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I-PROJECTION AND CONDITIONAL LIMIT THEOREMS
FOR DISCRETE PARAMETER MARKOV PROCESSES

By CAROLYN SCHROEDER

University of Massachusetts, Lowell

Let (X, &) be a compact metric space with & the o-field of Borel sets.
Suppose this is the state space of a discrete parameter Markov process. Let
C be a closed convex set of probability measures on X. Known results on
the asymptotic behavior of the probability that the empirical distributions
P belong to C and new results on_ the Markov process distribution of
W, . _; under the condition B e C are obtained simultaneously
through a large deviations estimate. In particular, the Markov process
distribution under the condition P € C is shown to have an asymptotic
quasi-Markov property, generalizing a concept of Csisz4r.

1. Introduction. Suppose X, X,,... is a sequence of independent ran-
dom variables taking values in an arbitrary measure space (S, &) with com-
mon distribution Py. The empirical distribution of a sample s = (s,,...,s,) €
S7™ is the discrete probability measure defined by

A 1 m
Pn(saB) = ; ZXB(SL’)'
i=1

If Pg is the nth Cartesian power of Py, the probability that the empirical
distribution P, of (X,,..., X,,) belongs to a set C of probability measure on
(S, &) is given by

P{p,eC}=Pp(A,), A,={s:P(s,")eC}.
This last probability is well defined if A, € #". Csiszéar (1984) defines a set C

of probability measures as having the Sanov property if

1 .
(1.1) lim —log P{P, € C} = —h(C, Py),

n—o N

where h(C, Py) = infg . h(Q, Px) and

[ log(dQ/dPy) dQ, if @ < Py,

+o0, otherwise.

(1.2) h(Q, Px) =

In the event A, & #", the Sanov property is interpreted to mean that the
limit relation holds for both the upper and lower probabilities P{P € C} and
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f{lsn € C}. Here
P(P,eC}=P}(4,), P{P,eC}=P(4,),

where A,D A, and A,C A, respectively are sets in #" having minimum,
respectively maximum, P measure among all such sets. The limit relation
(1.1) is often referred to as Sanov’s theorem due to the importance of Sanov
(1957).

An alternative definition to (1.2) is

(1.3) h(Q,Px) = sup hs(Q, Px), hs(Q,Px) = Z Q(B;)1 gzi((Bl))

where #= (B,,..., B,) ranges over all finite measurable partitlons. Here the
conventions 0log0 = 0log0/0 =0 and aloga/0 = +o if a > 0 apply. A
proof of the equivalence of (1.2) and (1.3) is given in Pinsker (1964), Theorem
2.4.2.

A set of probability measure I on (S, &) is completely convex if for every
probability space (Q, &7, u) and 2£measurable mapping o — v(w, - ) € II, the
probability measure uv defined by

uv(B) = Lv(',B)dﬂ, Be @,

also belongs to II. A convex set of probability measures II is almost completely
convex if there exist completely convex subsets I, c II, ¢ --- of II such that
U%-:II, DIIN A, A; the set of probability measures on (S, &) whose
support is a finite subset of S. Csiszar (1984) shows that the Sanov property
. for an almost completely convex set C of probability measures implies that the
X, ..., X, are asymptotically quasi-independent under the condition Isn e C.
To describe this result, a probability measure P* is called the I-projection of
Py on C if h(P* Py) = h(C, Px). A probability measure P* is called the
generalized I-projection if any sequence of P, € C with h(P,, Py) — h(C, Py)
converges to P* in variation. For C a convex set of probability measures, the
generalized I-projection exists [Csiszar (1975), Theorem 2.1 and Remark]. If
X" =(X,...,X,) and Pan p, cc denotes the conditional Py distribution of

X" under the condition P, € C, a completely convex set, the asymptotic
quasi-independence shown by Csiszar (1984), Theorem 1, is

(14) . lim nh(Panﬁ cor (P*)") =
where P* is the generalized I-projection of Py on C.

Here an analogous result is formulated for a discrete parameter Markov
process with state space a compact metric space X with its o-field of Borel
sets. We assume the Markov process has stationary transition probability
function 7(dy|x). In addition, we assume for A(dx) a probability measure on X
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that:

1. w(dylx) = w(ylx)A(dy). Then w(ylk) may be chosen jointly measurable in x
and y.

2. There exist constants @ and A such that 0 < a < 7(ylx) < A < « for all
x € X and almost all A (measure) y € X.

3. For any continuous function f(y)

[ (@) F(5)

is a continuous function of x. Under assumptions 1 and 2, the same will
hold for any f(y) € LX(A).

Let (Q,, #) denote the measure space of all sequences (v, @, (oz, ...) with
wy=x € X, w; € X and # the Borel sets of (),. Then (1, &) = [17_((X;, 4)),
where X; = X and &%, the Borel setson X, i =1,2,..., and X, = x Qo {x}
The transition function 7(dylx) induces a probability measure on (; call it
P,_. Impose the weak topology on the space .#(X) of probability measures on
X Let P (@, - ) be the empirical distribution of (w,,...,w,_;), ® € Q,. Then
for each n, P (w,°):Q, — #(X) is a continuous map on (w,, .. ., wn_l), so for
any measurable S e /(X ), {w: P(w, ) € S} is measurable.

Donsker and Varadhan (1975, 1976) described the asymptotic probabilities
that P (w, - ) lies in closed and open sets of .#(X).

For any open set G ¢ .Z(X),

1 A
(1.5) lim inf — log P{P(w,") €G} > — inf I(n),
n—o ne
uniformly for x € X [Donsker and Varadhan (197 6), Corollary 3.4]. Here
(1.6) I(w) = - inf [log( )(x),u(dx)
where %, is the set of continuous positive functions on X and
mu(x) = [u(y)m(dylx).
X
Also for any closed set C € .#(X),

(1.7) hmsupn log supP{P (w, ") EC} < - 1nf I(u)
n—o
[Donsker and Varadhan (1976), Theorem 4.4].

We first define an I-projection appropriate to this context. In the literature,
an I-projection is a minimizing element of a divergence or a measure of
entropy [Csiszar (1975), (1984) and Csiszar, Cover and Choi (1987)]. Under
assumption 3 on w(dylx), I(u) defined by (1.6) is a lower semicontinuous
function of u so that if C is a closed set in .#(X),

(18) I(C) = inf I(u) = I(w")
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for some u* € C. Let A, be the set of probability measures on X X X whose
marginals are equal. A theorem of Donsker and Varadhan (1976), which is
precisely stated as part of Theorem 2.2, is that there is some element P* of A,
with marginals equal to u* which is naturally associated with I(u*). We define
such a P* to be an I-projection of 7 onto C. We establish the uniqueness of
P* in Theorem 2.3 under the additional assumptions that C is convex, C° is
nonempty and I(C°) < o,

The I-projection thus defined stands in clear relation to that of Csiszar,
Cover and Choi (1987) in their study of second-order empirical distributions of
a finite-state Markov chain. Theorem 2.9 of this paper, which identifies P* for
a convex set of C of interest, is a partial generalization of one of their
examples (cf. Theorem 4 and the remarks following it). It is related to earlier
results for finite-state Markov chains obtained by Justesen and Hoholdt (1984)
and Spitzer (1972).

Let Q =TI7_._.X;, X, = X for all i, and let & be the o-field of Borel sets of
Q. As before, (Q, &) = T17_ _(X;, #B,), where for each i, &, is the o-field of
Borel sets on X. () is a compact space with metric

, 1 d(o;, o)
P(w,w) Z 2'”1+d(w,~,w’,~)’

i=—o

where d(-, - ) is the metric on X.
Now for w € Q, define w,, by

0, (i) =w(i), O0<i<n-1,
w,(i+n)=w,i) foralli, —o<i <o,
Let (6,0,)(j) = w,(i +j), 0 <i <n — 1, and for a Borel set A in Q define

1rn-1
Rn,w(A) = ; Z XA(Oiwn)'
i=0

R, , is the nth-order empirical distribution of w,. For each v € () and n > 0,
R, () is a stationary process. Impose the weak topology on the set Mg(Q) of
stationary processes on ({2, #). For each n, R, (-): Q - M4(Q) is a continu-
ous map of (wg,...,w,_;). Let C be a closed convex set with nonempty
interior satisfying I(C°) < . Let P* be the I-projection of 7 onto C. Then
P* defines a stationary Markov process on (£, &) which we again denote
by P*.

We now add the assumption that I(C) = I(C°) so that we have the Markov
process analog of the Sanov property. Lemma 3.1 proves that in terms of the
metric for the weak topology on Mg(Q), R, , converges to P* in conditional
P _-probability given P, (w,-) € C, uniformly for x € X. Also for each A a
Borel set in & and each n > 0, R, ,(A): Q — R is a measurable function of
@g, .., w,_1. Then it is possible to define stationary processes

R; .(:) =E™{R, ,()P\(,) €C}.

