positive eigenvalue p_{ζ} , which is greatest in modulus of all the eigenvalues of T_{ζ} . Assume V_{ζ} and ψ_{ζ} have been normalized so that (2.14) $$\int_{Y} V_{\zeta}(x) \psi_{\zeta}(x) \lambda(dx) = 1.$$ Then (2.15) $$I(C) = \max_{\zeta \in \mathbb{R}_n^+} \left(\sum_{i=1}^n \zeta_i \gamma_i - \log \rho_{\zeta} \right)$$ and $$P^*(x,y) = \left(V_{\zeta}(y)\pi(y|x)e^{\sum_{i=1}^n \zeta_i f_i(x)}\psi_{\zeta}(x)\right)/\rho_{\zeta}$$ for ζ attaining the maximum in (2.15). Further $I(C) = I(C^0)$, so the analog of the Sanov property holds. Given that $\pi(y|x)$ is a transition probability density, assumption 4 is a necessary and sufficient condition for T_{ζ} to be a compact operator [Edwards (1965), Proposition 9.5.17]. The lower bound (assumption 2) on $\pi(y|x)$ and the continuity of f_i , $i=1,\ldots,n$, ensure that T_{ζ} is a strongly positive operator, so a theorem of Krein and Rutman (1948), Theorem 6.3, proves the existence of V_{ζ} , ψ_{ζ} and ρ_{ζ} as in the statement of the theorem. The set C described in the theorem is weakly closed and convex. Any measure μ satisfying (2.13)(a) is an element of the interior C^0 . In particular, the hypotheses of Theorem 2.3 are satisfied, so an I-projection of π onto C exists and is unique. To see $I(C^0) = I(C)$, suppose μ satisfies (2.13)(a) and (b) and let ν_1 be any element of C. Then $\nu_{\alpha} = (1 - \alpha)\mu + \alpha\nu_1 \in C^0$ and by convexity, $$\limsup_{\alpha \to 1} I(\nu_{\alpha}) \leq \limsup_{\alpha \to 1} \left[(1 - \alpha)I(\mu) + \alpha I(\nu_{1}) \right]$$ $$= I(\nu_{1}).$$ The remainder of the theorem is proved in a sequence of four lemmas. Lemma 2.10. Let P^* be the unique I-projection of π onto C. Then (2.16) $$I(C) = h^{1}(P^{*}|\pi) = \inf_{Q \in M_{C}} h(Q, p^{*}(dx)\pi(dy|x)),$$ where p^* is the marginal distribution of P^* . PROOF. Equation (2.16) means that P^* is the *I*-projection onto M_C of the two-dimensional measure $p^*(dx)\pi(dy|x)$ as defined by Csiszár (1975). To establish (2.16), suppose $Q \in M_C$ satisfies $h(Q, p^*(dx)\pi(dy|x)) < \infty$. Equation (2.1) implies the one-dimensional divergence $h(q, p^*) < \infty$ for the marginal q of Q. From (1.2) there follows $$h(Q, p^*(dx)\pi(dy|x)) = h^1(Q|\pi) + h(q, p^*).$$ From (2.10), $$h(Q|\pi) \ge h^1(Q|P^*(\cdot|\cdot)) + h^1(P^*|\pi).$$ Adding $h(q, p^*)$ to both sides and using $h(Q, P^*) = h^1(Q|P^*(\cdot|\cdot|)) + h(q, p^*)$ shows $$h(Q, p^*(dx)\pi(dy|x)) \ge h(Q, P^*) + h^1(P^*|\pi)$$ $$\ge h(Q, P^*) + \inf_{Q \in M_C} h(Q, p^*(dx)\pi(dy|x)).$$ This last equation determines P^* as the unique *I*-projection of $p^*(dx)\pi(dy|x)$ onto M_C [Csiszár (1975), Theorem 2.2]. \square LEMMA 2.11. Let $f_i(x)$, i = 1, 2, ..., n, be real-valued measurable functions on a measure space $(X, \mathcal{B}, \lambda)$. Then the convex cone $K = \sum_{i=1}^n \alpha_i f_i(x)$, $\alpha_i \geq 0$, is closed in the topology of pointwise sequential convergence on the space of real-valued measurable functions. PROOF. First suppose that the functions $f_i(x)$, $i=1,2,\ldots,n$, are linearly independent λ -a.e. Suppose there exists a sequence $\sum_{i=1}^n \alpha_{m_i} f_i(x)$ converging pointwise λ -a.e. to a real-valued function g(x). Let c_{m_i} be the sequence $$(\alpha_{1_i} - \alpha_{2_i}, \alpha_{1_i} - \alpha_{3_i}, \alpha_{1_i} - \alpha_{4_i}, \dots, \alpha_{2_i} - \alpha_{3_i}, \alpha_{2_i} - \alpha_{4_i}, \dots,$$ $\alpha_{n_i} - \alpha_{n+1_i}, \alpha_{n_i} - \alpha_{n+2_i}, \dots).$ Then $\lim_{m\to\infty} \sum_{i=1}^n c_{m_i} f_i(x) = 0$. Let (2.17) $$c'_{m_i} = c_{m_i} / \max(|c_{m_1}|, |c_{m_2}|, \dots, |c_{m_n}|, 1).$$ Then $\lim_{m\to\infty}\sum_{i=1}^n c'_{m_i} f_i(x)=0$ and $|c'_{m_i}|\leq 1$ for $i=1,\ldots,n$. However, any subsequential limit of the vector-valued sequence $\{\mathbf{c}'_m\}$ is 0 from the linear independence of the functions $f_i(x),\ i=1,\ldots,n,\ \lambda$ -a.e. It follows that the sequence $\{\mathbf{c}'_m\}$ converges to 0. From the definition (2.17), it follows that the sequence $\{\mathbf{c}_m\}$ converges to 0. But then $\{\alpha_{m_i}\}$ is Cauchy for each $i=1,\ldots,n$, which concludes the proof in this case. For the general case, suppose that k is the dimension of the real linear subspace spanned by $\{f_i\}_{i=1}^n$. Then any element k of the convex cone K can be written as a nonnegative linear combination of some subcollection of k linearly independent functions of $\{f_1, f_2, \ldots, f_n\}$. This follows exactly as in the proof of Carathéodory's theorem [Rockafellar (1970), Theorem 17.1]. Thus K is a finite union of sets each of which is closed in the topology of pointwise sequential convergence. \square Lemma 2.12. Let V_{ζ} , ψ_{ζ} and ρ_{ζ} be defined as in the statement of Theorem 2.9. Then the I-projection P^* of π onto C has density $$P^*(x,y) = \left(V_{\zeta}(y)\pi(y|x)e^{\sum_{i=1}^n \zeta_i f_i(x)}\psi_{\zeta}(x)\right)/\rho_{\zeta}$$ with respect to $\lambda \times \lambda$ for some $\zeta \in \mathbb{R}_n^+$. PROOF. Lemma 2.10 shows that P^* is the *I*-projection on $p^*(dx)\pi(dy|x)$ onto M_C . Let $\{g_k\}_{k=1}^{\infty}$ be a countable dense collection of continuous functions on X. Then M_C can be described as the set of all measures on $X \times X$: $$\left\{P: \iint_{X\times X} f dP \ge 0, f \in \mathscr{F}\right\},$$ where \mathcal{F} is the convex cone generated by nonnegative finite linear combinations of $${h_j(x,y)} = {f_i(x) - \gamma_i}_{i=1}^n \cup {\pm (g_k(x) - g_k(y))}_{k=1}^\infty$$ It now follows from Csiszár (1984), Lemma 3.4, that $\log(P^*(y|x)/\pi(y|x)) - I(C)$ belongs to the $L^1(P^*)$ -closure of \mathscr{F} . Since $P^* \sim \lambda \times \lambda$, there exist functions $$\sum_{i=1}^{n} \alpha_{m_i} (f_i(x) - \gamma_i) + \sum_{k=1}^{M_m} \beta_{m_k} (g_k(x) - g_k(y)),$$ $\alpha_{m_i} \geq 0$ and $\beta_{m_k} \in \mathbb{R}$ which converge in $\lambda \times \lambda$ measure to $\log P^*(y|x)/\pi(y|x) - I(C)$. It follows from Donsker and Varadhan (1975), Lemma 2.3, that there is a subsequence (\overline{m}) and a sequence of constants $(\alpha_{\overline{m}})$ so that $$(2.18)(i) \quad \lim_{\overline{m}\to\infty} \left(\sum_{i=1}^n \alpha_{\overline{m}_i} (f_i(x) - \gamma_i) + \sum_{k=1}^{M_{\overline{m}}} \beta_{\overline{m}_k} g_k(x) - a_{\overline{m}} \right) = f(x)$$ exists for λ -a.e. x and (2.18)(ii) $$\lim_{\overline{m}\to\infty} \left(
