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Sums of independent identically distributed (i.i.d.) random variables were
among the first subjects to be studied in probability theory. The sequence of
partial sums S, == X7X;, n > 1, for i.i.d. random variables is called a random
walk. Around 1650, Fermat, Pascal and Huygens already solved a number of
absorption problems for very special one- and two-dimensional random walks
which arose in gambling and de Moivre obtained his local central limit theorem
for sums of binomial random variables in 1733 [see Hald (1990) for the early
history of probability and statistics]. Because random walks have been studied
so long, our knowledge of their properties is very detailed. Nevertheless,
random walks continue to be fascinating because elegant new properties are
still being discovered.

Many early investigations dealt with limit theorems for S, and, not surpris-
ingly, these made strong assumptions on the common distribution of the X;’s.
One of the directions of random walk theory has been to generalize limit laws
such as the central limit theorem and the law of the iterated logarithm to
settings with nonidentically distributed variables, or to finding higher order
terms in the convergence to limit laws [e.g., the Berry—Esseen theorem, or
expansions in the central limit theorem and various other topics which can be
found in Petrov (1975)], or to prove refined invariance principles, which give
. information about the distribution of functionals of the whole sample path
{S,, & < n}, rather than about the distribution of S, only [e.g., Donsker’s
theorem and Strassen’s law of the iterated logarithm; see Billingsley (1968)
and Bingham (1986), respectively]. Generally speaking, this type of result gives
detailed and sometimes rather technical information about the random walk
under rather strong assumptions on the distribution of F. It is often required
that F have a second moment or regularly varying tails.

Frank Spitzer’s interest was more in the direction of finding relationships
which made no a priori assumptions whatsoever on the underlying distribu-
tion. This type of result relies solely on the fact that the X, are independent
and identically distributed. A classical example of this kind of approach is the
determination by Lévy and Khinchine of all possible limit laws for b, (S, —
a,) for suitable constants a, and b,, and of necessary and sufficient condi-
tions on the common distribution of the X; for convergence of b, (S, — a,)
to any of the possible limit laws. [Gnedenko and Kolmogorov (1954) or Feller
(1971, Chapter 17) are standard references for this general theory.]
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This point of view of Frank’s, as well as questions and suggestions by
Frank, has been the inspiration of several of my own articles. Also, a number
of papers were written jointly with Frank. I look back with pleasure and
gratitude on the time of my interaction with Frank. It was a stimulating time
and Frank has had a major influence on my work, for which I am thankful.

Most of Frank’s contributions for random walk have been incorporated in
his beautiful book Principles of Random Walk [S18]. ([Sx] refers to reference
number x in the bibliography of Spitzer’s, elsewhere in this issue.) They fall
mainly in the following two categories:

1. combinatorial results on fluctuation theory;
2. potential theory for random walks.

Below we shall outline some of Frank’s principal results in these categories.
We shall also include a brief discussion of Frank’s work on

3. recurrence criterion for random walk,
4. random walk in random environment

and on
5. Brownian motion.

Section 3 still belongs to his random walk results but is worth singling out.
Even though Brownian motion is a separate category, it has many analogies
with random walk, and some of these also show up in Frank’s work, as we
shall see.

Throughout, X, X;, X,,... are i.i.d. random variables with common distri-
bution F, and S, = LX;. Only at the end of Section 2 and in Section 4 will
we allow a more general interpretation of S,,.

1. Combinatorial results. Erdés and Kac (1947) proved that

—N, < - — | ——=——=—= = — arcsinvx, <x<1,
@ non=¥ 7Tfo\/t(1—t) T

where
N, = number of positive terms among S,,...,S,.

This is a special case of the arcsine limit law. The only conditions for (1) in
Erdss and Kac were that F' have mean zero and a finite second moment. (In
fact they even have a limit theorem for N, when the X, are not identically
distributed.) In Kac (1951) it is shown that

1
fo Io,( ;) dt

even has an arcsine distribution when {S,}, . ; is any symmetric stable process
(which does not have to have second, or even first, moments). This surprising
general validity of the arcsine law was explained by Sparre Andersen (1949).
He showed that the distribution of N, (for fixed n) is the same for all
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continuous symmetric distributions F. This proof is based on a combinatorial
lemma which shows that under a linear independence condition on a set of
numbers {x,,..., x,}, the number of choices for ¢,,...,¢, € {—1,1} and per-
mutations o of {1,..., n} for which X7e,x, > 0, is independent of {x,, ..., x,}.
In Sparre Andersen (1953) and (1954) this was generalized by proving, among
other results, that the distribution of N, and such quantities as L, = first
index at which max(0, S,,...,S,) is taken on, depends only on the numbers
a, = P{S, > 0}. Expressions for the generating functions of N, and L, in
terms of the {a,}, and arcsine limit laws for n~'N, and n~'L,, are also given.

