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CONVERGENCE RATE OF EXPECTED SPECTRAL
DISTRIBUTIONS OF LARGE RANDOM MATRICES.
PART 1. WIGNER MATRICES

By Z. D. Bar

Temple University.

In this paper, we shall develop certain inequalities to bound the differ-
ence between distributions in terms of their Stieltjes transforms. Using
these inequalities, convergence rates of expected spectral distributions of
large dimensional Wigner and sample covariance matrices are established.
The paper is organized into two parts. This is the first part, which is
devoted to establishing the basic inequalities and a convergence rate for
Wigner matrices.

1. Introduction. Let W, be an n X n symmetric matrix. Denote its
eigenvalues by A; < -+ < A,. Then its spectral distribution is defined by

1
F,(x) = _r;#{i: A <),

where #{Q} denotes the number of entries in the set @. The interest in the
spectral analysis of high dimensional random matrices is to investigate limit-
ing theorems for spectral distributions of high-dimensional random matrices
with nonrandom limiting spectral distributions.

Research on the limiting spectral analysis of high-dimensional random
matrices dates back to Wigner’s (1955, 1958) semicircular law for a Gaussian
(or Wigner) matrix; he proved that the expected spectral distribution of a
high-dimensional Wigner matrix tends to the so-called semicircular law. This
work was generalized by Arnold (1967) and Grenander (1963) in various
aspects. Bai and Yin (1988a) proved that the spectral distribution of a sample
covariance matrix (suitably normalized) tends to the semicircular law when
the dimension is relatively smaller than the sampie size. Following the work by
Pastur (1972, 1973), the asymptotic theory of spectral analysis of high-dimen-
sional sample covariance matrices was developed by many researchers includ-
ing Bai, Yin and Krishnaiah (1986), Grenander and Silverstein (1977), Jonsson
(1982), Wachter (1978), Yin (1986) and Yin and Krishnaiah (1983). Also, Bai,
Yin and Krishnaiah (1986, 1987), Silverstein (1985a), Wachter (1980), Yin
(1986) and Yin and Krishnaiah (1983) investigated the iimiting spectral distri-
bution of the multivariate F matrix, or more generally, of products of random
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matrices. In recent years, Voiculescu (1990, 1991) investigated the conver-
gence to the semicircular law associated with free random variables.

In applications of the asymptotic theorems of spectral analysis of high-di-
mensional random matrices, two important problems arose after the limiting
spectral distribution was found. The first is the bound on extreme eigenvalues;
the second is the convergence rate of the spectral distribution, with respect to
sample size. For the first problem, the literature is extensive. The first success
was due to Geman (1980), who proved that the largest eigenvalue of a sample
covariance matrix converges almost surely to a limit under a condition of
existence of all moments of the underlying distribution. Yin, Bai and Krishna-
iah (1988) proved the same result under existence of the fourth moment, and
Bai, Silverstein and Yin (1988) proved that the existence of the fourth moment
is also necessary for the existence of the limit. Bai and Yin (1988b) found
necessary and sufficient conditions for almost sure convergence of the largest
eigenvalue of a Wigner matrix. Bai and Yin (1990), Silverstein (1985b) and Yin,
Bai and Krishnaiah (1983) considered the almost sure limit of the smallest
eigenvalue of a covariance matrix. Some related works can be found in Geman
(1986) and Bai and Yin (1986).

The second problem, the convergence rate of the spectral distributions of
high-dimensional random matrices, is of practical interest, but has been open
for decades. The principal approach to establishing limiting theorems for
spectral analysis of high-dimensional random matrices is to show that each
moment (with fixed order) of the spectral distribution tends to a nonrandom
limit; this proves the existence of the limiting spectral distribution by the
Carleman criterion. This method successfully established the limiting theo-
rems for spectral distributions of high-dimensional Wigner matrices, sample
covariance matrices and multivariate F' matrices. However, this method can-
not give a convergence rate.

This paper develops a new methodology to establish convergence rates of
spectral distributions of high-dimensional random matrices. The paper is
written in two parts: In Part I, we shall mainly consider the convergence rate
of empirical spectral distributions of Wigner matrices. The convergence rate
for sample covariance matrices will be discussed in Part II. The organization of
Part I is as follows: In Section 2, basic concepts of Stieltjes transforms are
introduced. Three inequalities to bound the difference between distribution
functions in terms of their Stieltjes transforms are established. This paper
involves a lot of computation of matrix algebra and complex-valued functions.
For completeness, some necessary results in these areas are included in
Section 3. Some lemmas are also presented in this section. Theorem 2.1 is used
in Section 4 to establish a convergence rate for the expected spectral distribu-
tion of high-dimensional Wigner matrices.

The rate for Wigner matrices established in this part of the paper is
O(n~1/*). From the proof of the main theorem, one may find that the rate may
be further improved to O(n~1/3*") by expanding more terms and assuming
the existence of higher moments of the underlying distributions. However, it is
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not known whether we can get improvements beyond the order of O(n~1/3),
say O(n"'2) or O(n~1), as conjectured in Section 4.

2. Inequalities of distance between distributions in terms of their
Stieltjes transforms. Suppose that F is a function of bounded variation.
Then its Stieltjes transform is defined by

|
(2.1), s(z) = f__mm dF(x),

where z = u + iv is a complex variable. It is well known [see Girko (1989)]
that the following inversion formula holds: For any continuity points x; < x,
of F,

(2.2) F(x,) — F(x,) = h{%%j: Im(s(u + iv)) du,

where Im(-) denotes the imaginary part of a complex number. From this, it is
easy to show that if Im(s(2)) is continuous at z = x + {0, then F is differen-
tiable at x and its derivative is given by

(2.3) ) F'(x) = % Im(s(x +:0)).