-\sum_{k=1}^{M_{\overline{m}}} \beta_{\overline{m}_k} g_k(y) + a_{\overline{m}} \right) = g(y)$$ exists for λ -a.e. y and $\log(P^*(y|x)/\pi(y|x)) - I(C) = f(x) + g(y)$ for $\lambda \times \lambda$ -a.e. (x, y). Comparing (2.18)(i) and (2.18)(ii), it follows that for λ -a.e. x, $$\lim_{\overline{m}\to\infty}\sum_{i=1}^n\alpha_{\overline{m}_i}(f_i(x)-\gamma_i)=f(x)+g(x).$$ In view of Lemma 2.11, there exist constants ζ_i , i = 1, ..., n, $\zeta_i \geq 0$ such that $$\sum_{i=1}^{n} \zeta_{i}(f_{i}(x) - \gamma_{i}) = f(x) + g(x), \quad \lambda\text{-a.e.}$$ Thus the conditional density satisfies $$P^*(y|x) = e^{I(C)}e^{\sum_{i=1}^n \zeta_i (f_i(x) - \gamma_i)}e^{-g(x)}e^{g(y)}\pi(y|x), \quad \lambda \times \lambda \text{-a.e.}$$ Since $P^*(y|x)$ is a transition probability density function, there follows $$e^{\sum_{i=1}^{n} \zeta_{i} f_{i}(x)} \int_{X} e^{g(y)} \pi(y|x) \lambda(dy)$$ $$= e^{-I(C)} e^{\sum_{i=1}^{n} \zeta_{i} \gamma_{i}} e^{g(x)}, \quad \lambda\text{-a.e.}$$ Redefine g(x) on a set of measure 0 so that the equation is valid for all x. Using assumption 3 on $\pi(y|x)$, g(x) is continuous. Then $e^{g(x)}$ is the unique positive eigenvector for T_{ℓ}^{*} with positive eigenvalue (2.19) $$\rho_{\zeta} = \exp\left(\sum_{i=1}^{n} \zeta_{i} \gamma_{i} - I(C)\right).$$ By definition of $P^* \in M_C$, the *I*-projection P^* has identical marginals. Letting $p^*(x)$ be the density of the marginal with respect to λ , there follows $$\int p^*(x)e^{-g(x)}e^{\sum_{i=1}^n \zeta_i f_i(x)}\pi(y|x)\lambda(dx)$$ $$= e^{-I(C)}e^{\sum_{i=1}^n \zeta_i \gamma_i}p^*(y)e^{-g(y)}.$$ Then $p^*(y)e^{-g(y)} \in L^1(\lambda)$ is the unique positive eigenvector for T_{ζ}^* corresponding to the same eigenvalue. Since the product $V_{\zeta}(x)\psi_{\zeta}(x)=p^*(x)$, (2.14) holds. The conclusion of the lemma follows. \square Lemma 2.13. Under the assumption of Theorem 2.9, $$I(C) = \max_{\zeta \in \mathbb{R}_n^+} \left(\sum_{i=1}^n \zeta_i \gamma_i - \log \rho_{\zeta} \right),$$ where ρ_{ζ} is the (positive) eigenvalue of greatest modulus for the operator T_{ζ} . PROOF. For any vector $\boldsymbol{\zeta} \in \mathbb{R}_n^+$, let $$P_{\zeta}(x,y) = \left(V_{\zeta}(y)\pi(y|x)e^{\sum_{i=1}^{n}\zeta_{i}f_{i}(x)}\psi_{\zeta}(x)\right)/\rho_{\zeta},$$ where V_{ζ} , ψ_{ζ} and ρ_{ζ} are as defined in Theorem 2.9. From Lemma 2.12, the *I*-projection P^* of π onto C has $\lambda \times \lambda$ density $P^*(x,y) = P_{\zeta^*}(x,y)$ for some $\zeta^* \in \mathbb{R}_n^+$. It follows from (2.19) that (2.20) $$I(C) = \sum_{i=1}^{n} \zeta_i^* \gamma_i - \log \rho_{\zeta^*}.$$ Let $\Lambda = \{P' \in \Lambda_0, \ P' \sim \lambda \times \lambda\}$. Arguing exactly as in the proof of Corollary 2.7, (2.10) for all $Q \in M_C$ uniquely determines P^* among the set of $P' \in \Lambda$. Thus if $P' \in \Lambda$, $P' \neq P^*$, there exists some $Q \in M_C$, $h^1(Q|\pi) < \infty$ such that $h^1(Q|\pi) < h^1(Q|P'(\cdot|\cdot)) + I(C)$. From Lemma 2.4 it follows that $$I(C) > \iint_{X \times X} Q(x, y) \log \frac{P'(y|x)}{\pi(y|x)} \lambda(dx) \lambda(dy).$$ Let \tilde{M}_C denote the set of $Q \in M_C$ satisfying $h^1(Q|\pi) < \infty$. The argument above and (2.10) imply that for any $P' \in \Lambda$, $$I(C) \ge \inf_{Q \in M_C} \iint_{X \times X} Q(x, y) \log \frac{P'(y|x)}{\pi(y|x)} \lambda(dx) \lambda(dy),$$ with strict inequality if $P' \neq P^*$. Applying this to $P' \in \Lambda$ with density P_{ζ} , observing that the marginal of P_{ζ} is $$p_{\ell}(dx) = \psi_{\ell}(x)V_{\ell}(x)\lambda(dx),$$ one obtains $$I(C) \geq \inf_{Q \in \tilde{M}_{C}} \iint_{X \times X} Q(x, y) \log \frac{V_{\zeta}(y) e^{\sum_{i=1}^{n} \zeta_{i} f_{i}(x)}}{V_{\zeta}(x) \rho_{\zeta}}$$ $$= \inf_{Q \in \tilde{M}_{C}} \left(\iint_{X \times X} Q(x, y) \sum_{i=1}^{n} \zeta_{i} f_{i}(x) - \log \rho_{\zeta} \right)$$ $$\geq \left(\sum_{i=1}^{n} \zeta_{i} \gamma_{i} - \log \rho_{\zeta} \right) \quad \text{for } \zeta \in \mathbb{R}_{n}^{+},$$ where the inequality is strict if $\zeta \neq \zeta^*$. The conclusion of the lemma follows from (2.20) and (2.21). \square 3. Convergence of $R_{n,\omega}$ in conditional probability. Let (Ω, \mathscr{B}) be as in Section 1. Let $h_{\mathscr{F}_m^n}(\cdot,\cdot)$ denote the entropy when the supremum in (2.1) is taken over positive functions $u(x) \in C(\Omega)$, the continuous functions on Ω , which depend only on the coordinates ω_i , $n \leq i \leq m$. Let P be a measure on \mathscr{T}^s_{ω} with $s \leq t$. Suppose $P\{\omega \colon \omega(t) = \overline{\omega}(t)\} = 1$. Define a measure $\delta_{\overline{\omega}} \otimes_t P$ on Ω by $$\begin{split} (\delta_{\overline{\omega}} \otimes_t P) \big\{ \omega(t_1) \in A_1, \omega(t_2) \in A_2, \dots, \omega(t_n) \in A_n \big\} \\ &= \chi_{A_1} (\overline{\omega}(t_1)) \chi_{A_2} (\overline{\omega}(t_2)) \cdots \chi_{A_k} (\overline{\omega}(t_k)) \\ &\times P \big\{ \omega(t_{k+1}) \in A_{k+1}, \dots, \omega(t_n) \in A_n \big\}, \end{split}$$ where $t_1 < t_2 < \cdots < t_k \le t \le t_{k+1} < \cdots < t_n$. Suppose $\pi(dy|x)$ is a transition probability function giving rise to a Markov process P_x on Ω_x . For $\omega \in \Omega$, let $P_\omega = \delta_\omega \otimes_0 P_{\omega(0)}$ and define a measure \hat{Q} on Ω by $$\hat{Q} = \int_{\Omega} P_{\omega} Q(d\omega).$$ For $Q \in M_S(\Omega)$ define the entropy of Q with respect to π by $$H(Q|\pi) = h_{\mathscr{F}_1^{-\infty}}(Q,\hat{Q}).$$ By (2.1), $$(3.2) H(Q|\pi) = \sup_{u \in \mathcal{U}} \left[\int_{\Omega} \log u(\omega) Q(d\omega) - \log \int_{\Omega} u(\omega) \hat{Q}(d\omega) \right],$$ where \mathscr{U} is the set of positive continuous functions which only depend on ω_i , $i \leq 1$. By (3.1), $$\int_{\Omega} u(\omega) \hat{Q}(d\omega) = \int_{\Omega} E^{P_{\omega}}(u) Q(d\omega).$$ Under assumption 3 on the probability transition function $\pi(dy|x)$, $\omega \rightarrow$ $E^{p_{\omega}}(u)$ is a continuous function for $u \in \mathcal{U}$. Then the expression in brackets in (3.2) is a continuous function of Q. It follows that $H(Q|\pi)$ is lower semicontinuous. These definitions are required for the proof of the following lemma. LEMMA 3.1. Let C be a closed convex set in $\mathcal{M}(X)$ satisfying I(C) = $I(C^0) < \infty$. Let P^* be the I-projection of π onto C considered as a stationary process on (Ω, \mathcal{B}) . Then in terms of the metric for the weak topology on $M_S(\Omega)$, $R_{n,\omega}$ converges to P^* in conditional P_x -probability given $\hat{P}_n(\omega, \cdot) \in C$, uniformly for $x \in X$. PROOF. It follows from (1.5), (1.7) and the assumption that I(C) = $I(C^0) < \infty$ that (3.3) $$\lim_{n\to\infty} \frac{1}{n} \log P_x \{ \hat{P}_n(\omega, \cdot) \in C \} = -I(C),$$ uniformly for $x \in X$. Let Π_C be the set of $Q \in M_S(\Omega)$ with marginals in C. Then $\hat{P}_n(\omega, \cdot) \in C$ is equivalent to $R_{n,\omega} \in \Pi_C$. Since (Ω, \mathcal{B}) is a Polish space, the weak topology on the set of probability measures on Ω is metrizable. Let $\Delta(\cdot, \cdot)$ denote this metric. Define $$\Pi_C^{\varepsilon} = \big\{ Q \in \Pi_C \colon \Delta(Q, P^*) \geq \varepsilon \big\}.$$ Π_C and Π_C^{ε} are closed sets of $M_S(\Omega)$, which is compact, so both Π_C and Π_C^{ε} are compact. Under assumption 3 the methods of Donsker and Varadhan (1983) show that $$\limsup_{n\to\infty}\frac{1}{n}\limsup_{x\in X}P_x\!\!\left\{R_{n,\,\omega}\in\Pi_C^\varepsilon\right\}\leq -\inf_{Q\in\Pi_C^\varepsilon}H(Q|\pi).