Another related combinatorial result from about that time appeared in Kac
(1954). With some assistance from Chung and Hunt he showed that if x,,..., x,

are any real numbers, o a permutation of {1,...,n} and »(¢) = number of
positive terms in the sequence S;(ox) = Ljo1%g, i=1,...,n, then
(2) Y max{0, Sy(ox),...,S,(ox)} = Zv(a)xal,

where the sum over o runs over &, the group of all permutations of n
elements. Actually the identity (2) was discovered when proving a formula for

E[max(0, Sy, ..., S, }I{S, = 0}]

when F is a symmetric distribution on Z, which Kac had deduced from a
purely analytical theorem of Szeg6 on determinants of Toeplitz matrices.

Spitzer [S3] realized that all these results had a common combinatorial
origin. Because X,,..., X, arei.i.d., one has

Ef(Xy,...,X,) =Ef(X,,...,X,)

for any permutation o of {1,...,n} and any bounded function f. Therefore,
also for any subgroup €, of &, with cardinality |€,|,
1
(3) Ef(X,,...,X,)=E Y f(Xppeer X,
€1 ,%

For some f and for €, =&, or €, equal to the subgroup of cyclical
" permutations one can express

1

] Y f(%y,eeer%,)

oce€,

in a different form, for any real numbers x,,..., x,. This, combined with (3),
may yield an expectation which is simpler to evaluate than the original
Ef(X,,..., X,), or at least involves other interesting functions of X, ..., X,.
As an example we mention the following (Theorem 2.2 in [S3]): For any
permutation 7 of {1,...,n}, let ay(7),..., ay,(7) be its decomposition into
cycles (i.e., a(7),..., ay,(7) form a partition of {1,...,n} and the integers in
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any a;(7) are moved around cyclically by 7). Define
k(1) +
T(rx) = Y. ( ¥ x,.) .
i=1"jealr)
Then the sets
{S(O'x)}g-egn and {T(Tx)}‘regn
are identical. After a little work Spitzer derived from this the following

representation of the generating function of max{0, S,,...,S,}. For |¢{| <1
and |z| < 1,

00 ] tn N
(4) Z tnE{zmax(O,Sl ..... S,,)} — exp[ Z _E{zs,‘}].

n=0 n=1 n

In fact, he even gives the (somewhat more complicated) formula for the joint
generating function of S, and max{0, S,,..., S, }.

To be sure, the right-hand side of (4) usually can not be evaluated explicitly.
However, the right-hand side of (4) equals [c(¢) f(¢; 2) f,(¢; D]~ ! where

3| %

fi(t;2) = exp i E{z5 8, > 0})’
1

S|

f.(t;2) = exp E‘, E{zS"; S, < 0}),
1

c(t) = exp —izP{Sn= 0})
T n

As observed by Baxter (1961) and Kemperman (1961) (see also [S18], Section
17), f; and f, are inner and outer functions, respectively, that is, they are
analytic functions of z on the interior and exterior of the unit circle, respec-
tively. Moreover, one has the simple factorization

1 — tE{2%} = c(2) f.(¢; 2) f.(¢;2)

and one can therefore use Wiener—Hopf theory to ‘“‘determine’ and to obtain
information about f; and f, [see, for instance, Kemperman (1961, Section 13)
and (1963), Prabhu (1965, Section 4.6) and Feller (1971, Chapter 12)]. The
basic relations of fluctuation theory have by now been derived in many ways.
Wendel (1958) and Baxter (1961) follow an analytic approach, Feller (1971,
Chapter 12) a largely probabilistic approach, while Rota (1969) and Rota and
Smith (1972) treat the problem purely algebraically. Also Pollaczek (1957) [see
equation (7.16)] derived a formula which is essentially the same as (4), by
using contour integrations. Other order statistics of S,...,S, besides
max{0, S,,...,S,} are treated in Pollaczek (1952), Wendel (1960) and Port
(1963). :
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In [S4], [S9] and [S8] Frank used the relationship between the Wiener—Hopf
equation and max{0, S, ..., S,} in the opposite direction; he used probability
theory to obtain results for the Wiener—Hopf equation.