This formula gives an easy way to extract the density function from its
corresponding Stieltjes transform.

Also, one can easily verify the continuity theorem for Stieltjes transforms;
that is, F, -, F if and only if s,(2) - s(2) for all z =u + iv with v > 0,
where s, "and s are the Stieltjes transforms of the distributions F, and F,
respectively. Due to this fact, it is natural to ask whether we can establish a
Berry-Esseen type inequality to evaluate the closeness between distributions
in terms of their Stieltjes transforms. The first attempt was made by Girko
(1989) who established an inequality by integrating both sides of Berry-
Esseen’s basic inequality. Unfortunately, the justification of the exchange of
integration signs in his proof is not obvious. More importantly, Girko’s in-
equality seems too complicated to apply. We establish the following basic
inequality.

THEOREM 2.1. Let F be a distribution function and let G be a function of
bounded variation satisfying [|F(x) — G(x)|dx < . Denote their Stieltjes
transforms by f(2) and g(2), respectively. Then we have

IF -Gl = suplF(x) - G(x)l

(2.4) = 72y - 1)[[ () - e(2)ldu

1
+— sup IG(x +y) — G(x)ldy|,

x “lyl<2va



628 Z.D. BAI

where z = u + iv, v > 0, and a and y are constants related to each other by

2.5 ! ! d !
. = — > —.
( ) Y o |u|<au2 + 1 u 2

Proor. Write A = sup,|F(x) — G(x)|. Without loss of generality, we can
assume that A > 0. Then, there is a sequence {x,} such that F(x,) — G(x,) —
A or —A.

We shall first consider the case that F(x,) — G(x,) —» A. For each x, we
have

1l = 1 «
L) —g@)lduz — [ Im(f(2) - g(2)) du

1 [ vd(F() - G))
_'rrf_oo_f—oo (y—u)2+v2 ]du

r

1 x| = 20(y —u)(F(y) — G(y)) dy
- ;f—m f—oo — 2 2 2 }du
_ (v - )" +0%)

(2.6)

1 o x 2v(y —u)du
== (F(») -@ d
—[ (F(») (y))[f_w ((y_u)zﬂz)z] y

_ lfco (F(x —vy) — G(x —vy)) dy
TY— y2 +1 )
Here, the second equality follows from integration by parts while the third

follows from Fubini’s theorem due to the integrability of |F(y) — G(y)|. Since
F is nondecreasing, we have

Lo (Fxw) = Gle ) d
lyl<a y2+1

T

> y(F(x —va) - G(x — va)>)

(2.7) - l |G(x — vy) — G(x = va)ldy

™ Jyl<a

> y(F(x —va) — G(x — va))

1
— — sup IG(x +y) — G(x)|dy.

U x “lyl<2va
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Take x = x,, + va. Then, (2.6) and (2.7) imply that
1 =
—f If(2) —g(2)ldu
= Y(F(xn)— G(xn))

_t sup |G(x +y) — G(x)Idy — (1 — y)A

U  x “lyl<2va

(2.8)

- (2= DA- s 66 +3) - G(x)ldy

x “lyl<2va

which implies (2.4).
Now we consider the case that F(x,) — G(x,) - —A. Similarly, we have,
for each x, that

1l
— [ If(2) - &(2) du
—fm (G(x —vy) — F(x —vy)) dy
(2.9) Tl y2+1
> y(G(x +va) — F(x + va))

—isup IG(x +y) — G(x)ldy — (1 — y)A.

U 5 “lyl<2va
By taking x = x, — va, we have
1l .«
;f_Jf(z) - 8(2)ldu
2 y(G(x,) — F(x,))

. G(x +y) — G(x)ldy — (1 y)A

TV x “lyl<2va

(2.10)

= (2y - 1A - isupf 1G(x +y) — G(x)ldy,

x lyl<2v

which implies (2.4) for the latter case. This completes the proof of Theorem
2.1. O

ReEMARK 2.1. In the proof of Theorem 2.1, one may find that the following
version is stronger than Theorem 2.1:

. |F — G”‘S m[_{:ﬂm( f(2) —g(2))ldu
(2.11) 1 ’
* +osup [ 1G(x +y) — G(x)ldy|.

x lyl<2ve
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However, in application of the inequalities, we did not find any significant
superiority of (2.11) over (2.4).
8}

Sometimes the functions F and G may have light tails or both may even
have bounded support. In such cases, we may establish a bound for ||F — G|
by means of the integral of the absolute difference of their Stieltjes transforms
on only a finite interval. We have the following theorem.

THEOREM 2.2. Under the assumptions of Theorem 2.1, we have

1 A (
I = 6l < sy |/ () ~ sl
(2.12) +2mv ! [ |F(x) - G(x)ldx
lx|>B
+v~!sup s IG(x +y) — G(x)|dy|,

where A and B are positive constants such that A > B and
4B
= <
m(A—-B)(2y - 1)

(2.13) K 1.

The following corollary is immediate.

CoROLLARY 2.3. In addition to the assumptions of Theorem 2.1, assume
further that, for some constant B > 0, F(—B, B]) = 1 and |G|((—», —B)) =
|GI((B,»)) = 0, where |G|((a, b)) denotes the total variation of the signed
measure G on the interval (a, b). Then, we have

IF -Gl < _— U_AAIf(z) - g(2)ldu

(2.14)

1
(1 — k)(2y

+v~ 1 sup IG(x +y) — G(x)|dy|,

x “lyl<2ve

where A, B and « are defined in (2.13).