$$ A proof of (3.4) is given in the Appendix, Theorem A.1. $H(Q|\pi)$ is lower-semicontinuous in Q so that both $H(\Pi_C|\pi)=\inf_{Q\in\Pi_C}H(Q|\pi)$ and $H(\Pi_C^\epsilon|\pi)=\inf_{Q\in\Pi_C^\epsilon}H(Q|\pi)$ are achieved. Using the contraction principle of Donsker and Varadhan (1983), Theorem 6.1, $$egin{aligned} Higl(\Pi_C|\piigr) &= \inf_{\mu \in C} \inf_{\{Q: \, q(Q) = \mu\}} H(Q|\piigr) \ &= \inf_{\mu \in C} I(\mu) = I(C), \end{aligned}$$ where q(Q) denotes the marginal of Q. Thus $H(\Pi_C|\pi)$ is achieved by P^* . We will show in Lemma 3.3 that P^* is the unique minimum. Then for any $\varepsilon>0$, $H(\Pi_C^\varepsilon|\pi)>H(\Pi_C|\pi)$. Fix ε and pick ε^1 such that $2\varepsilon^1< H(\Pi_C^\varepsilon|\pi)-H(\Pi_C|\pi)$. It follows from (3.3) and (3.4) that $\exists N$ such that for $n\geq N$ and every $x\in X$, $$\begin{split} P_x & \left\{ \Delta \big(R_{n,\,\omega}, P^* \big) \geq \varepsilon | \hat{P}_n \big(\, \omega, \, \cdot \, \big) \in C \right\} \\ & = \frac{P_x \big\{ R_{n,\,\omega} \in \Pi_C^\varepsilon \big\}}{P_x \big\{ \hat{P}_n \big(\, \omega, \, \cdot \, \big) \in C \big\}} \\ & \leq \frac{e^{-n(H(\Pi_C^\varepsilon | \pi) - \varepsilon^1)}}{e^{-n(H(\Pi_C | \pi) + \varepsilon^1)}} \\ & = e^{-n(H(\Pi_C^\varepsilon | \pi) - H(\Pi_C | \pi) - 2\varepsilon^1)}. \end{split}$$ so that $$\lim_{n\to\infty} P_x \{\Delta(R_{n,\,\omega}, P^*) \geq \varepsilon | \hat{P}_n(\omega, \cdot) \in C \} = 0, \quad \text{uniformly in } x,$$ which establishes the theorem. \Box THEOREM 3.2. The stationary processes defined by $$R_{n,x}^{C}(\cdot) = E^{P_x} \Big\{ R_{n,\omega}(\cdot) | \hat{P}_n(\omega, \cdot) \in C \Big\}$$ converge weakly to P^* for all $x \in X$. PROOF. For any $f \in C(\Omega)$, it follows as in Theorem 3.1 that (3.5) $$\lim_{n\to\infty} P_x \left\{ \left| \int f dR_{n,\omega} - \int f dP^* \right| \ge \varepsilon |P_n(\omega,\cdot)| \in C \right\} = 0,$$ uniformly for $x \in X$. Now for any $f \in L^1(\mathbb{R}_{n,x}^C)$, $$\int_{\Omega} f dR_{n,x}^{C} = E^{P_{x}} \left\{ \int f dR_{n,\omega} | \hat{P}_{n}(\omega,\cdot) \in C \right\}.$$ Then for $f \in C(\Omega)$, $$\begin{split} \left| \int_{\Omega} f dR_{n,x}^{C} - \int_{\Omega} f dP^{*}
\right| \\ & \leq E^{P_{x}} \left\{ \left| \int_{\Omega} f dR_{n,\omega} - \int_{\Omega} f dP^{*} \right| |\hat{P}_{n}(\omega, \cdot) \in C \right\} \\ & < 2|f| P_{x} \left\{ \left| \int_{\Omega} f dR_{n,\omega} - \int_{\Omega} f dP^{*} \right| \geq \varepsilon |\hat{P}_{n}(\omega, \cdot) \in C \right\} \\ & + \varepsilon \left(P_{x} \left\{ \left| \int_{\Omega} f dR_{n,\omega} - \int_{\Omega} f dP^{*} \right| < \varepsilon |\hat{P}_{n}(\omega, \cdot) \in C \right\} \right), \end{split}$$ so by (3.5), $$\lim_{n\to\infty}\left|\int_{\Omega}fdR_{n,x}^{c}-\int_{\Omega}fdP^{*}\right|\leq\varepsilon.$$ Since ε is arbitrary, the weak convergence of $R_{n,x}^C$ to P^* is established. To complete the proof of Lemma 3.1, we establish the following lemma. LEMMA 3.3. Let P^* , Π_C and $H(Q|\pi)$ be as in the proof of Theorem 3.1. Then $$H(\Pi_C|\pi) = \inf_{Q \in \Pi_C} H(Q|\pi)$$ is attained uniquely by P^* . PROOF. Suppose that $Q \in \Pi_C$ achieves the above infimum, which, by assumption, is finite. Let \hat{Q} be as defined by (3.1). Then $Q \ll \hat{Q}$. Denote by \hat{Q}_1^0 the restriction of \hat{Q} to \mathscr{F}_1^0 . Let $\hat{Q}_{1,\,\omega}^0$ be the regular conditional probability distribution of \hat{Q} given \mathscr{F}_1^0 . Then $E^{\hat{Q}_{1,\,\omega}^0}[dQ/d\hat{Q}]$ is a version of $dQ_1^0/d\hat{Q}_1^0$. It follows that $$egin{aligned} I(C) & \leq h^1ig(Q_1^0|\piig) \ & = \int E^{\hat{Q}_{1,\,\omega}^0}igg[rac{dQ}{d\hat{Q}}igg] \log E^{\hat{Q}_{1,\,\omega}^0}igg[rac{dQ}{d\hat{Q}}igg] d\hat{Q}_1^0(\omega) \ & \leq \int E^{\hat{Q}_{1,\,\omega}^0}igg[rac{dQ}{d\hat{Q}}\log rac{dQ}{d\hat{Q}}igg] d\hat{Q}_1^0(\omega) \ & = \int dQ\log rac{dQ}{d\hat{Q}} = I(C), \end{aligned}$$ where Jensen's inequality for the measure $\hat{Q}^0_{1,\,\omega}$ has been used. However, in this case, we must have equality holding in the Jensen estimate for \hat{Q}_1^0 -a.e. ω . Since $x \log x$ is strictly convex, this implies for \hat{Q} -a.e. ω , (3.6) $$\frac{dQ}{d\hat{Q}}(\omega) = E^{\hat{Q}_{1,\omega}^0} \left[\frac{dQ}{d\hat{Q}} \right].$$ Let $Q_{\omega(0)}$ denote the regular conditional probability distribution of Q_1^0 given \mathcal{F}_0^0 and note that $P_{\omega(0)}$ is the regular conditional probability distribution of \hat{Q}_1^0 given \mathcal{F}_0^0 . The measures Q_1^0 and \hat{Q}_1^0 have the same marginal distribution on \mathcal{F}_0^0 , which we denote by q. Then $dQ_1^0/d\hat{Q}_1^0$ is the Radon-Nikodym derivative of $Q_{\omega(0)}$ with respect to $P_{\omega(0)}$ which exists for q-a.e. $\omega(0)$. It now follows from (3.6) that $$rac{dQ}{d\hat{Q}} = rac{dQ_{\omega(0)}}{dP_{\omega(0)}} \quad ext{for } \hat{Q} ext{-a.e. } \omega.$$ This shows Q is a stationary Markov process as follows: Let $B \in \mathscr{F}_0^{-\infty}$, $A \in \mathscr{F}_1^{-1}$: $$\begin{split} Q[A \cap B] &= \int_{A \cap B} \frac{dQ}{d\hat{Q}} \hat{Q}(d\omega) \\ &= \int_{B} E^{P_{\omega}} \left[\frac{dQ}{d\hat{Q}} \chi_{A} \right] Q(d\omega) \\ &= \int_{B} E^{P_{\omega}} \left[\frac{dQ_{\omega(0)}}{dP_{\omega(0)}} \chi_{A} \right] Q(d\omega) \quad \text{[by (3.1)]} \\ &= \int_{B} E^{P_{\omega(0)}} \left[\frac{dQ_{\omega(0)}}{dP_{\omega(0)}} \chi_{A} \right] Q(d\omega) \\ &= \int_{B} Q_{\omega(0)}(A) Q(d\omega). \end{split}$$ Since $Q_{\omega(0)}(A)=E^Q[A|\mathscr{F}_0^0]$, this shows that $E^Q[A|\mathscr{F}_0^{-j}]=E^Q[A|\mathscr{F}_0^0]$ for any $A\in\mathscr{F}_1^1$, j>0. It follows that Q is a stationary Markov process with transition probability function $Q(A|x)=Q_x(A)$ for $A\in\mathscr{F}_1^1$. Since $I(C)=h^1(Q_1^0|\pi)$, it follows from Corollary 2.7 that Q is the stationary Markov process P^* . \square **4. A large deviations estimate.** For u(x) a probability density function with respect to λ , let $$(4.1) R_{n,u}^{C}(\cdot) = E^{P_u} \left\{ R_{n,\omega}(\cdot) | \hat{P}_n(\omega, \cdot) \in C \right\}$$ be defined as in (1.9). In this section we show the sequence of measures $R_{n,u}^{C}(\cdot)$, $n=1,2,\ldots$, is asymptotically quasi-Markov. We begin by establishing a fundamental lemma. Let Q be a stationary process on (Ω, \mathscr{B}) with marginal q. Let Q_1^0 be the restriction of Q to \mathscr{F}_1^0 and let $Q_{\omega(0)}$ denote the regular conditional probability distribution of Q_1^0 w.r.t. \mathcal{F}_0^0 . Then, as before, for $A \in \mathcal{F}_1^1$, $Q(A|x) = Q_x(A)$ defines a transition probability function a.e. q. Let \tilde{Q} be the stationary Markov process with transition probability Q(A|x) and invariant measure q. We say that \tilde{Q} is the stationary Markov process defined by Q. Then we have the following lemma. LEMMA 4.1. Let \overline{P} be the Markov process on $\prod_{i=0}^{\infty}(X_i, \mathscr{B}_i)$, $X_i = X$, \mathscr{B}_i the Boreal σ -field on X, $0 \le i < \infty$, with a probability transition function P(dy|x) and initial distribution q(dx). Let Q, \overline{Q} be as above. Then for any n, $$h_{\mathscr{F}_n^0}(Q, \overline{P}) = h_{\mathscr{F}_n^0}(Q, \widetilde{Q}) + nh^1(Q_1^0|P(\cdot|\cdot)).