Theorem 3.2 shows that the processes Rf’x converge weakly to P*.
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Let u(x) be a probability density function with respect to A(dx). Let P, be
the Markov process on I'17_(X;, %,), X; = X, %, the o-field of Borel sets of X,
with initial distribution u(x)A(dx) and probability transition function 7(dy|x).
The results of Section 3 imply that the measures

(1.9) R (1) =E"(R, ,(*)IPy(w, ) € C}

converge weakly to P* (cf. the remarks prior to Corollary 5.2). Suppose that
each (wg, w;, wy,...) is a sequence of independent, identically distributed
random variables with the common distribution A(dx), that is, w(ylx) = 1. Let
F. denote the sub-o-field of & generated by w,, n <i < m. Suppose B €
F? . Setting u(x) = 1,

EMR, (B)P(w,) € C}=P"(BIP(w,-) e},

where A" is the nth Cartesian power of A(dx) (cf. Lemma 4.3). Csiszar, Cover
and Choi (1987), Theorem 1, show that for sequences of independent, identi-
cally distributed random variables on a finite set X, the joint distribution of
wgy, Wy, - .., w,, under the condition P, € C converges to (P*)™ as n — o, P*
the I-projection of A on C. Thus the weak convergence established here in
Section 3 is a generalization of this result to discrete parameter Markov
processes on a compact state space.

We introduce the new definition asymptotically quasi-Markov as follows. A
sequence of measures P, on (X,,..., X, _,),n =1,2,...,is said to be asymp-
totically quasi-Markov if there exists a stationary transition probability func-
tion Q(dylx) such that

1 _

(1.10) ’}gr:onh(Pn,Qn) 0,

where @, is the probability measure on (X,,..., X, _,) defined by the transi-
tion probability function @(dy|x) with initial distribution given by the first
marginal of P,. In Lemma 4.4 a large deviations estimate is proved which
establishes the asymptotic quasi-Markov property for certain sequences of
measures. Suppose that the probability density function u(x) is bounded from
above. Then Theorem 4.5 establishes that the measures RS , defined by (1.9)
on I (X,%,) give a sequence which is asymptotically quasi-Markov with
respect to the transition probability function of P* which is uniquely defined
a.e. A. When the sequence of measures P, in the definition comes from the
restriction of stationary processes R, on Q to 17~ X;, &,), as is the case
with the measures R S,u, the asymptotic quasi-Markov property with respect
to the transition probability function P*(dy|x) is a stronger property than the
weak convergence of R, to P*. The sense of this is made precise in Corollary
5.2.

Under the additional assumption that u(x) is bounded away from O,
Corollary 5.3 shows that the conditional P, distribution of X,,..., X, _;
under the condition Isn(w, - ) € C is asymptotically quasi-Markov with respect
to the probability transition function P*(dylx). This is a generalization of
Csiszar’s limit (1.4) for independent, identically distributed random variables
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to Markov processes on a compact metric space. These conditional measures do
not enjoy the same properties as the measures Rf,u described above, so the
implications of the asymptotic quasi-Markov property are less significant.
However, one consequence is as follows. Let

(1.11) P,() =Pf()IP,(w,) € C}. .

Let @, be the Markov process with transition probability function P*(dylx)

and initial distribution given by the first marginal of P,. Then if B, € &%° |,
lim P,(B,) =0

if
Q_n(Bn)S(exp(_an)’ n=1,27--'7
for some a > 0. This follows from (1.10) since (1.3) implies that
P/(B, 1-P(B, _
2 7e) 222 @),

P,(B,)log XTI (1 = P(B,,))log 2B °

2. I-Projection of 7 onto C. Let C be a closed set of .#(X). Let M, be
the subset of A, whose marginals are equal to an element of C. For @ € A,,
define

h'(Qlm) = h(Q, P),

where P is the measure g(dx)m(dylx), ¢(dx) the marginal of Q. An I-projec-
tion P* of 7 onto C is defined as an element of M, for which

inf AY(Qlm) = h(P*|r).
o (@l = RY(P¥m)

Donsker and Varadhan (1975), Lemma 2.1, show that for P and @ probabil-
ity measures on a Polish space X with o-field given by the Borel sets, then
h(Q, P) defined by (1.2) can alternatively be defined as

(2.1) h(Q,P) = sup [[ log u(x)Q(dx) — logfu(x)P(dx)],
pe, L'X X

where %; is the set of continuous functions on X for which there exist
constants ¢, and c, such that 0 < ¢, < u(x) < ¢, < ». In particular, for fixed
P, h(Q, P) is a lower semicontinuous function of @ in the weak topology on
#(X) and for fixed @, h(Q, P) is a lower semicontinuous function of P.

LemMmA 2.1. Under assumption 3 on w(dylx), hX(Q|w) is a lower semicon-
tinuous, convex function of Q.

Proor. Let q(dx) denote the marginal of Q. Then from (2.1),
W(@m) = sup [[ [ logu(x,)Q(dx, dy)
XXX

ue%,

“log [z )a(de)m(dy).
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where %, is the set of continuous functions u(x,y) > 0 on X X X. For each
ue %,

[[ _logu(x,y)Q(dx,dy) - log [ u(x,y)q(dx)m(dylx)
XxX XxX
is a continuous, convex function of @. The lemma follows. O

For C a closed set, M, is a compact set of probability distributions on
X X X, and the existence of an I-projection of 7 onto M follows from Lemma
2.1. To relate an I-projection as defined above to I(C) defined by (1.8) requires
a result of Donsker and Varadhan (1976), Theorem 2.1. This and a further
result of theirs that will be required [Donsker and Varadhan (1976), Lemma
2.5] are stated as the following theorem.

THEOREM 2.2. Let (X, &) be a Polish space with % the o-field of Borel
sets. Let M, be the set of probability measures on X X X having both marginals
w. If w(dylx) is the transition probability function of a discrete parameter
Markov process with (X, #) as state space, then

I(w) = An R Plmr).

Suppose that w(dylx) satisfies assumptzon 3, so that there is a P € M, for
which the infinimum is actually achieved. If there exists a reference measure A
on X such that w(dylx) = w(ylx)A(dy), if I(u) < o and w(ylx) > 0 a.e. u X u,
then there are measurable functions a(x) and b(y) such that

P(dx,dy) = bE ))W(ylx)u(dx))t(dy)
where 0 < a(x) < ® a.e. u and 0 < b(y) a.e. A.
Now
oS, @) = nf inf (@)
= #n;g I(w)
=1(0).

For C a closed set, an I-projection P* of 7 onto C is an element of M,
satisfying
I(C) = KM P*|7).

The marginals of P* minimize I(u) for u € C.

In this section we establish the following theorem.

THEOREM 2.3. Let C be a closed convex set with nonempty interior C°.
Suppose that I(C°) < . Then an I-projection of m onto C is unique. It is a
measure P* having probability density P*(x, y) with respect to A X A which is
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positive a.e. A X A. Further, for any @ € M,
hY(Qlm) = Y QIP*(-|+)) + h'(P*|m).

For the proof of Theorem 2.3, we establish the following lemmas.

LEmMMA 2.4. Let Q € M,,. If h{(Q|m) < o, then Q(dx,dy) < A X A and

. B Qx,y)
B(QIm) = [ [ R(xylog -

where Q(x, y) is the density @ with respect to A X A and q(x) is the density of q
with respect to A.

A(dx)A(dy),

Proor. Since ANQ|m) < =, it follows that Q(dx, dy) < q(dx)m(y|x)A(dy).
Further from Theorem 2.2, I(q) < . It can be shown [cf. the proof of Lemma
4.1 in Donsker and Varadhan (1975)] that I(q) < » implies that ¢ < A. Then
Q(dx,dy) < A X A and the rest of the lemma follows from (1.2). O

LemMma 2.5. Let C be a measurable set in .#(X) such that C° is nonempty
and I(C°) < », Then there is a measure Q in M, with a positive density with
respect to A X A satisfying hi(@Q|m) < .

Proor. Let u € C° satisfy I(u) < . Then u < A. Let
to = (1= 1/m)u + (1/n)A.
Then du,/dA > 1/n A-a.e. The sequence u, converges in variation to u so
for sufficiently large n, u, € C°. Let & be such a u, and suppose du/dA =
m(x) = 7. Let
() m(x) An
m,(x) = ,
Jx[m(x) A n]A(dx)
where n is chosen greater than or equal to n and so large that [y[m(x) A
n]A(dx) > 1/2. Let m,(dx) = m (x)A(dx). Then @, converges in variation to
7 so for sufficiently large n, &, € C°. By construction, n < m ,(x) < 2n. Let

v(dx) be such an element &, and let dv/dA = u(x). Define Q(dx,dy) =
u(x)u(y)A(dx)A(dy). By the bounds on u(x) and w(ylx), it follows that

(( )) Adx)A(dy) < . m|
LEMMA 2.6. Let C be a closed convex set with nonempty interior C°
satisfying I(C°) < ». Suppose P* € M, is such that
I(C) = hY( P*|m).
Then P* has a density P*(x,y) with respect to A X A which is positive a.e.
A X A and for any Q € M,

h(Qlr) = h{(QIP*(:| -)) + h'(P*|m).