REMARK 2.2. The benefit of using Theorem 2.2 and Corollary 2.3 is that we
need only estimate the difference of Stieltjes transforms of the two distribu-
tions of interest on a fixed interval. When Theorem 2.2 is applied to establish
the convergence rate of the spectral distribution of a sample covariance matrix
in Section 4, it is crucial to the proof of Theorem 4.1 that A is independent of
‘the sample size n. It should also be noted that the integral limit A in Girko’s
(1989) inequality should tend to infinity with a rate of A~! faster than the
convergence rate to be established. Therefore, our Theorem 2.2 and Corollary
2.3 are much easier to use than Girko’s inequality.
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Proor oF THEOREM 2.2. Using the notation given in the proof of Theorem
2.1, we have

[A “F(2) - g(2)ldu

(2.15)

@ o,
+/_
du

= (F(x) - G(x)) dx
/ f (x — z)
]:4 (x —z)2
w [ (F(x) — G(x)) dx
w|”|x|>B (x — z)2
< 2BA . m + wv_l[x|>BlF(x) - G(x)l dx
2BA

~—[ JF(x) = G(x)ldx.

By symmetry, we get the same bound for [Z4|f(2) — g(2)| du. Substituting the
above inequality into (2.4), we obtain (2.12) and the proof is complete. O

3. Preliminaries.

3.1. The notation Vz. We need first to clarify the notation vz, z =
u +iv, (v # 0, i =vV— 1). Throughout this paper, vz denotes the square root
of z with a positive imaginary part. In fact, we have the following expressions:

2| + 2

(8.1) Vz = sgn(v)m
or
Re(f)——s1gn(v)v u?+ v +u =

\/2(Vu +v? —u)

and

1 vl
Im(Vz) = — m——u= ,
(%) V2 * ‘/2( u? +v? +u)

where Re(:) and Im(-) denote the real and imaginary parts of a complex
number indicated in the parentheses. If z is a real number, define vz =
Jdim, | vz + iv. Then the definition agrees with the arithmetic square root of
positive numbers. However, under this definition, the multiplication rule for
square roots fails; that is, in general, /2,2, # ‘/— ‘/— The introduction of the
definition (3.1) is merely for convenience and definiteness.
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3.2. Stieltjes transform of the semicircular law. By definition,

1 .o V4 —x2
s(2) E[_ZT_—z—dx

1 sin @
=) *cose—(1/2)z d6 by x = 2cos 6

1 on sin? @
2l wso— (1

1 (22 - 1)°
- 4wi¢fg|=1{2({2 —-{z+1)

Now, we apply the residue theorem to evaluate the integral. First, we note
that the function (£2 — 1)2/{%({? — {z + 1) has three singular points, 0 and
{1, = (1/2Xz + V2% — 4), with residues z and + Vz® — 4. Here {, , are in

fact the roots of the quadratic equation (2 — z{ +1=0. Thus §1§2 =1.
Applying the formula (8.1) to the square root of 22 — 4 = (12 — v2 — 4) + 2uvi,
one finds that the real parts of z and Vz2 — 4 have the same sign while their
imaginary parts are positive. Hence, both the real and imaginary parts of {;
have larger absolute values than those of {,. Therefore, {; is outs1de the unit
circle while £, is inside. Hence, we obtain

(3.2) s(z) = —3(z - V22 - 4).
Noting that s(z) = —¢,, we have
(3.3) A Is(z)l < 1.

3.3. Integrals of the square of the absolute value of Stieltjes transforms.

de

d{ by {=exp{if}.

LEmMMA 3.1. Suppose that ¢(x) is a bounded probability density supported
on a finite interval (A, B). Then, .

fm Is(2)I? du < 2m2M,,
where s(z) is the Stieltjes tr(;:sform of ¢ and M the upper bound of ¢.
Proor. We have
1= [°° Is(2)1? du

5 6(2)$(y) drdy
BN T

=foB¢(x)¢(y) dxdy..fm = z)l(y_ )du (Fubini’s theorem)

_[ / Y-z +2w¢(x)¢(y) dxdy, (residue tileorem). \
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Note that

L] ® ( x+2w)¢(x)¢(y)dxdy

- PP e6) dedy = 0, by symmetry
aJal(y—2)® + 402 ’ _

We finally obtain that

1= =2n "I o o(x)0(0) dedy

B (B 1
=4 v
| Trv'/‘; '/;4 ( (y — x)° + 402 )¢(x)¢(y) dxdy
< 4va¢fijB¢(y)(m) dwdy bysettingw =x—y

= 2172M b
The proof is complete. O

REMARK 3.1. The assumption that ¢ has finite support has been used in
the verification of the conditions of Fubini’s theorem.

Applying this lemma to the semicircular law, we get the following corollary.

COROLLARY 3.2. We have

(3.4) [|s(z)|2 du < 2m.

3.4. Some algebraic formulae used in this paper. In this paper, certain
algebraic formulae are used. Some of them are well known and will be listed
only. For the others, brief proofs will be given. Most of the known results can
be found in Xu (1982).

3.4.1. Inverse matrix formula. Let A be an n X n nonsingular matrix.
Then

1
-1 _ *
det(A)

where A* is the adjoint matrix of A, that is, the transposed matrix of
cofactors of order n — 1 of A and det(A) denotes the determinant of the
.matrix A. By this formula, we have

(3.5) (A1) = 3 det(A,)/det(A),
B=1 -
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where A, is the kth major submatrix of order n — 1 of the matrix A, that is,
the matrix obtained from A by deleting the Zth row and column.