$$ PROOF. Let \overline{P}_1^0 denote the restriction of \overline{P} to \mathscr{F}_1^0 . Then we can assume $Q \ll \tilde{Q}$ on \mathscr{F}_n^0 and $Q_1^0 \ll \overline{P}_1^0$; otherwise both sides are ∞ . To establish this, suppose $h_{\mathscr{F}_n^0}(Q,\overline{P}) < \infty$. Then $Q \ll \overline{P}$ on \mathscr{F}_n^0 ; in particular, $Q_1^0 \ll \overline{P}_1^0$. Since Q_1^0 and \overline{P}_1^0 both have marginal q on \mathscr{F}_0^0 , $dQ_1^0/d\overline{P}_1^0$ is the Radon-Nikodym derivative of Q(dy|x) with respect to P(dy|x), which exists for q-a.e. x. Now suppose for $M \in \mathscr{F}_n^0$, $\tilde{Q}(M) = 0$. However, $$(4.2) \quad \tilde{Q}(M) = \int_{M} \frac{dQ_{1}^{0}}{d\overline{P}_{1}^{0}}(\omega_{0}, \omega_{1}) \cdots \frac{dQ_{1}^{0}}{d\overline{P}_{1}^{0}}(\omega_{n-1}, \omega_{n}) d\overline{P}(\omega_{0}, \dots, \omega_{n}),$$ so that $\hat{Q}(M)=0$ implies that \overline{P} -a.e. on \mathscr{F}_n^0 , $dQ_1^0/d\overline{P}_1^0(\omega_0,\omega_1)\cdots dQ_1^0/d\overline{P}_1^0(\omega_{n-1},\omega_n)=0$. Let N be the \mathscr{F}_n^0 set of \overline{P} -measure 0, where this product is positive. Let $T_i=\{(\omega_{i-1},\omega_i):\ dQ_1^0/d\overline{P}_1^0(\omega_{i-1},\omega_i)=0\}$. Using the stationarity of Q, each T_i has Q-measure 0. Then $M\subseteq N\cup\bigcup_{i=1}^nT_i$ so M has Q-measure 0 and $Q\ll \tilde{Q}$. Q-measure 0 and $Q\ll \tilde{Q}$. Assuming that $Q\ll \hat{Q}$ on $\mathscr{F}_n^{\ 0}$ and $Q_1^{\ 0}\ll \overline{P}_1^{\ 0}$, which we have seen implies $\tilde{Q}\ll \overline{P}$ on $\mathscr{F}_n^{\ 0}$, we have $$\frac{dQ}{d\overline{P}} = \frac{dQ}{d\tilde{Q}} \frac{d\tilde{Q}}{d\overline{P}}$$ on \mathcal{F}_n^0 . Taking log of both sides, integrating over Q and using (4.2) gives $$h_{\mathscr{F}_n^0}(Q, \overline{P}) = h_{\mathscr{F}_n^0}(Q, \tilde{Q})$$ $$+\int dQ(\omega_0,\ldots,\omega_n)\log rac{dQ_1^0}{d\overline{P}_1^0}(\omega_0,\omega_1)\cdots rac{dQ_1^0}{d\overline{P}_1^0}(\omega_{n-1},\omega_n).$$ Using the stationarity of Q, the last integral on the right is $nh^1(Q_1^0|P(\cdot|\cdot))$. The following lemma establishes the analog in this situation of the almost completely convex condition required by Csiszár (1984) on the convex set C described in Section 1. LEMMA 4.2. Let $R_{n,u}^C(\cdot)$ be as defined in (4.1) and let Π_C be the set of $M_S(\Omega)$ whose marginals are in C, a weakly closed convex set. Then $R_{n,u}^C(\cdot) \in \Pi_C$. PROOF. Consider $P_u\{\cdot|\hat{P}_n(\omega,\cdot)\in C\}$ as a measure of \mathscr{F}_{n-1}^0 . Now $\prod_{i=0}^{\infty}(X_i,\mathscr{B}_i)$ is $(\prod_{i=0}^{\infty}X_i,\mathscr{B})$, where \mathscr{B} is the Borel σ -field on $\prod_{i=0}^{\infty}X_i$, which is in particular a separable metric space. It is standard that there are probability measures μ_j on \mathscr{F}_{n-1}^0 , $$\mu_j = \sum_{k=0}^{k=k_j} a_{jk} \delta_{e_{jk}},$$ whose supports are finite sets which converge weakly to $P_u\{\cdot|\hat{P}_n(\omega,\cdot)\in C\}$ [Parthasarathy (1967), Theorem (6.3)]. Let E_n be the \mathscr{F}_{n-1}^0 -measurable set of ω satisfying $\hat{P}_n(\omega,\cdot)\in C$. Without loss of generality, it may be assumed that the finite set $\{e_{jk}\}$ lies in E_n for each j and k. Now let $f \in C(\Omega)$. Then for each $\omega \in \Omega$, $$\int f dR_{n,\omega} = \frac{1}{n} \sum_{i=0}^{n-1} f(\theta_i \omega_n)$$ is a continuous function of $(\omega_0, \ldots, \omega_{n-1})$. It follows that $$\int \left(\int f dR_{n,\omega} \right) \mu_j = \sum_{k=0}^{k=k_j} a_{jk} \left(\int f dR_{n,e_{jk}} \right)$$ converges as $j \to \infty$ to $$E_{u}\left\{\int f dR_{n,\omega} | \hat{P}_{n}(\omega,\cdot) \in C\right\}$$ $$= \int_{\Omega} f(\omega) dR_{n,u}^{C}.$$ Thus the measure (4.3) $$\sum_{k=0}^{k=k_{j}} a_{jk} R_{n,e_{jk}}$$ converges weakly as $j \to \infty$ to $R_{n,u}^C$. Since for each j and k, $e_{jk} \in E_n$, it follows that $\hat{P}_n(e_{jk},\,\cdot\,) \in C$ or equivalently that $R_{n,\,e_{jk}} \in \Pi_C$. By the convexity of Π_C , each of the measures in (4.3) is in Π_C . Thus $R_{n,\,\omega}^C$ is a limit point of Π_C , which, being closed, implies $R_{n,\,u}^C \in \Pi_C$. \square Lemma 4.3. Let E_n be the \mathscr{F}_{n-1}^0 -measurable set $\{\omega\colon \hat{P}_n(\omega,\,\cdot\,)\in C\}$. The measure $R_{n,\,u}^C$ defined by (4.1) has a density for sets A in \mathscr{F}_{n-1}^0 with respect to λ^n given by $$R_{n,u}^C(\omega_0,\ldots,\omega_{n-1}) = \frac{1}{P_{\nu}\{E_n\}} \chi_{E_n}(\omega_0,\ldots,\omega_{n-1}) \frac{1}{n} \sum_{i=0}^{n-1} \pi_i(\omega_0,\ldots,\omega_{n-1}),$$ where $$\pi_0(\omega_0,\ldots,\omega_{n-1})=u(\omega_0)\pi(\omega_1|\omega_0)\cdots\pi(\omega_{n-1}|\omega_{n-2})$$ and $$(4.4)
\begin{aligned} \pi_i(\omega_0, \dots, \omega_{n-1}) &= \pi(\omega_0 | \omega_{n-1}) \pi(\omega_1 | \omega_0) \cdots \pi(\omega_{n-i-1} | \omega_{n-i-2}) \\ &\times u(\omega_{n-i}) \pi(\omega_{n-i+1} | \omega_{n-i}) \cdots \pi(\omega_{n-1} | \omega_{n-2}). \end{aligned}$$ PROOF. Observe that the map $\Omega \to \Omega$ defined by $\omega \mapsto \omega_n$ is continuous, hence \mathscr{F}_n^0 -measurable, and the maps $\theta_i, \theta_i^{-1} \colon \Omega \to \Omega$ are continuous, hence measurable. Let i > 0 and let A be a measurable set in \mathscr{F}_{n-1}^0 . Then (4.5) $$E_{u}\{\chi_{A}(\theta_{i}\omega_{n})\}$$ $$= \int_{X} \cdots \int_{X} \chi_{A}(\theta_{i}\omega_{n}) \pi_{0}(\omega_{0}, \ldots, \omega_{n-1}) d\lambda^{n}$$ $$= \int_{X} \cdots \int_{X} \chi_{A}(\omega_{n}) \pi_{0}(\theta_{i}^{-1}\omega_{n}) d\lambda^{n}$$ by Fubini's theorem. It is easy to see that for i > 0, (4.6) $$\pi_0(\theta_i^{-1}\omega_n) = \pi(\omega_0|\omega_{n-1})\pi(\omega_1|\omega_0)\cdots\pi(\omega_{n-i-1}|\omega_{n-i-2}) \times u(\omega_{n-i})\pi(\omega_{n-i+1}|\omega_{n-i})\cdots\pi(\omega_{n-1}|\omega_{n-2}).