RY(Qlm) = jj (@)u(y)log
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ProoF. Suppose P € M, satisfies hY(P|w) < ». Consider h'(¢P +
(1 —e)P*|w), 0 <& < 1. By the convexity of hY(@|r) as a function of @,
this is a convex function of &. Since ANP*|m) < h'(eP + (1 — &)P*|m),
h'(eP + (1 — &) P*|r) is a nondecreasing function of . Then

d
1 _ *
(2.2) lim —h'(eP + (1~ &) P*lr) > 0,

provided the derivatives exist.

For @ € M., let q denote its marginal. Then I(q) < hXQ|w) so that if
hY(@QIm) is finite, so is I(g). It is an easy consequence of the bounds on (-] - )
and (1.6) that

h(q’)‘) —log A < I(q) = h(q7 /\) - lOga
[Donsker and Varadhan (1975), Lemma 2.8] so that if I(q) < », h(q, A) < .

Writing P.(x,y) = eP(x,y) + (1 — e)P*(x, y) and using the same notation

for the marginals,

1 * Ps(x’y)
R{(eP + (1 — &) P¥|7) = ffXXXPE(x,y)log WA(dx)A(dy)
(2.3) = /[ P, 7)log E l’y)))\(dx)/\(dy)
= [ pe(x)log p,()A(dx).
Further, for 0 <e < 1,
(2.4)(i) [[ Pe(x,7)|log E I’y)) Mdx)A(dy) < o,
(2.4)(i) [ po(x)10g p,(x) [\(dx) < .

For each integral in (2.3) a derivative exists for 0 < ¢ < 1. Consider the first
integral. Here

d P(x, P, (x,
gng(x,y)log#lj)) = (P(x,y) —P*(x,y))log—w%xi))
+ P(x,y) — P*(x,y).
Using the bounds
CP(xy) SP(x,y) . P*(x,y)
log TOlx) ¢ [ m(ylx) ta ).W(ylx)

<1 +[P(x’y) P*(x’y)
=8 | T0lk) T w(l)
P1/2(x,y)]
m(ylx)

(25)()

<log2 + log*[
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and
o B g [HE T
(2.5)(ii) < log'[min(e, 1- g)(i((’;lj)) N P;((yxl;o)f) ” .
<log~(2min(s,1 — &) + log‘[%rx’;)]

combined with (2.4)(i) shows by dominated convergence that the derivative can
be taken inside the integral sign and is LX(A X A). Thus

S/ J, P os 2 sy (ay)

. P(x,y)
= [ [ (P9) = P (,9)) log —Z2rma(d) A dy).

Arguing similarly with the second integral in (2.3) shows that
ihl(eP + (1 — &) P*|m)
de

(2.6) =[], (P2 - P(x, y))log ’y))A(dxwdy)

= [ (p(x) = p*(x))log p,(%)A(dx).
Now using the bound (2.5)(1) and the bound

P (x, y) [(1 0

1
8 7T(ny)

*(x,y)]

7(ylx)
P*(x,

<log (1 —¢) +1og-(%)

shows by dominated convergence that

P (x,y)
m(ylx)

S s Z @i,

1im[f P (x,9)log A(dx)A(dy)

-0

Sitilarly,

lim pr*(x)logpe(x))t(dx) = pr*(x)logp*(x))t(dx).
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It follows from (2.6) and (2.2) that

lim [ fXXXP(x, y)log

e—0

P(x,y)
p.(x)m(ylx)
P*(x,y)

# o 8
Rewriting the integral on the left-hand side as

P(x,y)

p(x)m(ylx)

P(x,y)
_ffXXXP(x,y)log ——p(x)Pg(ny) A(dx)A(dy)

A(dx)A(dy)

A(dx)A(dy).

[, FP(xy)og A(dx) M(dy)

shows that
P(x,y)
p(x)P,(ylx)
< h'( Plw) — B} P*|7).
We can write the integral on the left-hand side of (2.7) as

[ p()M(dx)h(P(dylx), P.(dy)),

where P,(dylx) = P.(ylx)A(dy). Clearly h(P(dylx), P(dyl|x)) is defined for
p(dx) a.e. x.
By Fatou’s lemma,

pr(x))t(dx)lizriiglf(h(P(dny), P,(dylx)))

lim jX P(xy)log A(dx)A(dy)

(2.7) =0

(2.8)

. P(x,y)
< lim [ P(xy)log ZrspmisA(dn)A(dy).

Now on the set of p(dx) measure 1 where P,(dylx) is defined, we see that as
e » 0, P(dylx) converges in variation to P*(dylx) when p*(x)> 0 and
P (dylx) is P(dylx) when p*(x) = 0. By the lower semicontinuity of A(Q, P)
as a function of P for fixed @, it follows that

h(P(dylx), lim P,(dylr))
_ [R(P(dyl), PH(dyl)), . pH(x) >0,
h(P(dylx), P(dylx)) =0,  p*(x) =0,
linliglf(h('P(dny), P (dylx))).

Let E be the set in X, where p*(x) > 0. In view of (2.7) and (2.8) it follows
that P(dylx) < P*(dylx) for p(dx) a.e. x’in E. Since by Lemma 2.5 there is a

(2.9)

IA
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@ in M. with a positive density with respect to A X A satisfying A{(Q|7) < o,
it follows that P*(ylx) > 0 for A X A ae. (x,y) in E X X. Then
Jep*(x)P*(ylx)A(dx) = p*(y) for A-a.e. y so that p*(y) > 0 for A-ae. y. It
follows that E = X/N where N is a A(dx) null set. This establishes the
positivity of P*(x,y) a.e. A X A.

To conclude the proof of Lemma 2.6, it follows from (2.7), (2.8) and (2.9)
that

RY(PIP*(-| -)) < BY(Plmw) — h'(P*|r)
or
(2.10) RY(Plm) = KY(PIP*(| -)) + hY(P*|r)
for P € M, satisfying h'(Plm) < . For the general case, P*(dylx) is only
defined A-a.e. x. Extend it arbitrarily to make it a transition probability
satisfying P*(dylx) = P*(ylx)A(dy). Then AY(P|P*(-| -)) < o for P € M, im-

plies the marginal p of P satisfies p < A so AY(P|P*(-| -)) is well defined.
Since (2.10) is obviously true if AX(P|mr) = «, the lemma is established. O

CoroLLARY 2.7. Let C and P* be as in Lemma 2.4. Then an I-projection
P* of m onto C is unique.

Proor. Suppose that Pf and P§ both satisfy
I(C) = K'(Pflm) = hY(Pflm).
It follows from (2.10) that
BY(Plm) = R(P§IPE(+] ) + hX(Plm).

Then AY(PFIPF(:|-)) = 0 or h'(P§|m) would be strictly less than hXP}|m).
Since

P3(yl
RY(PFIPF(¢1-)) = pr’z“(dx)fPS‘(dylx)log —Pf&z; »

it follows, using the fact that pi(x) > 0 a.e. A(dx) that
(2.11) Py (dylx) = Pf(dylx), Aa.e.x.

Extend Pj(dylx) arbitrarily to make it a transition probability satisfying
Pi(dylx) = P{(ylx)A(dy). Let I* be the I-function with transition probability
P#(dylx). Then from Theorem 2.2,
I*(p3) < WY(PYIPF(:1-)) =0,

so that p3(dx) is an invariant measure for the transition probability P(dy|x)
[Donsker and Varadhan (1975), Lemma 4.1]. P} defines a stationary Markov
process on (Q, #) with transition probability function P}*(dy|x) and invariant
measure p}(dx). Using the positivity of P¥(ylx) A X A-a.e., the P¥ process is
ergodic. Then the ergodic theorem and the positivity of p*(x) a.e. A ensure
that the transition probability function -P*(dylx) has a unique invariant
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measure [Harris (1956), Theorem 1]. Then p¥(dx) = p}(dx) which in view of
(2.11) implies Py = P¥.

COROLLARY 2.8. Let P* be the I-projection of m onto C as above. Then
P*(dylx) can be chosen to have the following property: There is a function b(y),
0 < b(y) < w A-a.e. y such that if h(y) € L1/b(y)A(dy)), then
(2.12) | P*(dylx)h(y)

X

is a continuous function of x.

Proor. It follows from Theorem 2.2 and Lemma 2.6 that there are mea-
surable functions a(x) and b(y) such that

P(2,5) = p(x) X ) A XA
(x,%) = p(x 5(y) m(ylx) a.e. ,
where 0 < a(x) < © a.e. A(dx) and 0 < b(y) < © a.e. A(dy). Then

(!
o(@)p(a) [ o

A(dy) =p(x) a.e. A(dx).

Since p(x) > 0 a.e. A(dx),

1

AMdy) = .e. A(dx).