3.4.2. If A is nonsingular, then

(3.6) det| & g] — det( A)det(D — CA™'B),

which follows immediately from the fact that
I 0f[A B] _|A B
-CA™' I||C D 0 D-CA'B|
3.4.3. Ifboth A and A, are nonsingular and if we write A~* = [a*!], then

(3.7) . S—
ape — @Ay By
where a,, is the kth diagonal entry of A, A, the major submatrix of order
n — 1 as defined in Section 3.4.1, «, the vector obtained from the kth row of
A by deleting the kth entry and B, the vector from the kth column by
deleting the kth entry. Then, (3.7) follows from (3.5) and (3.6).

If A is an n X n symmetric nonsingular matrix and all its major submatri-
ces of order (n — 1) are nonsingular, then from (3.5) and (3.7), it follows
immediately that

n

(3.8) tr(A"Y) = )

’ ’ -1 *
b1 Qrr — QR AL oy

3.4.4. Use the notation of Section 3.4.3. If A and A, are nonsingular

symmetric matrices, then

1+ a,A; %
(3.9) tr(A7Y) — tr(A;1) = ———
Qpr — AL

This is a direct consequence of the following well-known formula for a
nonsingular symmetric matrix:

b

1= S+ IS e(Zee — 22121_11212)_122121_11 —S0'20(Zen — 2"2121_11212)_1
~ (330 — T3 %10) o301 (S22 — 3317'%12)

211 212

where 3, =
2 [ 221 222

] is a partition of the symmetric matrix 3.

3.4.5. If real symmetric matrices A and B are commutative and such that
A? + B? is nonsingular, then the complex matrix A + iB is nonsingular and
(3.10) (A +iB) ™' = (A -iB)(A? + B?) ",

This can be directly verified. )
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346. Let z=u +iv, v>0, and let A be an n X n real symmetric
matrix. Then

(3.11) ltr(A —2I,) " —tr(A, —2l,_;) | <v ™

Proor. By (3.9), we have
1 + aIk(Ak - ZIn_l)_Zak .
ap, — 2= ap(A - ZIn—l)_lak '

If we denote A, = E' diag[A; - A,_,]E and o}, E' = (yy,...,¥,_1), where E
isan (n — 1) X (n — 1) (real) orthogonal matrix, then we have

tr(A—zl) ' —tr(A, —2l,_ ) ' =

n—1
11+ o (A, — 2L, ;) 2ayl =|1+ X y2(A, —2) 2
=1
n—1 2 -1
<1+ ¥ y¥((A —w)* +0?)
=1

— 1+ (A - ul, ) + v, )
On the other hand, by (3.10) we have

( ) Im(akk -2 a/k(A - ZIn—l)_lak)
3.12 -
= o1+ a((Ay — )+ T, 0) )

From these estimates, (3.11) follows. O
3.5. A lemma on empirical spectral distributions.

LeEmMMa 3.3. Let W, be an n X n symmetric matrix and W,_; be an
(n — 1) X (n — 1) major submatrix of W,. Denote the spectral distributions of
W, and W,_, by F, and F,_,, respectively. Then, we have

lnF, — (n - 1)F,_4ll < 1.

Proor. Denote the eigenvalues of the matrices W, and W,_; by A; <
- <A, and u; < *+* < p,_;, respectively. Then, the lemma follows from
the following well-known fact:

AM S <A< o S, <A, O

4. Convergence rates of expected spectral distributions of Wigner
matrices. In this section, we shall apply the inequality of Theorem 2.1 to
establish a convergence rate of the spectral distributions of high dimensional
Wigner matrices. A Wigner matrix W, = (x; An), i, j=1,...,n,is defined to
be a symmetric matrix with independent entries on and above the diagonal.
Throughout this section, we shall drop the index n from the entries of W, and
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assume that the following conditions hold:

(1) Ex 0, foralll<i<j<n;

ij =
(ii) Ex} =1, foralll<i<j<n;

(4.1) Ex% =02, foralll<i<n;

(dii) sup sup Ex}i <M <w,
n l<i<j<n
Denote by F, the empirical spectral distribution of (1/ vn )W,. Under the
conditions given in (4.1), it is well known that F, —, F in probability, where
F is the limiting spectral distribution of F,,, known as Wigner’s semicircular
law, that is,

1 o«
(4.2) F(x) = o= [ V4 -5 T 35() dy.

If W, is the n X n submatrix of the upper-left corner of an infinite dimen-
sional random matrix [x,;, i, j = 1,2, ...], then the convergence is almost sure
(a.s.) [see Girko (1975) or Pastur (1972)].

In this section, we shall establish the following theorem.

THEOREM 4.1. Under assumptions (4.1), we have

(4.3) IEF, — F|l = O(n=1/%),

REMARK 4.1. In Section 3 of Girko (1989), an estimate of the difference
between the expected Stieltjes transform of the spectral distribution F, of
Wigner matrices and that of the limiting spectral distribution F is established.
In his proof, some arguments are not easily verifiable. If the proof is correct,
then his result implies

|EF, — F|l= O(n~"/'*), forsome0 <7y <1,

by applying Theorem 2.1. The result of Theorem 4.1 is stronger than that
implied by Girko’s Theorem 3.1.

REMARK 4.2. It may be of greater interest to establish a convergence rate of
|F,, — F||. This is under further investigation. In the proof of Theorem 4.1, one
may find that the terms in the expansion of the Stieltjes transform of EF,
have a step-decreasing rate of n~! if the estimation of the remainder term is
not taken into account. Thus, we may conjecture that the ideal convergence
rate of ||EF, — F||is O(n~1). Based on experience [say, for functions of sample
means, the rate of expected bias is of O(1/n), but Vn (X)) — f(w) >
N(0, ¢?)), one may conjecture that of ||F, — F| is O,(n"'/2). But I was told
through private communication that J. W. Silverstein conjectured that the
rate for both cases is O(n~1).
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The proof of Theorem 4.1 is somewhat tedious. We first prove a preliminary
result and then refine it.