$$ To obtain the density of $$R_{n-\omega}^{C}(\cdot) = E_{\omega} \{ R_{n-\omega}(\cdot) | \hat{P}_{n}(\omega, \cdot) \in C \},$$ observe that $\omega \in E_n$ if and only if $\theta_i \omega_n \in E_n$ for any $0 \le i \le n-1$. Then $$\begin{split} R_{n,u}^C(\,\cdot\,) &= E_u \big\{ R_{n,\,\omega}(\,\cdot\,) | \omega \in E_n \big\} \\ &= \frac{1}{n} \sum_{i=0}^{n-1} E_u \big\{ \chi_{(\,\cdot\,)}(\,\theta_i \omega_n) | \theta_i \omega_n \in E_n \big\}. \end{split}$$ It now follows from (4.5) and (4.6) that for any set $A \in \mathscr{F}_{n-1}^0$, $$R_{n,u}^{C}(\cdot) = \int \cdots \int_{A} \frac{1}{P_{n} \{E_{n}\}} \chi_{E_{N}}(\omega_{0}, \ldots, \omega_{n-1}) \frac{1}{n} \sum_{i=0}^{n-1} \pi_{i}(\omega_{0}, \ldots, \omega_{n-1}) d\lambda^{n},$$ which proves the lemma. \Box Let $\overline{P}_{n,u}^*$ be the measure on \mathscr{F}_{n-1}^0 defined by the transition probability function $P^*(dy|x)$, P^* the *I*-projection of π onto C and initial distribution given by the marginal of $R_{n,u}^C$. We now establish the following lemma. Lemma 4.4. Let C be a closed convex set with nonempty interior C^0 satisfying $I(C^0) < \infty$. Suppose the probability density function in (4.1) is bounded from above. Then $$\begin{split} &\frac{1}{n}\log P_u\Big\{\hat{P}_n(\omega,\cdot)\in C\Big\}\\ &\leq -\frac{1}{n}h_{\mathscr{F}_{n-1}^0}\Big(R_{n,u}^C,\overline{P}_{n,u}^*\Big) - \frac{(n-1)}{n}I(C) + \frac{1}{n}\log\Big(\frac{\sup uA}{a}\Big), \end{split}$$ where a and A are the bounds on $\pi(y|x)$ given by assumption 3. Proof. Let $$\begin{split} \hat{R}_{n,u}^C(\cdot) &= E_u \big\{ R_{n,\omega}(\cdot) \big\} \\ &= \frac{1}{n} \sum_{i=0}^{n-1} E_u \big\{ \chi_{(\cdot)}(\theta_i \omega_n) \big\}. \end{split}$$ Then $$(4.7) - \log P_{u} \{ \hat{P}_{n}(\omega, \cdot) \in C \} = h_{\mathcal{F}_{n-1}^{0}} (R_{n,u}^{C}, \hat{R}_{n,u}^{C})$$ $$= \int_{X} \cdots \int_{X} dR_{n,u}^{C} \log \frac{R_{n,u}^{C}(\omega_{0}, \dots, \omega_{n-1})}{\hat{R}_{n,u}^{C}(\omega_{0}, \dots, \omega_{n-1})},$$ where $R_{n,u}^C(\omega_0,\ldots,\omega_{n-1})$ and $\hat{R}_{n,u}^C(\omega_0,\ldots,\omega_{n-1})$ are the densities of $R_{n,u}^C$ and $\hat{R}_{n,u}^C$, respectively, with respect to λ^n . Let $\pi^1(\omega_0,\omega_1,\ldots,\omega_{n-1})=\pi(\omega_1|\omega_0)\pi(\omega_2|\omega_1)\cdots\omega(\omega_{n-1}|\omega_{n-2})$. Let $r_{n,u}(\omega_0)$ denote the density of the marginal of $R_{n,u}^C$ with respect to λ and let $\pi_{n,u}$ be the measure on \mathcal{F}_n^0 with density $r_{n,u}(\omega_0)\pi^1(\omega_0,\ldots,\omega_{n-1})$ with respect to λ^n . Now for $R_{n,u}^C$ -a.e. $(\omega_0,\ldots,\omega_{n-1})$, $$\begin{split} \frac{R_{n,u}^C(\omega_0,\ldots,\omega_{n-1})}{\hat{R}_{n,u}^C(\omega_0,\ldots,\omega_{n-1})} &= \frac{R_{n,u}^C(\omega_0,\ldots,\omega_{n-1})}{\pi_{n,u}(\omega_0,\ldots,\omega_{n-1})} \\ &\times r_{n,u}(\omega_0) \frac{\pi^1(\omega_0,\ldots,\omega_{n-1})}{\hat{R}_{n,u}^C(\omega_0,\ldots,\omega_{n-1})} \,. \end{split}$$ It is possible to take the log of both sides and integrate over $R_{n,\,u}^{\,c}$ to obtain $$\int_{X} \cdots \int_{X} dR_{n,u}^{C} \log \frac{R_{n,u}^{C}}{\hat{R}_{n,u}^{C}}$$ $$= \int_{X} \cdots \int_{X} dR_{n,u}^{C} \log \frac{R_{n,u}^{C}}{\pi_{n,u}}$$ $$+ \int_{X} \cdots \int_{X} dR_{n,u}^{C} \log r_{n,u}(\omega_{0}) + \int_{X} \cdots \int_{X} dR_{n,u}^{C} \log \frac{\pi^{1}}{\hat{R}_{n,u}^{C}},$$ provided the right-hand side is well defined. However, the first integral on the right is evidently positive as is the second, which is just $h(r_{n,u}, \lambda)$. For the third, it follows from (4.4) and the bounds on π and u that (4.9) $$\pi_i(\omega_0,\ldots,\omega_{n-1}) \leq \frac{\sup uA}{a} \pi^1(\omega_0,\ldots,\omega_{n-1}),$$ so that $$\int_X \cdots \int_X dR_{n,u}^C \log \frac{\pi^1}{\hat{R}_{n,u}^C} \ge -\log \left(\frac{\sup uA}{a}\right).$$ For (4.7), (4.8), and (4.9) it now follows that $$(4.10) - \log P_u \Big\{ \hat{P}_n(\omega, \cdot) \in C \Big\} \ge h_{\mathscr{F}_{n-1}^0} \Big(R_{n,u}^C, \pi_{n,u} \Big) - \log \left(\frac{\sup uA}{a} \right).$$ Applying Lemma 4.1 and letting $\tilde{R}_{n,u}^C$ denote the stationary Markov process defined by $R_{n,u}^C$, we have $$\begin{split} h_{\mathcal{F}_{n-1}^0}\!\!\!\left(R_{n,\,u}^C,\pi_{n,\,u}\right) &= h_{\mathcal{F}_{n-1}^0}\!\!\!\left(R_{n,\,u}^C,\tilde{R}_{n,\,u}^C\right) \\ &+ (n-1)h^1\!\!\left(R_{n,\,u}^{C-0}|\!\!\!/\pi\right). \end{split}$$ Since $R_{n,\,u}^{\,C}\in\Pi_C$ by Lemma 4.2, $R_{n,\,u}^{\,C}\,{}^0\in M_C$ and it follows from Theorem 2.3 that $$h^1(R_{n,u}^C{}_1^0|\pi) \ge h^1(R_{n,u}^C{}_1^0|P^*(\cdot|\cdot)) + I(C).$$ From (4.10) we have $$-\log P_{u} \{ \hat{P}_{n}(\omega, \cdot) \in C \} \ge h_{\mathscr{F}_{n-1}^{0}} (R_{n,u}^{C} \tilde{R}_{n,u}^{C})$$ $$+ (n-1)h^{1} (R_{n,u}^{C} {}_{1}^{0} | P^{*}(\cdot | \cdot))$$ $$+ (n-1)I(C) - \log \left(\frac{\sup uA}{a} \right).$$ Applying Lemma 4.1 again gives $$h_{\mathscr{F}_{n-1}^0}\!\!\left(R_{n,\,u}^C\,,\,\overline{P}_{n,\,u}^*\right) = h_{\mathscr{F}_{n-1}^0}\!\!\left(R_{n,\,u}^C\,,\,\widetilde{R}_{n,\,u}^C\right) + (n-1)h^1\!\!\left(R_{n,\,u}^{C\,\,0}|P^*(\,\cdot\,|\,\,\cdot\,)\right).$$ Substituting this into (4.11) yields $$-\log P_u\Big\{\hat{P}_n(\omega,\cdot)\in C\Big\}\geq h_{\mathscr{F}_{n-1}^0}\Big(R_{n,u}^C,\overline{P}_{n,u}^*\Big)+(n-1)I(C)-\log\bigg(\frac{\sup uA}{a}\bigg).$$ The lemma follows. \Box Theorem 4.5. Suppose that in addition to the hypothesis of Lemma 4.4 we have $I(C) = I(C^0) < \infty$. Then $$\lim_{n\to\infty}\frac{1}{n}h_{\mathscr{F}_{n-1}^0}\!\!\left(R_{n,u}^C,\overline{P}_{n,u}^*\right)=0,$$ so that the measures $R_{n,u}^C$ are asymptotically quasi-independent with respect to $P^*(dy|x)$, the transition probability function of the I-projection of π onto C. PROOF. Using the uniformity of the estimate (1.5), it follows that $$\liminf_{n\to\infty}\frac{1}{n}\log P_u\{\hat{P}_n(\omega,\cdot)\in C^0\}\geq -I(C^0)=-I(C).$$ It follows from Lemma 4.4 that $$(4.12) \qquad \limsup_{n \to \infty} \left(\frac{1}{n} \log P_u \Big\{ \hat{P}_n(\omega, \cdot) \in C \Big\} + \frac{1}{n} h_{\mathscr{F}_{n-1}^0} \Big(R_{n,u}^C, \overline{P}_{n,u}^* \Big) \right) \\ \leq -I(C).$$ In particular, $$\lim_{n\to\infty}\frac{1}{n}\log P_u\{\hat{P}_n(\omega,\cdot)\in C\}=-I(C).$$ It follows from (4.12) that $$\limsup_{n\to\infty}\frac{1}{n}h_{\mathscr{F}_{n-1}^0}\!\!\left(R_{n,u}^C,\overline{P}_{n,u}^*\right)\leq 0,$$ which establishes the theorem. **5. Corollaries.** Let C be a closed convex set with nonempty interior satisfying $I(C^0) = I(C) < \infty$, so that the measures $R_{n,u}^C$ defined by (1.9) for u(x) bounded from above are asymptotically quasi-independent with respect to $P^*(dy|x)$, the probability transition function of the I-projection of π onto C. From Theorem 2.3, this function is defined for λ -a.e. x. Extend it as described in Corollary 2.8. Let \hat{Q} be the measure on Ω defined by (5.1) $$\int_{\Omega} \delta_{\omega} \otimes_{0} P_{\omega(0)}^{*}Q(d\omega).$$ For $Q \in M_S(\Omega)$, define $h^j(Q|P^*(\cdot|\cdot)) = h_{\mathscr{F}^{-j}}(Q,\hat{Q})$. COROLLARY 5.1. For $h^{j}(\cdot | \cdot)$ defined as above, $$\lim_{n\to\infty}h^j\big(R_{n,u}^C|P^*(\,\cdot\,|\,\,\cdot\,)\big)=0.$$ PROOF. From Theorem 4.5, we have that $$\lim_{n\to\infty}\frac{1}{n}h_{\mathscr{F}_{n-1}^0}\!\!\left(R_{n,u}^C,\overline{P}_{n,u}^*\right)=0,$$ where $\overline{P}_{n,u}^*$ is the measure on \mathscr{T}_{n-1}^0 defined by the transition probability function $P^*(dy|x)$ and initial distribution given by the marginal of $R_{n,u}^C$. We can assume without loss of generality that for n>1, $h_{\mathscr{T}_{n-1}^0}(R_{nu}^C,\overline{P}_{n,u}^*)<\infty$. It follows from the proof of Lemma A.4 in the Appendix [(A.5)] that (5.2) $$h_{\mathscr{F}_{n-1}^0}(R_{n,u}^C, \overline{P}_{n,u}^*) = \sum_{i=1}^{n-1} h^i(R_{n,u}^C|P^*(\cdot|\cdot)).$$ From their definition, $h^k(R_{n,u}^C|P^*(\cdot|\cdot)) \leq h^l(Q|P^*(\cdot|\cdot))$ if k < l. Then for $j \leq n-1$, $$\begin{split} \frac{n-j}{n} h^{j} \Big(R_{n,u}^{C} | P^{*}(\cdot | \cdot) \Big) &\leq \frac{1}{n} \sum_{i=1}^{n-1} h^{i} \Big(R_{n,u}^{C} | P^{*}(\cdot | \cdot) \Big) \\ &= \frac{1}{n} h_{\mathcal{F}_{n-1}^{0}} \Big(R_{n,u}^{C}, \overline{P}_{n,u}^{*} \Big), \end{split}$$ so that $\lim_{n\to\infty} h^j(R_{n,u}^C|P^*(\cdot|\cdot)) = 0$. \square Using Corollary 2.8, it follows that $h^j(Q|P^*(\cdot|\cdot))$ is a lower semicontinuous function of Q. Since $M_S(\Omega)$ is compact, it follows from Corollary 5.1 that any subsequence of $\{R_{n,u}^C\}$ contains a subsequence which converges weakly to the stationary Markov process P^* , so that $R_{n,u}^C$ converges weakly to P^* . Of course, this follows immediately from Lemma 3.1 using the uniformity of convergence for $x \in X$. However, more can be concluded from