The random variable max{0, S,,..., S,} appears frequently in queueing
theory. When X has the distribution of the difference of a service and an
interarrival time, then the waiting time of the nth customer has the same
distribution as max{0, S, ..., S,}. In fact this was the motivation of Pollaczek
(1957). Spitzer’s results can therefore be used to derive general facts about a
single server queue [see Prabhu (1965), Chapter 4]. Equation (4) has also been
used fruitfully to obtain asymptotic information about the distribution of
max{S,,...,S,} (see, for instance, Spitzer [S3], Section 4, Darling (1956),
Feller (1971), Section 12.5).

Spitzer also noted that

{max{0, S;,...,8,} =0} ={S, <0,1 <k <n} =(T>n},
where T is the first upward ladder index, that is,
T = inf{k: S, > 0}.
Thus (4) for z = 0 yields

f f ¢t
Y t"P{T <n} = exp[z ;P{Sn < 0}],
0 1

and one can therefore also ‘“find’’ the distribution of T', and one can even find
the joint distribution of T' and S [see Baxter (1961), Example 2.2, and [S18],
Proposition 17.5]. This is very useful for renewal theory; it was also used by
Frank to establish the existence of a certain limit of hitting probabilities and
the existence of the potential kernel for a one-dimensional random walk with
- mean zero and finite variance [see Section 2].

To conclude this section we mention that analogously to (4) one can derive a
formula for

Y t"E{zN»}

n=0
in terms of the numbers a, = P(S, > 0} (see [S3], Section 5). As mentioned
before, this result is originally due to Sparre Andersen (1954). In [S3], Section
7, it is used to derive the general arcsine limit law for n~'N, (under somewhat
weaker conditions than known before) which was the original motivation for
the developments of this section. '

2. Potential theory for random walks. The relationship between clas-
sical potential theory and Brownian motion has been well known since the
probabilistic treatment of the Dirichlet problem and boundary values of har-
mofiic functions by Kakutani (1944) and Doob (1954). This classical potential
theory is the potential theory associated with the fundamental solution of

5 Au(x) = —Ka8,(x),
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where «, = 27 in dimension d = 2 and «,; = (d — 2) times the surface area of
the unit sphere S?~! in dimension d > 3. The solution of (5) is given by
Green’s kernel
u,(x) = llx —ylI>~¢
in dimension d > 3 and by
u,(x) = —logllx — yll

in dimension two. Much of the classical potential theory deals with properties
of “potentials,” that is, of functions of the form fu,(x)f(y)dy, or more
generally [u,(x)u(dy) for a signed measure p. By abstractlng the properties of
potentials ax10mat1c treatments have been given of potential theory [see Brelot
(1952) for a survey]. It was known that potentials with respect to other kernels
than u (x) satisfy many of these axioms. In a series of influential papers Hunt
(1957-1958) showed that there is a close parallel between the potential theory
for general kernels and the theory of transient Markov processes (correspond-
ing to the case d > 3 above). In particular, every transient Markov process
{X,};» o has associated with it the kernel [P{X, € dy|X, = x} dt which satisfies
most of the axioms for potential kernels. In the case of a transient Markov
chain {Y,}, . , on a countable state space, the kernel is represented by

G(x,y) = iomx,y)
Y, = x},

n=0

where P is the matrix of transition probabilities for {Y, }. Note that for fixed y,
u,(x) = u(x, y) satisfies

(6) (P = Duy(x) = —8(x,),

where 8(x,y) = 1 or 0 according as x = y or x # y. (6) is an analogue of (5), as
becomes apparent by looking at the special case when {Y,} is a simple random
walk on Z<. In this case the left-hand side of (6) is
1 4
24, Z [u,(x +e) +u,(x—e) — 2u,(x)]

(e; = ith coordinate vector); this is the discrete analogue of the Laplacian. For
a general random walk on Z? as considered here, the matrix P of transition
probabilities is given by P(x,y) = P{X =y — x}.