PrOPOSITION 4.2. Under the assumptions of Theorem 4.1, we have
(4.4) |EF, — F|l = O(n~1/%).

Proor. It is shown in (3.2) that the Stieltjes transform of F is given by
(4.5) s(z) = —3{z — V2% - 4}.
Let © and v > 0 be real numbers and let z = u + iv. Set
46)  s(2) =/ ! B (x) - —E tr(iWn - zIn)_l.
—X — 2 n Vn

Then, by the inverse matrix formula [see (3.8)], we have

12 1
8n(z) = Z E 1
(4.7) mr=1 (1/Vn)x — 2 — (1/n)a (R)((1/Vn )W (k) — 2, _1) a(k)
' 12 1 1
= YE————— = ————— +35,
n,_1 & — 2% 8,(2) z + 5,(2)
where a'(B) = (14, .., %% _1 4 Xps1,45 -+ > Xnp)s Wo(k)is the matrix obtained
from W, by deleting the £th row and kth column,
1 1 1 -
(4.8) &y = =%~ @ (k) T;Wn(k) =2, 1| a(k) +s5,(2)
and
(4.9) 5= L v & i
. " nyp-a (z + sn(z))(z + Sn(Z) - sk) .

Solving (4.7), we obtain

(4.10) sana(2) = —3(z =8 £ V(2 +8)* - 1),

We claim that

(4.11) sa(2) = 52(2) = —%(z —-5—(z+8)°- 4).

Note that

(4.12) Im(z +5,(2)) = v(l + Ef(—l—; an(x)) >v,
' x— v

‘ u)2 +
which immediately yields
(4.13) lz + s,(2) "t <vL
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By definition, it is obvious that

(4.14) s, (2)l <v™h
Hence by (4.7),
(4.15) 18] < 2/v.

We conclude that (4.11) is true for all v > V2 because, by (4.15),
Im(s4y(2)) < —(1/2)(v - 18)) < —(1/2)(v — 2/v) < 0, which contradicts the
fact that Im(s,(2)) > 0. By definition, s,(2) is a continuous function of z on
the upper half-plane {z = » + iv: v > 0}. By (4.13), (z + s,(2))"! is also contin-
uous. Hence, 9, and consequently, s;,(2) and s(2) are continuous on the
upper half-plane. Therefore, to prove s,(2) # s,,(2), or equivalently the asser-
tion (4.11), it is sufficient to show that the two continuous functions s,(z) and
$2(2) cannot be equal at any point on the upper half-plane. If s5,,(2) = s4(2)
for some z = u + iv with v > 0, then the square root in (4.11) should be zero,
that is, 8 = +2 — z. This implies that s,(2) = +1 — 2z, which contradicts the
fact that Im(s,(z)) > 0. This completes the proof of our assertion (4.11).

Comparing (4.5) and (4.11), we shall prove Proposition 4.2 by the following
steps: Prove |8] is ‘““‘small”’ for both its absolute value and for the integral of its
absolute value with respect to u. Then, find a bound of s,(z) — s(z) in terms
of 8. First, let us begin to estimate |5|.

Applying (3.12), we have

(4.16) lz +5,(2) — &) P <vl.

By (4.9), we have

1 |Ee, s
ol = ;kgl |z + 5,(2)I° (2 +5.(2))°(2 + 5,(2) — &) }

(417) < (z+ sn(z))_z[%kil (IEe,l + v‘lElsﬁl)]

1 n n
(4.18) < n—vz'( Z |Ee,| + vt Z E|8z|)
k=1 k=1

Recalling the definition of ¢, in (4.8) and applying (8.11), we obtain
1 1 -1 1 -1
E|tr -‘—/—;—Wn —zI, —tr TE—Wn(k) —a,_,

|Ee,l

(4.19)
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Now, we begin to estimate El¢,|?. By (4.8), we have
Elsyl? = Els,, — Ee,|* + |E(s)I?
2

< e Ewry - )
-t ak“ﬁn()—znq ay,

2

1 -1
—tr(———Wn(k) - zIn_l)

Vn
(4.20)
el Lwery—a)
+ n T ‘/; n( ) zn—l
1 -1
-—E tr(ﬁWn(k) - ZIn_l)
+ |E8k|
Let

1 -1
(rij(k)) = (-‘/‘“_;Wn(k) - ZIn—I) .

Then, we have

2
1

1 (1 -1 1 -1
E;ak ﬁWn(k)—zIn_l a =~ —tr ‘/;Wn(k)—zIn*l

2

1
=E " %rjl(k)(xjkxlk - E(xjkxlk))
2M
< 7 ZEI?‘E‘}(k)I
(4.21) tJ
2M 1 "l .
= ?-E tr —;—Wn(k) - zIn_l _ﬁWn(k) - zIn_l

-1

2M 1 o
= _nz_E tr ———Wn(k) —ul,_,| +v,_,

IA
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Let y,(k) = 0 and for d # k&, let

-1

1 -1
yd(k) =Ed—1tr(—‘/"_7—wn(k) -zIn—l) Ed tr(‘/'— n(k) ZIn—l)

=E;_q04(k) — Eyo,(k),

where
-1

)

1 -1 1
(4.22) oy(k) = [tr(WWn(k) - zIn_l) - (—ﬁ—W(d,k) - zIn_z)

E; denotes the conditional expectation given {x;;, d + 1 <i <j <n}, a(d, k)
is the vector obtained from the dth column of W, by deleting the dth and
kth entries and W,(d, k) the matrix obtained from W, by deleting the dth and
kth columns and rows. By (3.11), we have

(4.23) log(k) <v™t,
which implies that

1t ka 1 B 1Et . k B
;r(ﬁ ,,()—z,,_l) -~ r(f (k) - )

<n 2 Y Elyi(k) <n v
d=-1

2

E

(4.24)

By (4.8), (4.19)-(4.21) and (4.24), we obtain, for all large n,

4.95 E| | o? 2M 1 1 2M + 5
. €S — 4+ — + — + < ,
( ) Eh nv?  nv?  n%p? nv?

where M is the upper bound of the fourth moments of the entries of W, in
(4.1).