Corollary 5.1. COROLLARY 5.2. Let $f(\omega)$ be measurable with respect to $\mathscr{F}_{i_j}^{i_1}$ and suppose that for |t| sufficiently small, $e^{tf(\omega_{i_1},\ldots,\omega_{i_j})}$ is integrable with respect to $(1/b(\omega_{i_1})\cdots 1/b(\omega_{i_j})\lambda^j)$, where the functions $b(\cdot)$ are as in Corollary 2.8. Then $f(\omega) dR_{n,u}^C \to f(\omega) dP^*$ as $n \to \infty$. PROOF. The proof is similar to Csiszár (1975), Lemma 3.1. Using the stationarity of $R_{n,u}^C$, we can assume without loss of generality that $f(\omega)$ is measurable with respect to \mathscr{F}_j^1 . Using (5.2), it follows from Corollary 5.1 that $$\lim_{n\to\infty}h_{\mathscr{F}_j^0}(R_{n,u}^C,\overline{P}_{n,u}^*)=0.$$ Let $f_{0,j,n}$ be the Radon-Nikodym derivative of $R_{n,u}^C$ with respect to $\overline{P}_{n,u}^*$ on \mathscr{F}_j^0 . Let $Y=\prod_{i=0}^j X_i,\ X_i=X,\ i=1,\ldots,j$. The Csiszár-Kemperman-Kullback inequality is that for two probability measures P and Q on a measure space (X,\mathscr{X}) : $$|P-Q| \leq \sqrt{2h(P,Q)}$$ [Csiszár (1967), Theorem 4.1, Kemperman (1969), Theorem 6.11, and Kullback (1967)]. It follows that $$\lim_{n\to\infty}\left|R_{n,u}^{C}-\overline{P}_{n,u}^{*}\right|_{\mathscr{F}_{j}^{0}}=\lim_{n\to\infty}\int\left|f_{0,j,n}-1\right|d\overline{P}_{n,u}^{*}=0,$$ where $|\cdot - \cdot|_{\mathscr{F}_{j}^{0}}$ denotes the variation norm for measures on \mathscr{F}_{j}^{0} . Let $A_{K} = \{\omega: f(\omega) \leq K\}$. Then (5.3) $$\lim_{n\to\infty} \left| \int_{A_K} f(\omega) dR_{n,u}^C - \int_{A_K} f(\omega) d\overline{P}_{n,u}^* \right| = 0.$$ However, for any $g(\omega)$ measurable with respect to \mathscr{F}_j^1 which is integrable with respect to $(1/b(\omega_1)\cdots 1/b(\omega_j)\lambda^j(\omega_1,\ldots,\omega_j))$, it follows from Corollary 2.8 that $$\int_{\prod_{i=1}^{J}X_{i}} g(\omega_{1},\ldots,\omega_{j}) P^{*}(\omega_{1}|\omega_{0}) P^{*}(\omega_{2}|\omega_{1}) \cdots P^{*}(\omega_{j}|\omega_{j-1}) d\lambda^{j}(\omega_{1},\ldots,\omega_{j})$$ is a continuous function of ω_0 . Since $R_{n,u}^C$ converges weakly to P^* , the marginals of $R_{n,u}^C$ converge weakly to the marginals of P^* and it follows that $\lg(\omega)\,d\overline{P}_{n,u}^*\to \lg(\omega)\,dP^*$ as $n\to\infty$. Then (5.3) implies $$\lim_{n\to\infty}\int_{A_K}f(\omega)\;dR^{C}_{n,\,u}=\int_{A_K}f(\omega)\;dP^*.$$ To complete the proof, it suffices to show that for any $\varepsilon > 0$, there exists K such that $$(5.4)(\mathrm{i}) \qquad \limsup_{n\to\infty} \, \int_{Y/A_K} \lvert f \rvert \, dR_{n,\,u}^{\,C} = \, \limsup_{n\to\infty} \int_{Y/A_k} \lvert f \rvert f_{0,\,j,\,n} \, \, d\overline{P}_{n,\,u}^* < \varepsilon$$ and $$\int_{Y/A_{\kappa}} |f| \, dP^* < \varepsilon.$$ To obtain this, we prove that (5.5) $$\lim_{n \to \infty} h_{\mathcal{F}_{j}^{0}}(R_{n,u}^{C}, \overline{P}_{n,u}^{*}) = \lim_{n \to \infty} \int_{Y} f_{0,j,n} \log f_{0,j,n} d\overline{P}_{n,u}^{*} = 0$$ implies that for any $A \in \mathscr{F}_j^1$, (5.6) $$\lim_{n \to \infty} \int_{A} f_{0,j,n} \log f_{0,j,n} d\overline{P}_{n,u}^{*} = 0.$$ Now $$\int_{A} f_{0,j,n} \log f_{0,j,n} d\overline{P}_{n,u}^{*} \geq R_{n,u}^{C}(A) \log \frac{R_{n,u}^{C}(A)}{\overline{P}_{n,u}^{*}(A)},$$ so that (5.7) $$\liminf_{n\to\infty} \int_A f_{0,j,n} \log f_{0,j,n} d\overline{P}_{n,u}^* \ge P^*(A) \log \frac{P^*(A)}{P^*(A)} = 0.$$ Similarly, (5.8) $$\liminf_{n \to \infty} \int_{Y/A} f_{0,j,n} \log f_{0,j,n} d\overline{P}_{n,u}^* \ge 0.$$ In view of (5.5), (5.7) and (5.8), (5.6) follows. Now pick t > 0 and K so that $\int_{Y/A_K} e^{t|f|} dP^* < \varepsilon t$ so that (ii) of (5.4) is satisfied. Using the inequality $ab < a \log a + e^b$, where $a = f_{0,j,n}$ and b = t|f| yields $$\int_{Y/A_K} t |f| f_{0,j,n} \, d\overline{P}_{n,u}^* \leq \int_{Y/A_K} f_{0,j,n} \, \log \, f_{0,j,n} \, d\overline{P}_{n,u}^* + \int_{Y/A_K} e^{t|f|} d\overline{P}_{n,u}^*.$$ It follows that $$\begin{split} \limsup_{n \to \infty} \, \int_{Y/A_K} &|f| f_{0,\,j,\,n} \, d\overline{P}_{n,\,u}^* \leq \frac{1}{t} \lim_{n \to \infty} \int_{Y/A_K} &e^{t|f|} \, d\overline{P}_{n,\,u}^* \\ &= \frac{1}{t} \int_{Y/A_K} &e^{t|f|} \, dP^* \\ &< \varepsilon, \end{split}$$ which completes the proof. \Box Finally, we have the following corollary. COROLLARY 5.3. Suppose the hypotheses of Theorem 4.5 are satisfied and that additionally the probability density u(x) is bounded away from 0. Then the conditional P_u -distribution of X_0, \ldots, X_{n-1} under the condition $\hat{P}_n(\omega, \cdot) \in C$ is asymptotically quasi-Markov with respect to the probability transition function $P^*(dy|x)$. PROOF. Let E_n be the \mathscr{F}_{n-1}^0 measurable set $\{\omega\colon \hat{P}_n(\omega,\,\cdot\,)\in C\}$. Then the conditional P_u -distribution of X_0,\ldots,X_{n-1} under the condition $\hat{P}_n(\omega,\,\cdot\,)\in C$ has the density $$P_{n,u}(\omega_0,\ldots,\omega_{n-1})$$ $$=\frac{1}{P_u\{E_n\}}\chi_{E_n}(\omega_0,\ldots,\omega_{n-1})u(\omega_0)\pi(\omega_1|\omega_0)\cdots\pi(\omega_{n-1}|\omega_{n-2}).$$ Let $R_{n,u}^C(\omega_0,\ldots,\omega_{n-1})$ be the density of $R_{n,u}^C$ on \mathscr{F}_{n-1}^0 . Then from (4.4), we have $$(5.9)(i) P_{n,u}(\omega_0,\ldots,\omega_{n-1}) \geq \frac{\inf ua}{\sup uA} R_{n,u}^C(\omega_0,\ldots,\omega_{n-1}).$$ Similarly $$(5.9)(ii) P_{n,u}(\omega_0,\ldots,\omega_{n-1}) \leq \frac{\sup uA}{\inf ua} R_{n,u}^C(\omega_0,\ldots,\omega_{n-1}).