(dy) ax) ¢ (dx)

By altering a(x) on a set of measure 0, it is possible to assume that this
equation holds for all x. Since ¢ < m(ylx) for all x and A-a.e. y and since
P(x,y) € L'(A X A), it follows from Fubini’s theorem that 1,/b(y) € L'(A(dy)).
It then follows from assumption 3 on 7(y|x) that a(x) is continuous. Now
define

P*(ylx) = “Ex)) (yk).

Then if h(y) € L'(1/b(y)A(dy)),

[P (@yi)h(9) = a(x) [ 7(51)h(y) g A(dy).

b()

Again using assumption 3 on 7(y|x), this is a continuous function of x. O

Consider a somewhat stronger continuity assumption on m(dylx) than
assumption 3:

4. 7(ylx) as a map from x — L,(A) is continuous.

Under assumption 4, Theorem 2.9 sharpens the results of Corollary 2.8 in a
case of interest. It is a partial generalization of an example of Csiszar, Cover
and Choi (1987), as explained in Section 1.
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THEOREM 2.9. Let C = {u € #A(X): [xf;d, = v;,i=1,...,n} for continu-
ous, real-valued functions f,, fs,..., f, on X. Suppose there is some u € C
satisfying

() foid#>yi i=1,...,n,

(b) I(w) <e.
Assume the transition probability density w(y|x) satisfies assumption 4.
Let Ry denote {{ € R", {; >0, i =1,...,n}. Let T, be the mapping of the
set of continuous functions on X, C(X), onto itself given by

Teg(x) = €515 [ g(y)m(ylx)M(dy).

Let V, be the unique positive eigenvector for T, and let ¢, € LY(A) be the
unique almost everywhere positive eigenvector for T;*, the adjoint of T,
corresponding to the same positive eigenvalue p,, which is greatest in modulus
of all the eigenvalues of T,. Assume V, and §, have been normalized so that

(2.13)

(2.14) [ V(@) ()A(dx) = 1.

Then

(2.15) I(C) = max( ) Ly — log p{)
{eRy ;=1

and
P*(x,y) = (V,(y)m(ylx)eZ=@y, (1)) /p,

for { attaining the maximum in (2.15). Further I(C) = I(C°), so the analog of
the Sanov property holds.

Given that w(y|x) is a transition probability density, assumption 4 is a
necessary and sufficient condition for T, to be a compact operator [Edwards
(1965), Proposition 9.5.17]. The lower bound (assumption 2) on 7(ylx) and the
continuity of f;,i=1,...,n, ensure that T, is a strongly positive operator, so
a theorem of Krein and Rutman (1948), Theorem 6.3, proves the existence of
V., ¥, and p, as in the statement of the theorem.

The set C described in the theorem is weakly closed and convex. Any
measure u satisfying (2.13)(a) is an element of the interior C°. In particular,
the hypotheses of Theorem 2.3 are satisfied, so an I-projection of 7 onto C
exists and is unique. To see I(C°) = I(C), suppose u satisfies (2.13)(a) and (b)
and let v, be any element of C. Then v, = (1 — a@)u + av, € C° and by
convexity,

limsup I(v,) s—limsup[(l —a)I(p) + al(v,)]
a—1

a—1
=I(v,).

The remainder of the theorem is proved in a sequence of four lemmas.
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LEMMA 2.10. Let P* be the unique I-projection of w onto C. Then
(2.16) I(C) = hY(P*|m) = inf h(Q,p*(dx)m(dylx)),
QeMc

where p* is the marginal distribution of P*.

Proor. Equation (2.16) means that P* is the I-projection onto M, of the
two-dimensional measure p*(dx)m(dylx) as defined by Csiszar (1975). To
establish (2.16), suppose @ € M, satisfies A(Q, p*(dx)m(dylx)) < ». Equation
(2.1) implies the one-dimensional divergence h(q, p*) < o for the marginal ¢
of @. From (1.2) there follows

h(Q, p*(dx)m(dylx)) = hY(Qlm) + h(q, p*).
From (2.10),
h(Qlm) = hY(QIP*(:]-)) + h'(P*|m).
Adding h(q, p*) to both sides and using A(Q, P*) = hX(QIP*(-| - )) + h(q, p*)
shows
h(Q, p*(dx)m(dylx)) = h(Q, P*) + h'(P*|m)
> h(Q,P*) + Qiélla h(Q, p*(dx)m(dylx)).

This last equation determines P* as the unique I-projection of p*(dx)m(dylx)
onto M [Csiszar (1975), Theorem 2.2]. O

LemMmaA 2.11. Let f(x),i = 1,2,...,n, be real-valued measurable functions
on a measure space (X, &, A). Then the convex cone K = X?_,a; f(x), a; = 0,
is closed in the topology of pointwise sequential convergence on the space of
real-valued measurable functions.

Proor. First suppose that the functions f(x), i = 1,2,...,n, are linearly
independent A-a.e. Suppose there exists a sequence I7_,a,, f,(x) converging
pointwise A-a.e. to a real-valued function g(x). Let c,,, be the sequence

(e, —ag,ay, =g, 0, —ay,...,0y — Q3,0 — Qy,...,

an,- - an+1i’ an,- - an+2i’ e )
Then lim,, ., X7_ic,,, fi(x) = 0. Let
(2.17) Cr, = C/max(lc,, |, lc,,l, ..., le, |,1).

Then lim,, ., X}_c}, f(x) =0 and |c}, | <1 for i = 1,...,n. However, any
subsequential limit of the vector-valued sequence {c’,} is 0 from the linear
independence of the functions fi(x), i =1,...,n, A-a.e. It follows that the
sequence {c’,,} converges to 0. From the definition (2.17), it follows that the
sequence {c,,} converges to 0. But then {«,, } is Cauchy for each i = 1,...,n,
which concludes the proof in this case.

For the general case, suppose that % is the dimension of the real linear
subspace spanned by { f;}”_;. Then any element A of the convex cone K can be
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written as a nonnegative linear combination of some subcollection of £ linearly
independent functions of { i, f5, ..., f,}. This follows exactly as in the proof of
Carathéodory’s theorem [Rockafellar (1970), Theorem 17.1]. Thus K is a finite
union of sets each of which is closed in the topology of pointwise sequential
convergence. O

LemMmA 2.12.  Let V,, ¢, and p, be defined as in the statement of Theorem
2.9. Then the I-projection P* of m onto C has density

P*(x,y) = (Vi(y)m(ylx)em=fy (x)) /p,

with respect to A X A for some { € R}:.

Proor. Lemma 2.10 shows that P* is the I-projection on p*(dx)m(dylx)
onto M. Let {g,};_, be a countable dense collection of continuous functions
on X. Then M. can be described as the set of all measures on X X X:

{P: ffXXdeP >0, fe .7},

where % is the convex cone generated by nonnegative finite linear combina-
tions of

{hi(x, )} = {£i(%) = %}io1 U {£(8(%) = 8(9))}i-1-

It now follows from Csiszar (1984), Lemma 3.4, that log(P*(ylx)/m(ylx)) —
I(C) belongs to the L(P*)-closure of &%. Since P* ~\ X A, there exist
functions

n M,
Z am,’( fl(x) - Yl) + Z Bmk(gk(x) - gk(y))’
i=1 E=1
@, =0 and B, €R which converge in A X A measure to log P*(ylx)/

7(ylx) — I(C). It follows from Donsker and Varadhan (1975), Lemma 2.3, that
there is a subsequence (72) and a sequence of constants (a ;) so that

n My
(2:18)(i) Wlbi_lzlw(_‘_ilami(ﬂ(x) )+ X Bngs) - am) = f(x)
exists for A-a.e. x and
Mﬁ
(2.18)(ii) lim ( - kgﬂmgk(y) + am) =&(y)

exists for A-a.e. y and log(P*(ylx)/m(ylx)) — I(C) = f(x) + g(y) for A X A-a.e.
Gx, y). Comparing (2.18)(i) and (2.18)(ii), it follows that for A-a.e. x,

lim ¥ o) = %) = F(3) + £().
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In view of Lemma 2.11, there exist constants {;, i = 1,...,n, {; > 0 such that
n
Y 4L(fi(x) —v) =f(x) +g(x), Aae.
i=1
Thus the conditional density satisfies

P*(ylx) = eI(C)e2?=1z,~(fi(x)—me—g(x)eg(y),n.(y|x)’ A X A-ae.

Since P*(ylx) is a transition probability density function, there follows
eZi-d, f,(x)f 8D (ylx) A(dy)
X

— o~ IO Tty
= e 1OeXi-tlirig™)  ).a.e.

Redefine g(x) on a set of measure 0 so that the equation is valid for all x.
Using assumption 3 on 7(ylx), g(x) is continuous. Then e#® is the unique
positive eigenvector for T,* with positive eigenvalue

(2.19) Py = exp( f‘. &ivi — I(C))-

i=1

By definition of P* € M, the I-projection P* has identical marginals. Letting
p*(x) be the density of the marginal with respect to A, there follows

fp*(x)e‘g(")ezflﬂ‘i i@ (yla) A(dx)
= e_I(C)e2?=1{z')'ip*(y)e_g(y)‘

Then p*(y)e 8 € LY(A) is the unique positive eigenvector for T} corre-
sponding to the same eigenvalue. Since the product V,(x)y,(x) = p*(x), (2.14)
holds. The conclusion of the lemma follows. O

Lemma 2.13. Under the assumption of Theorem 2.9,

I(C) = ma§( Yy - logp{),
{eRy \ =1

where p, is the (positive) eigenvalue of greatest modulus for the operator T,.