Take v = (2M + 6)/n)'/® and assume n > 2M + 6. From (4.18), (4.19)
and (4.24)-(4.25), we conclude that

2M + 6

(4.26) 18] < 5

=U.
nv

By (4.7), (4.17), (4.19) and (4.25), for large n so that v < 1/3, we have

6 [f:olz +5,(2) 72 du]

A4M + 12 ' ®
——3——[f Isn(z)lzdu+f I5|2du]

- 2M +
[ 18ldu < —

IA

nv

4M + 12
__:3__[[ Isn(z)lzdu+vf |5|du].

nv

A
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By the simple fact that y < ax + by implies ax + by < (a/(1 — b))x for posi-
tive a, b<1, x and y, we get, for large n so that nv?>@2M+ 7)
4M + 12),

4M + 12

® * 2
J loldu < Ty 12)/(nv2))f_m|sn(z)| du
4M+ 14
(4.27) < —— [ [m(x_u) — dudF,(x)
4AM + 14
PRAR—

nvt T

Now, we proceed to estimate |s,(z) — s(2)|. By (4.5) and (4.11),

(4.28) s, (2) — s(2)| < %I&I[l + 122 + 3 ]

V=4 +y(z+6)7-4||

Since the signs of the real parts of Vz? — 4 and \/(z +8)% — 4 [see (3.1)]
are sign(uv) = sign(x) and sign((z + Re(8)Xv + Im(8))) = sign(u + Re()), we
conclude that for |u| > v the real and imaginary parts of Vz2—4 and

\/ (z + 8)® — 4 have the same signs. Hence, by (4.28) we have

1 2|ul + 3v
(4.29) Is,(2) —s(2)l < Elﬁl(l )

+ e
Viu? — v? — 4|
For |u| > 4 and n such that v < 1/3, we have

2lul + 3v 8 + 3v

Viu?2 —v? - 4 V2—v

which, together with (4.29), implies that

(4.30) ls,(2) — s(2)| < 218].

For |u| < v, by (4.26) we have |\ (z + 8)% — 4 — 2i| < (9/2)v? Similarly
we have [Vz2 — 4 — 2i| < 202 Therefore, we have for all n such that v < 1/3,

(4.31) ls,(2) — s(2)l < %|5|(1 + < 2051

5v )
4 — Tv?
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Summing up (4.29)-(4.31), we get that for n so large that v < 1 /3,

1|5| ) 2lul + 3v " ul < 4
— + , ifv<|ul <4,
(4.32) Is,(2) —s(2)l<{ 2 4|

lu? — v? -

2181, otherwise. -

Finally, by (4.28), (4.27) and (4.32),

f_w Is.(2) — s(2)ldu

= {f + +f }Isn(z) - s(2)ldu
[lul<v] lv<lul<4] [lul>4]

(4.33)
® 4 1
<2/ |8ldu + 4| |6l ————-—-xdu
f_w f_4 m
< 4v? + qu,
where

4 du
n =4supf —_—
v<1’-4V|u? - v? - 4|

Note that the density function of the semicircular law is bounded by 1 /. An
application of Theorem 2.1 completes the proof of Proposition 4.2. O

Now, we are in position to prove Theorem 4.1. The basic approach to prove
Theorem 4.1 is similar to that in the proof of Proposition 4.2. The only work
needed to do is to refine the estimates of E|¢Z| and the integral of |5| by using
the preliminary result of Proposition 4.2.

Proor or THEOREM 4.1. Denote by A, the initial estimate of the conver-
gence rate of ||EF, — F|. By Proposition 4.2, we may choose A; = Cyn"'/® for
some positive constant C, > 1.

Choose v = Dn~'/%, where D is a positive constant to be specified later.
Suppose that 7 is so large that v < A,.

For later use, let us derive an estimate of |z + s,(2)| "2

For any two Stieltjes transforms s,(z) and s,(z) with their corresponding
distributions F, and F,, integration by parts yields

= d(Fy(x) — Fy(x))
[ An
f°° (Fi(x) — Fy(x)) dx
e (x —2)*

.

Isy(2) — so(2) =

(4.34)
: 7l F, - B

v
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Then, by (4.7), (3.3) and (4.34), it follows that

lz + 5,(2)l 7% < 3ls(2)I® + 3161% + 3ls,(2) — s(2)*
35) (21 < 3ls(2) (2) - 5(2)
< 3161% + 472v 22,
Now, we begin to refine the estimate of (1/n)L; jEIrizj(k)I. By (4.21) and
Lemma 3.3, we obtain that, for large n,

1 n—1 .
— 2 =
n i,ZjElrU(k)l n f

—w (x — u)? + v?

dEF®,(x)

<|[ iR

—o(x —u)? + v?