$$ If $p_{n,u}(\omega_0)$ is the density with respect to λ of the first marginal of $P_u\{\cdot|\hat{P}_n(\omega,\cdot)\in C\}$ on \mathscr{F}_{n-1}^0 , then the same bounds must hold with respect to the density $r_{n,u}(\omega_0)$ of the marginals of $R_{n,u}^C$ with respect to λ . Let $\tilde{P}_{n,u}^*$ be the probability measure on \mathscr{F}_{n-1}^0 with initial distribution $p_{n,u}(\omega_0)\,d\lambda(\omega_0)$ and transition probability function $P^*(dy|x)$. Theorem 2.3 insures that this has a density with respect to λ^n . Let $\tilde{P}_{n,u}^*(\omega_0,\ldots,\omega_{n-1})$ denote this density. Similarly, let $\bar{P}_{n,u}^*(\omega_0,\ldots,\omega_{n-1})$ denote the density of $\bar{P}_{n,u}^*$ with respect to λ^n . Then from (5.9)(i) and (ii), $$\int P_{n,u} \log \frac{P_{n,u}}{\tilde{P}_{n,u}^*} d\lambda^n \ge \left(\frac{\inf ua}{\sup uA}\right) \int R_{n,u}^C \log \frac{R_{n,u}^C}{\overline{P}_{n,u}^*} d\lambda^n$$ $$+ 2\left(\frac{\inf ua}{\sup uA}\right) \log\left(\frac{\inf ua}{\sup uA}\right)$$ and $$\int P_{n,u} \log \frac{P_{n,u}}{\tilde{P}_{n,u}^*} d\lambda^n \leq \left(\frac{\sup uA}{\inf ua}\right) \int R_{n,u}^C \log \frac{R_{n,u}^C}{\overline{P}_{n,u}^*} d\lambda^n \\ + 2\left(\frac{\sup uA}{\inf ua}\right) \log \left(\frac{\sup uA}{\inf ua}\right).$$ It follows from Theorem 4.5 that $$\lim_{n\to\infty}\frac{1}{n}\int P_{n,u}\log\frac{P_{n,u}}{\tilde{P}_{n,u}^*}\,d\lambda^n=0,$$ which establishes that the sequence of measures $P_u\{\cdot|\hat{P}_n(\omega,\cdot)\in C\}$ on \mathscr{F}_{n-1}^0 is asymptotically quasi-independent with respect to $P^*(dy|x)$. \square #### APPENDIX In this appendix, the following theorem is established. Theorem A.1. Suppose that the probability transition function $\pi(dy|x)$ satisfies assumption 3 of Section 1. Then for any closed set $A \subset M_S(\Omega)$, $$\limsup_{n \to \infty} \frac{1}{n} \log \sup_{x \in X} P_x \{ R_{n, \omega} \in A \}$$ $$\leq -\inf_{Q \in A} H(Q|\pi).$$ The results of this section are, unless otherwise noted, direct translations of results of Donsker and Varadhan (1983) (cf. Sections 2, 3 and 4) into the language of discrete parameter processes. They are provided here for the convenience of the reader. LEMMA A.2. Let (X, Σ) be a Polish space and $\mathscr{F}_1 \subset \mathscr{F}_2 \subset \Sigma$ be sub- σ -fields. Let μ and λ be two measures on (X, Σ) and suppose $\mu \ll \lambda$ on the σ -field \mathscr{F}_1 . Let $\mu' = \int_X \lambda_\omega \mu(d\omega)$, where λ_ω is the conditional probability distribution of λ given \mathscr{F}_1 . Then (A.1) $$h_{\mathscr{F}_{2}}(\mu,\lambda) = h_{\mathscr{F}_{1}}(\mu,\lambda) + h_{\mathscr{F}_{2}}(\mu,\mu').$$ PROOF. For $E \in \Sigma$, $$\mu'(E) = \int_X \lambda_\omega(E) \mu(d\omega)$$ $$= \int_X \lambda_\omega(E) \frac{d\mu}{d\lambda} \Big|_{\mathscr{F}_1} \lambda(d\omega)$$ $$= \int_X E^{\lambda_\omega} \Big(\chi_E \frac{d\mu}{d\lambda} \Big|_{\mathscr{F}_1} \Big) \lambda(d\omega)$$ $$= \int_E \frac{d\mu}{d\lambda} \Big|_{\mathscr{F}_1} \lambda(d\omega),$$ so that $d\mu'/d\lambda = d\mu/d\lambda|_{\mathscr{F}_1}$. In particular, $d\mu/d\lambda|_{\mathscr{F}_2}$ exists or both sides of (A.1) are equal to $+\infty$. Then for $E \in \Sigma$, $$\begin{split} \mu(E) &= \int_{E} \frac{d\mu}{d\lambda} \bigg|_{\mathscr{F}_{2}} \lambda(d\omega) \\ &= \int_{E} \left(\frac{d\mu}{d\lambda} \bigg|_{\mathscr{F}_{2}} \bigg/ \frac{d\mu}{d\lambda} \bigg|_{\mathscr{F}_{1}} \right) \frac{d\mu}{d\lambda} \bigg|_{\mathscr{F}_{1}} \lambda(d\omega) \\ &= \int_{E} \left(\frac{d\mu}{d\lambda} \bigg|_{\mathscr{F}_{2}} \bigg/ \frac{d\mu}{d\lambda} \bigg|_{\mathscr{F}_{1}} \right) \mu'(d\omega). \end{split}$$ It follows that $$\left. \frac{d\mu}{d\lambda} \right|_{\mathscr{F}_2} = \frac{d\mu}{d\lambda} \left|_{\mathscr{F}_1} \frac{d\mu}{d\mu'} \right| \text{ a.e. } \mu'.$$ Taking the logarithm of both sides and integrating with respect to μ completes the argument. \square Suppose that \hat{Q} is defined as in (3.1). Lemma A.3. Either $$h_{\mathscr{F}_n^{-\omega}}(Q,\hat{Q})=+\infty$$ for all $n>0$ or $$h_{\mathscr{F}_n^{-\omega}}\!\!\left(Q,\hat{Q}\right)=nH(Q|\pi).$$ PROOF. If $H(Q|\pi) = +\infty$, then $h_{\mathscr{F}_n^{-\infty}}(Q,\hat{Q}) = +\infty$ for all n>0. It may then be assumed that $H(Q|\pi) < \infty$. To argue by induction, assume $h_{\mathscr{F}_n^{-\infty}}(Q,\hat{Q}) < \infty$. Then by Lemma A.2,
$$h_{\mathscr{F}_{j+1}^{-\infty}}\!\!\left(Q,\hat{Q} ight) = h_{\mathscr{F}_{j}^{-\infty}}\!\!\left(Q,\hat{Q} ight) + h_{\mathscr{F}_{j+1}^{-\infty}}\!\!\left(Q,Q' ight),$$ where $Q' = \int \hat{Q}_{\omega} Q(d\omega)$, \hat{Q}_{ω} the conditional probability distribution of \hat{Q} given $\mathscr{F}_{j}^{-\infty}$. But $\hat{Q}_{\omega} = \delta_{\omega} \otimes_{j} P_{\omega(j)}$, so that, using the stationary of Q, $h_{\mathscr{F}_{j+1}^{-\infty}}(Q, Q') = H(Q|\pi)$. \square LEMMA A.4. (A.2) $$\lim_{n\to\infty} \frac{1}{n} h_{\mathscr{F}_{n-1}^0}(Q, \hat{Q}) = H(Q|\pi).$$ PROOF. By Lemma A.3, either $h_{\mathscr{F}_n^{-\infty}}(Q,\hat{Q}) = +\infty$ for all n or (A.3) $$\frac{1}{n} h_{\mathscr{T}_{n-1}^{0}}(Q, \hat{Q}) \leq \frac{1}{n} h_{\mathscr{T}_{n-1}^{-\infty}}(Q, \hat{Q}) = \frac{n-1}{n} H(Q|\pi).$$ Then, if for some k>0, $h_{\mathscr{F}_k^0}(Q,\hat{Q})=+\infty$, both sides of (A.2) are equal to $+\infty$. It may then be assumed that for all k>0, $h_{\mathscr{F}_k^0}(Q,\hat{Q})<\infty$. Applying Lemma A.2 gives (A.4) $$h_{\mathcal{F}_{0}^{0}}(Q,\hat{Q}) - h_{\mathcal{F}_{0}^{0}}(Q,\hat{Q}) = h_{\mathcal{F}_{0}^{0}}(Q,Q'),$$ where $Q'=\int \hat{Q}_{\omega}Q(d\,\omega)$, \hat{Q}_{ω} the conditional distribution of \hat{Q} given $\mathscr{F}_{j}^{\ 0}$. Here $\hat{Q}_{\omega}=\delta_{\omega}\otimes_{j}P_{\omega(j)}$ considered as a measure on $\mathscr{F}_{j+1}^{\ 0}$. Recalling the definition of $h^{j}(Q|\pi)$ in Section 5 and using the stationarity of Q, $$h_{\mathscr{F}_{1}^{-1}}\!\!\left(Q,Q' ight)=h_{\mathscr{F}_{1}^{-j}}\!\!\left(Q,\hat{Q} ight)=h^{j}\!\left(Q|\pi ight).$$ From (A.4), it follows that (A.5) $$\frac{1}{n}h_{\mathscr{F}_{n-1}^0}(Q,\hat{Q}) = \frac{1}{n}\sum_{j=1}^{n-1}h^j(Q|\pi).$$ The sequence $\{h^j(Q|\pi)\}$ is increasing. If it increases without bound, it follows from (A.5) and (A.3) that both sides of (A.2) are equal to $+\infty$. Otherwise, there is some M so that $h^j(Q|\pi) \leq M$. It follows from Moy (1961), Lemma 3, that $$\lim_{j\to\infty}h^j(Q|\pi)=H(Q|\pi),$$ concluding the proof of the lemma. □ Lemma A.5. Let Λ_j denote the set of continuous functions ϕ on Ω depending only on the coordinates ω_i , $0 \le i \le j$, which satisfy $E^{P_x}\{e^{\phi}\} \le 1$ for all $x \in X$. Assume the transition probability function $\pi(dy|x)$ satisfies assumption 3. Then $$h_{\mathscr{F}_j^0}ig(Q,\hat{Q}ig) = \sup_{\phi \in \Lambda_j} E^Q\{\phi\}.$$ → Proof. By (2.1), $$h_{\mathscr{F}_{\!j}^0}\!ig(Q,\hat{Q}ig) = \sup_{u\,\in\,\mathscr{U}'}\!igg[\int_\Omega \log u(\omega)Q(d\omega) - \log\int_\Omega\!E^{P_\omega}\!(u)Q(d\omega)igg],$$ where \mathscr{U}' consists of the positive, continuous functions depending only on the coordinates ω_i , $0 \le i \le j$. Writing $\log u(\omega) = \phi(\omega)$ for $u(\omega) \in \mathscr{U}'$ shows $$h_{\mathscr{F}_{j}^{0}}(Q,\hat{Q}) \geq \sup_{\phi \in \Lambda_{j}} E^{Q}\{\phi\}.$$ Let Φ denote the set of continuous function depending on the coordinates ω_i , $0 \le i \le j$. For $\psi \in \Phi$, define $$\overline{\psi}(x) = \log E^{P_x} \{e^{\psi}\}.