Proor. For any vector { € R}, let

Pi(x,5) = (Vi (9)m(ylx)eX-147y, (x)) /p,,

where V;, 4, and p, are as defined in Theorem 2.9. From Lemma 2.12, the
I-projection P* of 7 onto C has A X A density P*(x,y) = P,«(x, y) for some
{* € Ry It follows from (2.19) that

i=1

Let A ={P' € Ay, P' ~ A X A}. Arguing exactly as in the proof of Corollary
2.7, (2.10) for all @ € M, uniquely determines P* among the set of P’ € A.
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Thus if P’ € A, P’ # P*, there exists some @ € M, h(Q|7) < » such that
rY(Qlm) < KY(QIP'(+]-)) + I(C).
From Lemma 2.4 it follows that
P'(ylx)
I(c) > ,¥)1
(©)> [[  Qx.y)og o)

Let M, denote the set of @ € M, satisfying hX(Q|w) < ». The argument
above and (2.10) imply that for any P’ € A,

A(dx)A(dy).

. P'(ylx)
1(C) = Qlenﬁt;c / [XXXQ(x,y)log 0%

with strict inequality if P’ # P*. Applying this to P’ € A with density P,
observing that the marginal of P, is

py(dx) = ¢, (2)V(x)A(dx),

A(dx)A(dy),

one obtains
Vi(y) eZi=16ifi(®)
I(C) = inf x,y)log ———F———
(©) QEMC//XXXQ( Mg = S
(2.21) — inf (f [ Qx,y) T & fi(x) — log p,
QeMc XXX i=1
z(zgiyi—logp;) for { € R},
i=1

where the inequality is strict if ¢ # ¢*. The conclusion of the lemma follows
from (2.20) and (2.21). O

3. Convergence of R, , in conditional probability. Let (2, #) be as
in Section 1. Let #(+, - ) denote the entropy when the supremum in (2.1) is
taken over positive functions u(x) € C(Q), the continuous functions on (),
which depend only on the coordinates w;, n <i < m.

Let P be a measure on %° with s <¢. Suppose Plw: o(t) = o)} = 1.
Define a measure 6; ®, P on Q) by

(85 & P){w(t,) € A, 0(ty) €EA,,...,0(t,) €A,}
= xa(0(t))xa 0(t3)) * - xa(®(t1))
X P{w(tk+1) € Ak+1’ e w(tn') € An}’

where t; <t, < -+ <t, <t <t,,, < '+ <t,. Suppose w(dylx) is a transi-
tion probability function giving rise to a Markov process P, on (},. For w € (),
let P, =4, ®, P,q and define a measure Q on Q by

(3.1) Q= fﬂPwQ(dw).
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For @ € M (Q) define the entropy of @ with respect to = by

H(QIm) = hye(Q, Q).
By (2.1),

(3.2) H(QIr) = uszg/[fnlog u(w)Q(dw) — logfﬂu(w)Q(dw)], .

where % is the set of positive continuous functions which only depend on w;,
i <1.By(3.1),

fﬂu(w)Q(dw) = fQEPw(u)Q(dw).

Under assumption 3 on the probability transition function w(dylx), & —
EP?-(u) is a continuous function for u € %. Then the expression in brackets in
(8.2) is a continuous function of Q. It follows that H(Q|) is lower semicontin-
uous.

These definitions are required for the proof of the following lemma.

LEmMA 3.1. Let C be a closed convex set in #(X) satisfying I(C) =
I(C°) < «. Let P* be the I-projection of m onto C considered as a stationary
process on (Q, B). Then in terms of the metric for the weak topology on M(Q),
R converges to P* in conditional P -probability given Isn(w, <) e C, uni-

n,o

formly for x € X.

Proor. It follows from (1.5), (1.7) and the assumption that I(C) =
I(C°) < « that

1 A
(3.3) lim —log P{P,(w, ) € C} = -I(C),
n—o N
uniformly for x € X. Let Il be the set of @ € M(Q) with marginals in C.
Then P,(w, ) € C is equivalent to R, , € Il..
Since (), #) is a Polish space, the weak topology on the set of probability
measures on () is metrizable. Let A(-, - ) denote this metric. Define

g = (@ € Io: A(Q, P*) > ¢}.
I, and IIf are closed sets of Mg(Q}), which is compact, so both II, and II§
are compact. Under assumption 3 the methods ‘of Donsker and Varadhan
(1983) show that

(3.4) limsup — logsup P{R, , €I} < — Qinrfl' H(Q|m).
ellg

n-— o xeX

A proof of (3.4) is given in the Appendix; Theorem A.1.
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H(Q|m) is lower-semicontinuous in @ so that both H(Il.lw) =
infg.n, HQIm) and H(IIg|7) = infyc r;, H(Q|m) are achieved. Using the
contraction principle of Donsker and Varadhan (1983), Theorem 6.1,

H(M.7)= inf inf H
(Helm) heC (@ @) (Qlm)

= inf I(w) = 1(0),

where g(Q) denotes the marginal of @. Thus H(Il;|7) is achieved by P*. We
will show in Lemma 3.3 that P* is the unique minimum. Then for any ¢ > 0,
H(Ilg|m) > H(Il |m). Fix & and pick &' such that 2¢* < H(IIg|lw) — H(lwr).
It follows from (3.3) and (3.4) that 3 N such that for n > N and every x € X,

P{A(R,,,, P*) 2 ¢lP(w,) € C}
P{R, , €1t}

x

P{P(w,") eC)

e ~(H(Ig|m) —eh)

S —aeiw
e ~(H(Iglm)+eh)
_ e—n(H(H2~|1r)—H(1'IC|aT)—2el),
so that
lim P{A(R, ,, P*) >¢lP,(v, ) €C} =0, uniformly in x,

n-—o

which establishes the theorem. O

THEOREM 3.2. The stationary processes defined by
R7 (1) = E*{R, ,()Py(w,") € C}
converge weakly to P* for all x € X.

Proor. For any f € C(Q), it follows as in Theorem 3.1 that

>¢lP(w, ) € C} =0,

(3.5) lim Px{ [fdR, , ~ [fdP*

uniformly for x € X.
Now for any f € L'(RS ),

fdRS ., =E®{ [fdR, B, (w, ) €C}.
X ,
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Then for f < C(Q),

‘ fﬂdeg,x - fodP*

P, —_ * (1P .
<E {[Qde,,,,,, /Qfdp 1B (w, )ec}
< 2|f|Px{ . jfdP* >¢elP(w,) € c}
Q Q
+e( { fdR,, jfdP* <elP(w,) € c})
Q
so by (3.5),
lim j fdR: , fﬂfdP* <e

Since ¢ is arbitrary, the weak convergence of RC to P* is established.
To complete the proof of Lemma 3.1, we establlsh the following lemma.

LemMma 3.3. Let P*, Tl and H(QIw) be as in the proof of Theorem 3.1.
Then
H(Ilw) = Qlélgc H(QIm)

is attained uniquely by P*.

ProOF. Suppose that @ €Il achieves the above infimum, which, by
assumption, is finite. Let Q be as defined by (3.1). Then @ < Q. Denote by Ql
the restriction of @ to F°. Let Q1 o be the regular conditional probablhty

distribution of @ given °. Then EQ1 J[dQ /dQ] is a version of d@? /dQ1 It
follows that

1(C) < BY(Q%)

de Q| .
= Q?,w Q?,w 0 w
fE [ = ]logE [ A]dQl( )

. [d d
< fEQLw[dg log dg] ng(w)

d
=/dQlog£ =1(C),

where Jensen’s inequality for the measure @7 , has been used. However, in
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this case, we must have equality holding in the Jensen estimate for Qf-a.e. .
Since x log x is strictly convex, this implies for Q-a.e. w,

(3.6) d? (0) = EQ?»[ d?].

da da
Let @, denote the regular conditional probability distribution of @? given
&, and note that P, is the regular conditional probability distribution of
Q! given F#°. The measures Q? and Q° have the same marginal distribution
on %, which we denote by q. Then d@?/d@Q? is the Radon-Nikodym deriva-
tive of @, with respect to P, which exists for g-a.e. w(0). It now follows
from (3.6) that

dQ  dQ.q
dQ dP w(0)

This shows @ is a stationary Markov process as follows: Let B € %, ~,
Ae Ft:

for Q-a.e. w.

dQ .
Q[ANB] = fAﬂB£Q(dw)
deQ
_ P,
= '[BE dQXA

_ (e Qo
- [ B [ de(o)xA]Q(dw) [by (3.1)]

Q(dw)

_ [ EPuo| P80

(0

= fB Q.o A)Q(dw).