N 2(x—u)(EF,,§x) ~ F()) dxl
(4.36) = ((x-w) )

N f°° 2(x —u)E(((n — 1)/n)F®(x) - F,(x)) s
— ((x - u)® + vz)2

L ! d+(A+1)
<—| ————dx —
T oo (- u)? + v? Yon

joo 2lx — uldx
= ((x —u)?+ v2)2
1
=p~ 1+ 2(A1 + —)v‘2 < —
n
where F®, denotes the spectral distribution of the matrix (1/ Vn )W, (k).

To get a refinement of the estimate of E|y2(k)|, we introduce the following
notation. Set

1
Ry(k) = —‘/—E'—Wn(d’k) —al,_,,
1
Spam(2) = ;E(tr(R;l(k))),
1

eq(k) = Vo Fad ~ o(d, k)REI(k)a(fi, k) + s,4(2)
and

RZ%(k) = (pi;(d, k),
where W,(d, k) and a(d, k) are defined be}low (4.22).
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By (4.22), we have

1+ (l/n)a’(d,k)Rf,(k)a(d,k)
z+ snd(k)(z) —&q(k)

oy(k) = -

Then, rewrite o,(k) [see (4.22)] in the following form:

1+ n -t tr(R3%(k))

cak) = - Z2 + Spamy(2)
(4.37) _sd(k)(l + (l/n)a'(d,k)Rgz(k)a(d,k))
(z + snd(k)(z))(z + Spawy(2) — '9d(k))
_ (I/n)d'(d, k) Ry*(k)a(d, k) — (1/n)tr(R*(k)) .
2z + Spam)(2)
Note that
(4.38) E; : +zn+lsird((z:z2)(k)) B dl +zn+lsird((i::)(k)) N
and by (4.23),
o [rOGDE Dt
We have

2Ele,(k)? s 4AMY, ;Elp;(d, k)

vz + s,m,(k)(z)l2 n?lz + s,w,(k)(z)l2

(440)  Ely(k) <

Similarly to estimating n‘IZIr,%(k)I in (4.21), one may obtain

1
(4.41) ; Z:Jp,%(d, k)| <vp~4,
l,J ~
Let F,_, 4 ; denote the spectral distribution of the matrix (1/ VrOW.(d, k).

Then, by Lemma 3.3, we have ||(n — 2)/n)F,_, 4, — F,ll < 2/n. Therefore,
for all n,

@ EFn )_ ( _2)/ EFn—2, , ( ) d
I8ai(2) — a(2)] = f_w( (x) = ((n . _7:))2 a,x(%)) dx
(4.42) 9

<—.

nv
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Thus, by (3.3), (4.7), (4.13), (4.34) and (4.42), we have for all large n,

2 2

sn(z) - snd(k)(z)
(2 +5,(2))(2 + Spaa(2))

z +5,(2) *84(2)

|z + s,q0(2) 7% < 4{

+ls,(2) — s(2)* + |s(z)|2}
(4.43)

472 y ,  mA3
<4 le +snd(k)(z)l + |8| + 2 +1

<5

242

A

2 1

181" + 2). .
v

Similarly to estimating Ele,|® in (4.25), one may obtain for large n that

4.44 El2(k)| 2M + 5
. <
(444) 3k < ——
Hence, by (4.40)-(4.44), we have
40M +50 ([ , wA
(4.45) Ely2(k) < B 18]° + |-

Substituting (4.19), (4.36) and (4.45) into (4.25), we obtain, for all large n,

, o 8MA, 40M+50( , wMZ) 1
Ele,l” < n * nv? + n?vt + v? * n2v?
(4.46)
40M + 60 8M + 3)A
162 + ( ) L.

2,,4 nv2

<
n-v

Consequently, by (4.17), (4.19), (4.35) and (4.46),
-2 1 & -1 2
18] < |z + s,(2)l ~ Y [IEekI +v Elekl]
k=1

40M +50 wM+@m]
nv

(447) < Iz + Sn(2)|—2[—‘ﬁ‘5——*|8| + 3

472A%
2

IA

OM+50 . (8M+4)A, [
[ 25|<s|2+( 3)W@W+
n-v nv

)
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From (4.15) and (4.47), it follows that

250(4M +5)  24(2M + 1)A,  80(4M + 5)m2A2

D8 D4 n2v6 |8|

18] <

6m2(2M + 1)A%
+

nv®

(4.48)

300(4M + 5) 6m2(2M + 1)A3
S ——5—16l + 5 .
D nv

If D is chosen so large that 300(4M + 5)D~8 < 1/2, again using the fact used
in the proof of (4.27), we obtain

1272(2M + 1)A3
(4.49) 18] < — <v

By (4.5), (4.11) and (4.48) we have, for large n,
(4.50) Is,(2) —s(2)l =Is(z+6) —s(z) +8l <2+v <3.
Thus, by (4.49) and the second inequality of (4.47),

(8M + 5)A, s
(4.51) 6] < ———n;?,‘——k' + sn(z)l .

Therefore, by (4.50), we have

(8M + 5)A,
Al

[_°° 18] du < [_°° Iz + 8,(2) "% du

< 3%[[00 ls,(2) — s(2)I* du

nv —
(4.52) +[_°° ls(2)1? du + j_°° |6I2du]

(SM + 5)A1 ® 9 )
< 3T[f_w|sn(z) - s(2)l dl{ + 27 + v[_wISI du]
(8M + 6)A, -
< 3T[2w + 3f—w|sn(z) - s(2)l du],
where an upper bound for the integral of Is‘(z)l2 is established in Corollary 3.2
in Section 3.
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Recall the proof of the first inequality of (4.33), where the only condition
used is that |8 < v. Therefore, by (4.49) we have

fw Is,(2) —s(2)ldu < wa 18] du + nu

<(n +127A,(8M + 6) D *)v

(B—angﬂA—lf Is,(2) —s(2)ldu

<2(n + 12wA(8M + 6) D™ *)v.
Applying Theorem 2.1, the proof is complete. O

(4.53)

Acknowledgments. The author would like to express his thanks to
Professor Alan J. Izenman for his help in the preparation of the paper, and
also thanks to Professor J. W. Silverstein and an Associate Editor for their
helpful comments.