$$ Under assumption 3 on $\pi(dy|x)$, $\overline{\psi}(x)$ is a continuous function of x. Let $\phi(\omega) = \psi(\omega) - \overline{\psi}(\omega(0))$. Then $$E^{P_x} \{ e^{\phi} \} = e^{P_x} \{ e^{\psi(\omega) - \overline{\psi}\omega(0)} \}$$ = $e^{-\overline{\psi}(x)} E^{P_x} \{ e^{\psi} \} = 1$, so $\phi \in \Lambda_i$. Then by Jensen's inequality. The right-hand side $$= \sup_{\psi \in \Phi} \left[\int_{\Omega} (\psi(\omega) - \overline{\psi}(\omega(0))) Q(d\omega) \right]$$ $$\leq \sup_{\phi \in \Lambda_{i}} E^{Q} \{\phi\}.$$ Lemma A.6. Suppose ϕ is \mathscr{F}_{N-1}^0 measurable and $E^{P_x}\!\{e^\phi\} \leq 1$ for all $x \in X$. Then (A.6) $$E^{P_x} \left\{ \exp \left(\frac{1}{N} \sum_{i=0}^{n-1} \phi(\theta_i \omega) \right) \right\} \le 1$$ for all n. PROOF. For $j = 0, 1, \ldots, N - 1$, define $$\psi_{j}(\omega) = \sum_{\substack{k: k \geq 0 \\ j+kN \leq n}} \phi(\theta_{j+kN}\omega).$$ The left-hand side of (A.6) is. $$E^{P_x} \left\{ \exp \left(\frac{1}{N} \sum_{j=0}^{N-1} \psi_j(\omega) \right) \right\}.$$ Jensen's inequality implies $$egin{aligned} E^{P_x} iggl\{ & \expiggl(rac{1}{N} \sum_{j=0}^{N-1} \psi_j(\omega)iggr) iggr\} \leq E^{P_x} iggl\{ rac{1}{N} \sum_{j=0}^{N-1} \exp \psi_j(\omega) iggr\} \ & = rac{1}{N} \sum_{j=0}^{N-1} E^{P_x} igl\{ \exp \psi_j(\omega) igr\}. \end{aligned}$$ Under the hypothesis on ϕ , $E^{P_x}\{\exp \psi_i(\omega)\} \leq 1$. Define a measure on $M_S(\Omega)$ by $$\Gamma_{n,x}(A) = P_x\{\omega \in \Omega, R_{n,\omega} \in A\}.$$ COROLLARY A.7. Suppose that ϕ is a bounded \mathscr{F}_{N-1}^0 -measurable function satisfying $E^{P_x}\{e^{\phi}\} \leq 1$ for all x. Then $$E^{\Gamma_{n,x}} \left\{ \exp \left(\frac{n}{N} \int_{\Omega} \phi(\omega) Q(d\omega) \right) \right\}$$ $\leq \exp \left\{ 2 \sup_{\omega \in \Omega} \phi(\omega) \right\}.$ Proof. $$E^{\Gamma_{n,x}} \left\{ \exp \left(\frac{n}{N} \int_{\Omega} \phi(\omega) Q(d\omega) \right) \right\}$$ = $E^{P_x} \left\{ \exp \left(\frac{n}{N} \int_{\Omega} \phi(\omega') R_{n,\omega}(d\omega') \right) \right\}.$ Now $$\int_{\Omega} \phi(\omega') R_{n,\omega}(d\omega') = \frac{1}{n} \sum_{i=0}^{n-1} \phi(\theta_i \omega_n),$$ where ω_n is defined as in Section 1. Then $$\left| \sum_{i=0}^{n-1} \phi(\theta_i \omega) - n \int_{\Omega} \phi(\omega') R_{n,\omega}(d\omega') \right| \leq 2(N-1) \sup_{\omega \in \Omega} |\phi(\omega)|$$ which, in view of Lemma A.6, establishes the corollary. Let $$J(A) = \limsup_{n \to \infty} \frac{1}{n} \log \sup_{x \in X} \Gamma_{n,x}(A).$$ Lemma A.8. Let Λ_{N-1} be as defined in the statement of Lemma A.5. For any set $A \in M_S(\Omega)$, $$J(A) \leq - \sup_{\substack{l \colon A_1, A_2, \ldots, A_l \\ A \subset \bigcup_{j=1}^l A_j}} \inf_{1 \leq j \leq l} \sup_{N > 0} \sup_{\phi \in \Lambda_{N-1}} \inf_{Q \in A_j} \frac{1}{N} \int_{\Omega} \phi(\omega) Q(d\omega).$$ PROOF. From Corollary A.7, for any $A \in M_S(\Omega)$ and any $\phi \in \Lambda_{N-1}$, $$\Gamma_{n,x}(A) \leq \exp\Bigl(2\sup_{\omega\in\Omega}\phi(\omega)\Bigr)\exp\Bigl(- rac{n}{N}\inf_{Q\in A}\int_{\Omega}\phi(\omega)Q(d\omega)\Bigr).$$ Then $$J(A) \leq -\sup_{N>0} \sup_{\phi \in \Lambda_{N-1}} \inf_{Q \in A} \frac{1}{N} \int_{\Omega} \phi(\omega) Q(d\omega).$$ The proof is concluded upon the observation that $J(A \cup B) \le \max(J(A), J(B))$. \square Lemma A.9. Let A be a closed, thus compact set in $M_S(\Omega)$. Then PROOF. From Lemmas A.4 and A.5, it follows that for any $\overline{Q} \in A$ and $\varepsilon > 0$, there is an $N_{\overline{Q}}$ and a $\phi_{\overline{Q}}$ such that $$\frac{1}{N_{\overline{\Omega}}} \! \int_{\Omega} \! \phi_{\overline{Q}}(\omega) \overline{Q}(d\omega) \geq \inf_{Q \in A} H(Q|\pi) - \varepsilon/2.$$ Since $\phi_{\overline{Q}}$ is a continuous function on Ω , there is a neighborhood $G_{\overline{Q}}$ of \overline{Q} in $M_S(\Omega)$ such that for $Q \in G_{\overline{Q}}$, The neighborhoods $G_{\overline{Q}}$ form an open cover of the compact set A. Let G_1, G_2, \ldots, G_l be a finite subcover. Then $$\inf_{1 \leq j \leq l} \sup_{N > 0} \sup_{\phi \in \Lambda_{N-1}} \inf_{Q \in G_j} \frac{1}{N} \int_{\Omega} \!\! \phi(\omega) Q(d\omega) \geq \inf_{Q \in A} H(Q|\pi) - \varepsilon.$$ The statement of the lemma follows. \Box **Acknowledgment.** The author would like to thank I. Csiszár for suggesting this problem to her. ## REFERENCES CSISZÁR, I. (1967). Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hungar. 2 299-318. Csiszár, I. (1975). *I*-divergence geometry of probability distributions and minimization problems. *Ann. Probab.* 3 146–158. CSISZÁR, I. (1984). Sanov property, generalized *I*-projection and a conditional limit theorem. *Ann. Probab.* 12 768–793. - CSISZÁR, I., COVER, T. and CHO, B. S. (1987). Conditional limit theorems under Markov conditioning. *IEEE Trans. Inform. Theory* **IT-33** 788–801. - Donsker, M. D. and Varadhan, S. R. S. (1975). Asymptotic evaluation of certain Markov process expectations for large time. I. Comm. Pure Appl. Math. 28 1-47. - Donsker, M. D. and Varadhan, S. R. S. (1976). Asymptotic evaluation of certain Markov process expectations for large time. III. *Comm. Pure Appl. Math.* **29** 389-461. - Donsker, M. D. and Varadhan, S. R. S. (1983). Asymptotic evaluation of certain Markov process expectations for large time. IV. Comm. Pure Appl. Math. 36 183-212. - EDWARDS, R. E. (1965). Functional Analysis and Applications. Holt, Rinehart and Winston, New York. - HARRIS, T. E. (1956). The existence of stationary measures for certain Markov processes. Proc. Third Berkeley Symp. Math. Statist. Probab. 2 113-124. Univ. California Press, Berkeley. - Justesen, J. and Hoholdt, T. (1984). Maxentropic Marov chains. *IEEE Trans. Inform. Theory* **IT-30** 665-667. - Kemperman, J. H. B. (1969). On the optimum rate of transmitting information. *Probability and Information Theory. Lecture Notes in Math.* **89** 126–169. Springer, New York. - Krein, M. and Rutman, M. (1948). Linear operators leaving invariant a cone in a Banach space. *Uspekhi. Math. Nauk 3 3-95. [Amer. Math. Soc. Trans. (1950) 10 199-235.] - Kullback, S. (1967). A lower bound for discrimination information in terms of variation. *IEEE Trans. Inform. Theory* IT-13 126-127. - Moy, S. C. (1961). Generalizations of Shannon-McMillan Theorem. *Pacific J. Math.* 11 705-714. Parthasarathy, K. R. (1967). *Probability Measures on Metric Spaces*. Academic. San Diego. - PINSKER, M. S. (1964). Information and Information Stability of Random Variables and Processes. Holden-Day, San Francisco. - ROCKAFELLAR, R. T. (1970). Convex Analysis. Princeton Univ. Press. - Sanov, I. N. (1957). On the probability of large deviations of random variables. *Mat. Sb.* 42 11-14. [Sel. Trans. Math.
Statist. Probab. (1961) 1 213-244.] - Spitzer, F. (1972). A variational characterization of finite Markov chains. Ann. Math. Statist. 43 303-307. MATHEMATICS DEPARTMENT UNIVERSITY OF MASSACHUSETTS LOWELL, MASSACHUSETTS 01854