Since Q,(A) = E9A|.F], this shows that E9[A|F;7] = EAA|F ] for
any A € %', j> 0. It follows that @ is a stationary Markov process with
transition probability function Q(Alx) = @,(A) for A € 1. Since I(C) =
RMQ?|m), it follows from Corollary 2.7 that @ is the stationary Markov process
P*. O

4. A large deviations estimate. For u(x) a probability density function
with respect to A, let

(4.1) R () =E™{R, ,()P(w,)'eC)

be defined as in (1.9). In this section we show the sequence of measures
RS L)y n=12 .., is asymptotically quasi-Markov.

We begin by establishing a fundamental lemma. Let @ be a stationary
process on (Q, &) with marginal q. Let @) be the restriction of @ to %,° and
let @, denote the regular conditional probability distribution of @) w.r.t.
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Z. Then, as before, for A € F1, Q(Alx) = Q,(A) defines a transition proba-
b111ty function a.e. q. Let @ be the stationary Markov process with transition
probability @(Alx) and invariant measure q. We say that @ is the stationary
Markov process defined by @. Then we have the following lemma.

LEMMA 4.1. Let P be the Markov process on T17_((X;, B,), X, = X, %, the
Boreal o-field on X, 0 < i < , with a probability transition function P(dy|x)
and initial distribution q(dx). Let Q, Q be as above. Then for any n,

hgo(Q, P) = hoo(Q, Q) + nh'(QUP(-| -)).

Proor. Let P? denote the restriction of P to %°. Then we can assume
Q < @ on %° and Q? < PY; otherwise both sides are «. To establish this,
suppose h 'g;'o(Q, P) < ». Then @ < P on £°; in particular, Q% < P?. Since
Q! and P both have marginal ¢ on %, dQ{/dP is the Radon-Nikodym
derivative of Q(dylx) with respect to P(dylx), which exists for g-a.e. x. Now
suppose for M € Z°, Q(M) = 0. However,

(4 2) Q(M)_f dPo( O’wl) Q(];(wn 1, @ n)dP(wO’ "’wn)’

so that Q(M) =0 implies that P-ae. on %° dQ%/dPXw,, w,) "
dQ? /dP1 (0,_1,®,) =0. Let N be the #° set of P-measure 0, where th1s
product is positive. Let T} = {(w;_;, ;) dQ1 /dPXw;_,, w;) = 0}. Using the
stationarity of @, each T; has Q-measure 0. Then M c N U U?_,T; so M has
@-measure 0 and @ < Q

Assuming that @ < @ on Z° and Q! < P, which we have seen implies
Q < P on %°, we have

d@  de dQ

dP  dQ dP
on Z°. Taking log of both sides, integrating over @ and using (4.2) gives
hgo(Q, P) = hs0(Q,Q)

dQ? dQ?
+ [dQ(wy, ..., 0,) 108 —=7 (wg, ) "+ —=5(@,_1, ®,,).
dP dP

Using the stationarity of @, the last integral on the right is nAY(Q?|P(-| - )).
O

», The following lemma establishes the analog in this situation of the almost
completely convex condition required by Csiszar (1984) on the convex set C
described in Section 1.
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LeEmvma 4.2. Let RS () be as defined in (4.1) and let Tl be the set
of Ms(Q) whose marginals are in C, a weakly closed convex set. Then
RS () e .

Proor. Consider Pf:|P(w, ) € C} as a measure of %°, Now
[T7_o(X;, &) is T17_ X;, &), where & is the Borel o-field on I17_,X;, which
is in particular a separable metric space. It is standard that there are probabil-
ity measures u; on %,° ,,

k=k;
;= Z ajkaejk,
k=0

whose supports are finite sets which converge weakly to Pf-|P (o, ) € C}
[Parthasarathy (1967), Theorem (6.3)]. Let E, be the %° ;-measurable set of
w satisfying P (w, - ) € C. Without loss of generality, it may be assumed that
the finite set {e;;} lies in E, for each j and k.

Now let f e C(Q). Then for each w € (Q,

1n-1
JfdR, .= — L f(60,)
i=0

is a continuous function of (w,, ..., »,_;). It follows that
k=k;

J([FaRn)us= T an(ffar,.,,)

converges as j — « to

Eu{fden,wIIA’n(w, e c}

= [ f(w) dRS .
Q
Thus the measure
k=k;
(4.3) Z aijn,ejk
k=0

converges weakly as j — o to Rf,u. Since for each j and %, e;;, € E,, it
follows that Isn(ejk, -) € C or equivalently that R, ., € Ilc. By the convexity
of II., each of the measures in (4.3) is in II;. Thus RS , is a limit point of
I1;, which, being closed, implies RS , € Il¢. O

LEMMa 4.3. Let E, be the &°,-measurable set {w: P(w,-) e C}. The
measure R Su defined by (4.1) has a density for sets A in F,° | with respect to
A" given by .

4 n—1

Rg,u(wO""’wn—l) = —Pu{En} XE,,(wO"“"wn—l); i;) Ti( o, @,_1),
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where
mo( Wy e v Wyo1) = u(“’o)”'(wllwo) T ‘"'(wn—1|wn—2)
and
m(@gs- -+ W, 1) = "T(wolwn-l)ﬂ'(a’l"‘)o) e "T(“’n—i—llwn—i—z)
(4.4) .
X u(wn—i)ﬂ-(wn—in‘-llwn—i) T Tr(wn—llwn—2)‘

Proor. Observe that the map Q — Q defined by w — w, is continuous,
hence .%,°-measurable, and the maps 6,,6; ':  —  are continuous, hence
measurable. Let i > 0 and let A be a measurable set in %,° ;. Then

Eu{XA(oiwn)}

(4.5) = fX o fXXA(Giwn)wo(wo, ey @,_1) dA”

= f e fXA(wn)wO(oi_lwn) d)tn
X b'¢
by Fubini’s theorem. It is easy to see that for i > 0,

(4.6) ‘"'o(oi_lwn) = W(wolwn—l)‘”(wllwo) T W(wn—i—llwn—i—z)

X (@, _)T(@p_isrlw, ;) 7(@0,_1lo, ).
To obtain the density of
RS () = B[R, J()IPy(0,") €C},
observe that € E, if and only if 6,0, € E, for any 0 <i <n — 1. Then
RS () =EfR, () € E,)

1 n—1

= ; Z Eu{X(~)(0iwn)|0iwn € En}
i=0
It now follows from (4.5) and (4.6) that for any set A € &%,
n—1

1 1
C ) = - — . n
Rn,u( ) f '&Pu{En} XEN(wO,...,wn_l)n igoﬂ'l(wo,...,wn_l) aa,

which proves the lemma. O
Let P}, be the measure on 0, defined by the transition probability

function P*(dylx), P* the I-projection of m onto C and initial distribution
given by the marginal of RS’ .- We now establish the following lemma.

LEMMA 4.4. Let C be a closed convex set with nonempty interior C°
satisfying I(C°) < . Suppose the probability density function in 4.1) is
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bounded from above. Then

logP{ P(w,-)eC])

Pr,) -

n,u’

(n—-1) sup uA
n ')’

1
I(C) + ;log( .

1
< _;hZ'O (RC

where a and A are the bounds on w(y|x) given by assumption 3.

Proor. Let
RS (1) =E[R, .(*)}
1 -1
= ; E E {X( (0; wn)}
Then
—log P{B(w, ) €C} =hgo (RS, , RS )
(4.7) nuw, @,
[ fang (@0 )

n u(wO""’wn—l)
where R (wg,...,,_;) and RS (..., w,_;) are the densities of RS,
and RS, respectively, with respect to A". Let 7wy, w1,...,w, ;)=
m(olwg)m(wyloy) - wlw,_jlo,_). Let r, () denote the density of
the marginal of RS, with respect to A and let m, , be the measure on
F° with density r,, u(wo)wl(wo, ..., w,_,) with respect to A”. Now for R{ ,-a.e.
(w()’ s Wh_1),

Rg u(wO""’wn—l) Rg,u(wO""’wn—l)
Rcu(wOV"’wn—l) wn,u(wO""’wn—l)
T @gyeers @,y_q)
Xr, w ry .
n,u( 0) Rg,u(wO’ AR wn—l)

It is possible to take the log of both sides and integrate over R , to obtain

f de log C

(4.8) = j [ dR¢, log

, U
1

+fX”.fXdRSv”10grn’u(wO) + fX-..fXdRS,ulOgR: ’

provided the right-hand side is well defined. However, the first integral on the
right is evidently positive as is the second, which is just A(r, ,, A). For the
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third, it follows from (4.4) and the bounds on 7 and u that
sup uA

(4.9) mi(wgy ooy W, 1) < T wgy ey @, 1),

so that

sup uA
> —log( )

[ [dR log

For (4.7), (4.8), and (4.9) it now follows that

sup uA
(4.10) —log P{P(w, ) €C}>hgo (RS ,,m, ) - log( I; )
Applying Lemma 4.1 and letting Ii’f,u denote the stationary Markov process
defined by RS ,, we have
h‘g;‘O_I(RS’u,Wn’u) = h‘g'o (Rn us RC )
+(n - l)hl(Rn u1|’ff)

Since RS , € I1; by Lemma 4.2, Rn .Y e M, and it follows from Theorem 2.3
that

n,ul

From (4.10) we have
—log P{B,(w,") €C} > hgo (RS RS )

+(n — DRY(RS 0UP*(1 1))
sup uA)

R (RS, JIm) = B RS JIP*(-| -)) + I(C).