REFERENCES

ArNoLD, L. (1967). On the asymptotic distribution of the eigenvalues of random matrices.
J. Math. Anal. Appl. 20 262-268.

Bai, Z. D. (1993). Convergence rate of expected spectral distributions of large random matrices.
Part II. Sample covariance matrices. Ann. Probab. 21 649-672.

Bai, Z. D., SILVERSTEIN, J. W. and YIN, Y. Q. (1988). A note on the largest eigenvalue of a large
dimensional sample matrix. J. Multivariate Anal. 26 166-168.

Bai, Z. D. and YIN, Y. Q. (1986). Limiting behavior of the norm of products of random matrices
and two problems of Geman-Hwang. Probab. Theory Related Fields 73 555-569.

Bai, Z. D. and YIN, Y. Q. (1988a). A convergence to the semicircle law. Ann. Probab. 16 863-875.

Bai, Z. D. and YIN, Y. Q. (1988b). Necessary and sufficient conditions for the almost sure
convergence of the largest eigenvalue of Wigner matrices. Ann. Probab. 16 1729-1741.

Bar, Z. D. and YiN, Y. Q. (1990). Limit of the smallest eigenvalue of large dimensional sample
covariance matrix. Technical Report 90-05, Center for Multivariate Analysis, Pennsyl-
vania State Univ.

Bar, Z. D, YiN, Y. Q. and KrisHNAIAH, P. R. (1986). On limiting spectral distribution of product of
two random matrices when the underlying distribution is isotropic. J. Multivariate
Arnal. 19 189-200.

Bai, Z. D, YIN, Y. Q. and KrisHNAIAH, P. R. (1987). On limiting spectral distribution function of
the eigenvalues of a multivariate F matrix. Teor. Verojatnost. i Primenen. (Theory
Probab. Appl.) 32 537-548.

GEMAN, S. (1980). A limit theorem for the norm of random matrices. Ann. Probab. 8 252-261.

GEMAN, S. (1986). The spectral radius of large random matrices. Ann Probab. 14 1318-1328.

GIRKO, V. L. (1975). Random Matrices. Vishcha Shkola, Kiev (in Russian).

GIRKO, V. L. (1989). Asymptotics of the distribution of the spectrum of random matrices. Russian
Math. Surveys 44 3-36.

GRENANDER, U. (1963). Probabilities on Algebraic Structures. Almqwst and Wiksell, Stockholm.

GRENANDER, U. and SILVERSTEIN, J. (1977). Spectral analysis of networks with random topologies.
SIAM J. Appl. Math. 32 499-519.

JONSSON D. (1982). Some limit theorems for the eigenvalues of a sample covariance matrix.
J. Multivariate Anal. 12 1-38.

PASTUR, L. A. (1972). On the spectrum of random matrices. Teoret. Mat. Fiz. 10 102-112 (Teoret.
Mat. Phys. 10 67-174).



648 Z.D. BAI

PasTur, L. A. (1973). Spectra of random self-adjoint operators. Uspehi Mat. Nauk 28 4-63
(Russian Math. Surveys 28 1-67).

SILVERSTEIN, J. W. (1985a). The limiting eigenvalue distribution of a multivariate F matrix.
SIAM J. Math. Anal. 16 641-646.

SILVERSTEIN, J. W. (1985b). The smallest eigenvalue of a large dimensional Wishart matrix. Ann.
Probab. 13 1364-1368.

VoicuLescu, DaN (1990). Non-commutative random variables and spectral problems in free
product C*-algebras. Rocky Mountain J. Math. To appear.

VoicuLgscu, DaN (1991). Limit laws for random matrices and free products. Invent. Math. 104
201-220.

WacHTER, K. W. (1978). The strong limits of random matrix spectra for sample matrices of
independent elements. Ann Probab. 6 1-18.

WaCHTER, K. W. (1980). The limiting empirical measure of multiple discriminant ratios. Ann.
Statist. 8 937-957.

WIGNER, E. P. (1955). Characteristic vectors bordered matrices with infinite dimensions. Ann. of
Math. 62 548-564.

WIGNER, E. P. (1958). On the distributions of the roots of certain symmetric matrices. Ann. of
Math. 67 325-3217.

Xu, Y. C. (1982). An Introduction to Algebra. Shanghai Sci. & Tech. Press, Shanghai, China (in
Chinese).

YN, Y. Q. (1986). Limiting spectral distribution for a class of random matrices. J. Multivariate
Anal. 20 50-68.

Yy, Y. Q. Bai, Z. D. and KrisuNaial, P. R. (1983). Limiting behavior of the eigenvalues of a
multivariate F matrix. J. Multivariate Anal. 13 508-516.

YN, Y. Q., Bar, Z. D. and KrisuNalaH, P. R. (1988). On the limit of the largest eigenvalue of the
large dimensional sample covariance matrix. Probab. Theory Related Fields 78 509-521.

YN, Y. Q. and KrisaNalaH, P. R. (1983). A limit theorem for the eigenvalues of product of two
random matrices. J. Multivariate Anal. 13 489-507.

DEPARTMENT OF STATISTICS

341 SPEAKMAN HALL

TEmPLE UNIVERSITY

PHILADELPHIA, PENNSYLVANIA 19122