(4.11)

+(n-1)I(C) — log(
Applying Lemma 4.1 again gives
hg_r?—l(R” u’P* ) = h‘g_r?—l(Rn u? RC ) + (n - l)hl(mg,uglp*(l ‘))
Substituting this into (4.11) yields

~log P{P,(w,") €C} = hgs (RS, PF,) + (n - 1)I(C) - log(sup ”A),

The lemma follows. O

THEOREM 4.5. Suppose that in addition to the hypotheszs of Lemma 4.4 we
have I(C) = I(C°) < ». Then

1 *
’}1_120 nhyo (Rn u,P ) =0,
so that the measures Rn’ . are asymptotically quasi-independent with respect to
P*(dylx), the transition probability function of the I-projection of m onto C.



748 C. SCHROEDER
Proor. Using the uniformity of the estimate (1.5), it follows that

lim inf —log P A Po(w, ) €C%) = —1(C°) = —-1(C).
It follows from Lemma 4.4 that
1 1
PR HVARRPIE RS
-I1(C).
In particular,
lim — logP{ P(w,-) € C} = -I(C).

n—o N

It follows from (4.12) that

1
limsup;hyno_l(Rn v Pr,) <0,

n-—w

which establishes the theorem. O

5. Corollaries. Let C be a closed convex set with nonempty interior
satisfying I(C°) = I(C) < », so that the measures R¢ , defined by (1.9) for
u(x) bounded from above are asymptotically quasi-independent with respect to
P*(dylx), the probability transition function of the I-projection of 7 onto C.
From Theorem 2.3, this function is defined for A-a.e. x. Extend it as described
in Corollary 2.8. Let @ be the measure on Q defined by

(5.1) [ 30 & Plo@(dw).
For @ € Ms(Q), define R/(QIP*(:| -)) = k 5—AQ, Q).
COROLLARY 5.1. For h'(:| - ) defined as above,

lim k/(RS IP*(-|-)) = 0.
Proor. From Theorem 4.5, we have that

1
li R¢ P* =0
nl_l}l n h?’ 0 ( n,u’ ) ’
where P,’fu is the measure on %, defined by the transition probability
function P*(dylx) and initial distribution given by the marginal of RS ,. We
can assume without loss of generality that for n > 1, h yno_l(RSu, Pr ) <o It
follows from the proof of Lemma A.4 in the Appendix [(A.5)] that

n—1
(5.2) hgo (BT Pru) = X B (RS JIP*(:1 ).
i=1
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From their definition, hk(RS’uIP*(W ) < RYQ|P*(| - )) if k < 1. Then for
j<n-—1,
n—j
n

n—1
W(RS JP*(1) =~ % K(RS,IP(:1 )
i=1

1
— C D
- ;hg-no_l(Rn’u, P:.),
so that lim,, ., A/(RS ,IP*(:|-) = 0. O

Using Corollary 2.8, it follows that A7(Q|P*(:| -)) is a lower semicontinu-
ous function of @. Since M (Q) is compact, it follows from Corollary 5.1 that
any subsequence of {R ,‘f,u} contains a subsequence which converges weakly to
the stationary Markov process P*, so that Rf,u converges weakly to P*. Of
course, this follows immediately from Lemma 3.1 using the uniformity of

convergence for x € X. However, more can be concluded from Corollary 5.1.

COROLLARY 5.2. Let f(w) be measurable with respect to &1 and suppose
that for |t| sufficiently small, e!f@w--+%) is integrable with respect to
1/(w;) - l/b(wij)/\f), where the functions b(-) are as in Corollary 2.8.
Then [f(w)dRS , - [f(w)dP* as n — o.

Proor. The proof is similar to Csiszar (1975), Lemma 3.1. Using the
stationarity of RS ,, we can assume without loss of generality that f(w) is

n,u’

measurable with respect to !, Using (5.2), it follows from Corollary 5.1 that
lim h‘g}O(RS’u, P,’fu) =0.

n-—o
Let fo ;. be the Radon-Nikodym derivative of RS , with respect to P-,ﬁ . on
0 Let Y=TII{_¢X;,, X;=X, i=1,...,j. The Csiszdr-Kemperman-—
Kullback inequality is that for two probability measures P and @ on a

measure space (X, 2°):
P - Q| <y2h(P,Q)

[Csiszar (1967), Theorem 4.1, Kemperman (1969), Theorem 6.11, and Kullback
(1967)]. It follows that

lim |RS, ~ Py, |0 = lim [|fo;, — 1|dB}, =0,
n—ow —®©

where | - —- ijo denotes the variation norm for measures on 95 O Let Ag =
{o: f(w) < K}. Then

(5.3) lim = 0.

[, fw)dRS,, ~ [ f(w)dPE,

However, for any g(w) measurable with respect to &; ! which is integrable



750 C. SCHROEDER

with respect to (1/b(w;) -+ 1/b(w )M (w,, ..., w;)), it follows from Corollary
2.8 that

[m Xg(wl,...,wj)P*(wllwo)P*(wzlwl)'“ ( lo; 1)d/\ (01,...,0;)
1=1<%¢

is a continuous function of w,. Since RS . converges weakly to P*, the
marglna.ls of RS , converge weakly to the margmals of P* and it follows that

/g(w) dP¥ o fg(w) dP* as n — «. Then (5.3) implies
li = P*.
lim [ f(w)dRZ, = [, f(0)d

To complete the proof, it suffices to show that for any ¢ > 0, there exists K
such that

(5.4)(i) hmsup[ IfIdRS’ = lim sup j IfIfOJndP

n—o n—o

and

(5.4)(ii) fm IfldP* <¢.

To obtain this, we prove that
(5.5) 731—1330 hg}o( n, u’P* ) = ’}l_l}:o fyfo’f’n log fO,j,ndP:,u =0

implies that for any A € &,

(5.6) 5im [ fo,;n 10 fo,j,n P, = 0
Now
Ry (A)
J\fovin 108 fosn B 2 R (A)log 52 2,
so that
(5.7)  liminf [ fy ; , log fo ;. dPY, = P*(A)log i:(A) = 0.
noe A (4)
Similarly,
(5.8) hmmff fo,j,n l0g fo ; ,dPY , = 0.

n-—o

' In'view of (5.5), (5.7) and (5.8), (5.6) follows.
Now pick >0 and K so that [y, ,, e"f'dP* < &t so that (ii) of (5.4) is
satisfied. Using the inequality ab < a log a+ e where a = fo,j,» and b = tf]
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yields
f tlflfo,;,n AP¥ , < f fo,j,n log fo ;.. dPE, + e!1dP* |
Y/Ag ¥/Ax
It follows that
- 1
lim sup / If1fo jn@P¥, < — lim etlfl dP*
n—w Y/Ag e ! t now Y/AK
= l ellfl dp*
¢ Y/Ag
<eg,

which completes the proof. O
Finally, we have the following corollary.

COROLLARY 5.3. Suppose the hypotheses of Theorem 4.5 are satisfied and
that additionally the probability density u(x) is bounded away from 0. Then
the conditional P,-distribution of X,, ..., X,_, under the condition P (w, ) €
C is asymptotically quasi-Markov with respect to the probability transition
function P*(dylx).

Proor. Let E, be the %%, measurable set {w: b (0, ) € C} Then the
conditional P, dlstrlbutlon of X,,..., X,_, under the condition P (w, ) € C
has the density

Pn,u(wO’ ce wn—l)
1
T Bmy el

Let RS (w,...,»,_,) be the density of RS , on %°,. Then from (4.4), we
have

wn—1)u(wo)7"(“’1|“’0) 77(“’n—1""n—2)-

i inf ua .
(59)(1) Pn,u(wO""’wn—l) = sup uARn,u(wO""’wn—l)'
Similarly

. sup uA _
(5.9)(ii) P, (0g,...,0,_1) < inf 1o R, (wg,...,0,_1).

If py, wy) is the density with respect to A of the first marginal of
P IP (w,*) € C} on &L, then the same bounds must hold with respect to
the density r, ,(w,) of the marginals of RS , with respect to A. Let P}, be
the probability measure on &%, with initial distribution Dn,L0o) d /\(wo) and
transition probability function P*(dyl|x). Theorem 2.3 insures that this has a
density with respect to A". Let P~,’,", L®g, ..., ®,_;) denote this density. Simi-
larly, let P} (o,,...,®,_;) denote the density of P}, with respect to A™.
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Then from (5.9)() and (ii),

g inf ua RC 1 RS, ix
> _— "
-[ " og ~ | sup uA -[ 8 P,

Lo inf ua inf ua
sup uA g sup uA
and
P, . sup uA c Rf,u N
[Py, log B dan < ( - )jRn,u log—p—fl:d)‘
sup uA sup uA
2( - log| - )
inf ua inf ua

It follows from Theorem 4.5 that

. 1 Pn,u n
lim ;fpn,ulogp* drr =0

n,u

which establishes that the sequence of measures P,{-|P (w, ) € C} on %#°,
is asymptotically quasi-independent with respect to P*(dylx). O

APPENDIX
In this appendix, the following theorem is established.

THEOREM A.l. Suppose that the probability transition function w(dylx)
satisfies assumption 3 of Section 1. Then for any closed set A C M(Q),

lim sup — log sup P{R, , € A}

n—o xeX

— inf H .
< gl Hem

The results of this section are, unless otherwise noted, direct translations of
results of Donsker and Varadhan (1983) (cf. Sections 2, 3 and 4) into the
language of discrete parameter processes. They are provided here for the
convenience of the reader.

LEmMMA A.2. Let (X, 3) be a Polish space and &, C F, C 3, be sub-o-fields.
Let u and A be two measures on (X, 3) and suppose u << A on the o-field .
et i = [xA u(dw), where A, is the conditional probability distribution of A
given #,. Then

(A1) By (1o A) = hgy (1,8) + b (1, 1),



I-PROJECTION AND CONDITIONAL LIMIT THEOREMS 753
Proor. For E € 3,

H(E) = [ A (E)n(dw)
=fXAw(E)Z—l; - Mdw)
- fXEM(xEZ—‘}l z)“d“’)
“Lails

so that du'/dA = du/dA|#. In particular, du/dA| g, exists or both sides of
(A.1) are equal to +». Then for E € 3,

du
w(E) = [ = 5

AMdw),

AMdw)

du du du
Ll Bl e
du du
It follows that
du d,u d,u ,
In -71d - a.e. .

Taking the logarithm of both sides and integrating with respect to u completes
the argument. O

Suppose that @ is defined as in (3.1).

Lemva A.3.  Either h 5—-(Q,Q) = + for alln > 0 or
ho-+(Q,Q) = nH(QIT).

Proor. If H(QI|m) = +, then hs--(Q, Q)=+ for all n>0. It
may then be assumed that H(Q|m) < . To argue by induction, assume
hg——w(Q Q) < ». Then by Lemma A.2,

he-HQ,Q) = hs-(Q,Q) + hs=Q,Q),

J+1

vﬂvhere Q=7 Q Q(dw), Q the conditional probability distribution of Q given
&~ . But Q =3, ® P, so that, usmg the stationary of @, y—w(Q, Q)=
H(Q|7). O
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LEMMA A4,
1 A
(A2) lim —h 5 (@, Q) = H(QIm).
Proor. By Lemma A.3, either & &--(Q, Q) = +wforall n or

1 R 1 -1
(A.3) “hp (€Q) < ~hs(Q.Q) - n————H(Qlw).

Then, if for some & > 0, h 5o(@, Q) = +x, both sides of (A.2) are equal to + .
It may then be assumed that for all & > 0, h 5o(Q, Q) < ». Applying Lemma
A.2 gives

(A4) hfo 1(Q: Q) - h.?‘-°(Q7 Q) = hy;gl(Q, Q,)7

where Q' = | Q.Q(dw), Q the conditional distribution of @ given Z°. Here
Q,=5,® P ;) considered as a measure on %, 9. Recalling the deﬁnltlon of
h’(Qlw) in Section 5 and using the stationarity of @,

hso (@, Q) = hsv(Q,Q) = hI(Qlm).
From (A.4), it follows that
1 . 1 -1
(A-5) ;h%"_l(Q’Q) = Y hI(QIm).
j=1

The sequence {h’(Q|m)} is increasing. If it increases without bound, it follows
from (A.5) and (A.3) that both sides of (A.2) are equal to +o. Otherwise, there
is some M so that h/(Q|m) < M. It follows from Moy (1961), Lemma 3, that

lim h7(Qlw) = H(Qlm),
Jj—©
concluding the proof of the lemma. O

LemmA A.5. Let A; denote the set of continuous functions ¢ on () depend-
ing only on the coordznates w;, 0 <i <j, which satisfy EP<{e?} <1 for all
x € X. Assume the transition probability function w(dylx) satisfies assumption
3. Then

hso(Q, Q) = ;g/lz E%(¢}.

+ PROOF. By (2.1),

hso(Q,Q) = p [[ﬂlog u(0)Q(dw) — 1ogjﬂEPw(u)Q(dw)],
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where %' consists of the positive, continuous functions depending only on the
coordinates w;, 0 < i < j. Writing log u(w) = ¢(w) for u(w) € %' shows

hso(Q.Q) = sup E%(4).
deA

J

Let ® denote the set of continuous function depending on the coordinates w,,
0 <i <j. For ¢ € ®, define

¥(x) = log E™{e’}.

Under assumption 3 on w(dylx), ¥(x) is a continuous function of x. Let

() = ¥(0) — $((0)). Then
EP:{e?} = er{ew(m—szw)}
= e TWER{(e') = 1,
s0 ¢ € A;. Then
ha(@,Q) = sup | [ #(w)@(dw) — log | EPw(e'”)Q(dw)]
7 Q Q

yped

< sup | [ W(w)Q(do) - [ 1og B7(e)Q(do)|
by Jensen’s inequality. The right-hand side
= sup fQ((/f(w) - (lf(w(O)))Q(dw)]

ved

IA

sup E9{¢}. ]
bEA;

LEmMMA A.6. Suppose ¢ is FY , measurable and EP-{(e?*} <1 for all
x € X. Then

(A.6) EPx{exp(—l—nilqb(eiw))} <1
N 2
for all n.

Proor. For j=0,1,..., N — 1, define
Yi(w) = Y (0,4 enw)-

ki k>0
j+EN<n

_"I‘he left-hand side of (A.6) is.

EP-

1 N-1
ol o)
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Jensen’s inequality implies

N-1
EP- exp( Z e (w))} ; eXP*/fj(w)}

ZI

E) Pelexp y;(w)}.

<1

—

Under the hypothesis on ¢, E*{exp ¢,(w)
Define a measure on Mg(Q) by

,.(A) =P{ocQ,R,, A} 0

COROLLARY A.7. Suppose that ¢ is a bounded F_,-measurable function
satisfying EP<{e?} < 1 for all x. Then

Bfe 1 [ #0120

< exp{2 sup ¢(w)}.

PROOF. -
Bfenp( 7 [ ()@(d0)
- 57 exp| 3 [ () Ro, ().
Now

1n-1
[#(@)R, (do) = = ¥ $(8;0,),
Q ni-o
where w,, is defined as in Section 1. Then
@) —nf $(o)R, (do)
Q

which, in view of Lemma A.6, establishes the corollary. O

< 2(N - 1) suple ()|

we

Let
1
J(A) = limsup — logsup I, .(A).

n-—-wo xeX
LEMMA A.8. Let Ay_, be as defined in the statement of Lemma A.5. For
‘any set A € M (Q),

1
J(A) < — sup inf sup sup inf — [ ¢(w)Q(dw).
(4) I: Ay, Ay,..., A, 1S/SL N>0 ey, Q€4 Nfﬂ ( (
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Proor. From Corollary A.7, for any A € Mg(Q) and any ¢ € Ay_,
n
G, (4) < oxp(2sup o(0) erp - o, [ #()Q(dw)|.
Then
J(A) < —sup sup inf —[ *(0)Q(dw).

N>0 ¢€An_1

The proof is concluded upon the observation that J(A U B) <
max(J(A), J(B)). O

LEMMA A.9. Let A be a closed, thus compact set in Mg(Q)). Then

1
sup inf sup sup inf —ftb(w)Q(dw)
L Ay, Ag,..., A, 1Si<l N>0 gehy_, 9<4; N/a
AcUl_,4;

inf .
= Inf H(QIm)

ProoF. From Lemmas A.4 and A.5, it follows that for any @ € A and
e > 0, there is an N5 and a ¢5 such that

1 —
N‘g‘fﬂfﬁg(w)Q(dw) > 51;{; H(QIr) —&/2.

Since ¢g is a continuous function on (), there is a neighborhood Gz of Q in
M4(Q) such that for @ € Gg,

1
o [ #e(©)Q(dw) = inf H(Ql) — .

The neighborhoods Gz form an open cover of the compact set A. Let
G,, Gy, ..., G, be a finite subcover. Then

1
inf su su inf — ) dw) > inf H(Q|w) — €.
1<j=<l N>% 4,6,\5_1 Q<G; antb( )@(dw) QcA (@)

The statement of the lemma follows. O

Acknowledgment. The author would like to thank I. Csiszar for suggest-
ing this problem to her.
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