Kemeny and Snell (1961, 1963) and Spitzer in [Sl4] and [S16] set them-
selves the task of finding the proper analogue of a potentlal kernel for
recurrent Markov chains. Frank was in particular interested in the special
Markov chain given by a recurrent random walk on Z¢, d =1 or 2. For a
recurrent (irreducible) Markov chain the series for G(x, y) above is identically
equal to o, so this definition cannot be used without change for a recurrent
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chain. A natural attempt to circumvent this difficulty is to replace G(x,y) by
G(x,y) “minus an infinite constant’; that is one tries to define

() A(x3) = T (@, - P(2.9)

for a sequence of constants a,, as a replacement for —G(x,y). Formally
—A(x,y) is also a solution of (6). [The change in sign introduced here is
insignificant; it will lead to a positive kernel which has a certain probability
interpretation ([S14], Section 4).] One now tries to choose the a, such that the
series in (7) converges. Once one has such a,’s it still needs to be shown that
—A solves (6). A good choice for a, seems to be a, = P"(z, z) for any fixed z.
Kemeny and Snell (1961, 1963) also discuss the convergence for this choice of
a, for a general Markov chain. However, in this generality (7) may fail to
converge. Frank showed that, for any random walk on Z¢,

(8) A(x,y) = XL (P"(0,0) - P"(x,y))

n=0
converges and —A is a positive solution of (6). For d = 1 this result is very
delicate, as indicated by the fact that, as far as the author knows, it is still not
known whether the series in (8) always converges absolutely.

For the remainder of this section it is convenient to allow for a starting
point of the random walk which is different from the origin. We therefore take
S, =S, + I1X,, where S, may be nonzero, in contrast to the preceding. As
before, the X, are i.i.d. and take values in the integer lattice Z¢. Once one has
the above results about A, all kinds of relations for hitting probabilities for
finite sets follow. For instance, Frank shows that

P{S,, visits y before returning to x|S, = x}

=[A(x-y) +A(y - 0)] 7,
and shows how in general the transition probabilities of the imbedded random
walk on a finite set F (i.e., S, studied only at the times when S, € F') can be
expressed in terms of the restriction of A(x,y) to F X F. He also showed that

lim P{S first enters F at y|S, = x}

x| =
has a limit, which can be expressed in terms of A. (For d = 1 one must take
the limit as x » +» and as x > — separately; these limits may differ.)
Frank also found the most general positive solution f to
(P-I)f=g

for a positive g with finite support. Again the solutions can be simply
expressed by means of the kernel A.

In a series of papers by Frank, Ornstein, and the author [S15, S17] and
Kesten (1963) these results were used to prove a number of very general ratio
theorems for “taboo probabilities,” that is, for transition probabilities for
random walk limited to the complement of a set. Let B c Z¢ be a finite set

(9)
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and
Ty ==min{n > 1: S, € B} (= xif no such n exists)
its entry time. With only aperiodicity assumptions,

. P{Tg >nlS, =x)
(10) o BT, > nlS, = 0)

=6(x,0) + A(x,0),

whether S, is persistent or not [note that the definition (8) for A makes sense
for a transient random walk as well, for then the right-hand side of (8)
converges absolutely]. This is a partial analogue for general random walk of a
theorem of Hunt (1956) for the rate of approach (as time — ) of a solution of
the heat equation on R? \ B to the solution of a Dirichlet problem on R \ B,
for compact B. [Hunt is able to replace the denominator of (10) by the explicit
function log n, because he works with a specific process, namely, two-dimen-
sional Brownian motion.]

For recurrent random walk in dimension > 2, or in dimension 1, but with
EX? = «, (10) can be refined to

" i P{S, =y, Tg = nlS, = x} ; ;
( ) n]ir:o ):u’veBP{Sn=U, TBZnISc’:u} _gB(x) g—B( y)

for a certain function § which can be defined by means of Frank’s results on
limits of hitting probabilities [cf. Kesten (1963)]. Equation (11) was originally
conjectured by Frank as an analogue of the well-known result that high
powers of a finite matrix whose largest eigenvalue is simple look more and
more like a matrix of rank one. By the Perron-Frobenius theory, this is always
the case for a positive irreducible finite matrix [see for instance the Appendix
of Karlin (1966)]. Equation (11) is an analogue of this for the infinite matrix @
which is the restriction of P to B¢ X B¢ In fact for x, y ¢ B, the numerator
of (11) is precisely @"(x,y); note also that the right-hand side of (11) is a
product of a function of x and a function of y, that is, a matrix of rank one.

Frank also discussed the meaning of the capacity and Robin’s constant of a
finite set for recurrent random walk (see [S14] and [S18], Section 14). For
transient random walk he identifies the equilibrium charge of a finite set with
the escape probability ([S18], Section 25).

Since the appearance of Frank’s book [S18] many extensions of his poten-
tial theoretic work have been published. We mention only a few of these.
Frank and the author in 1965 showed how to carry over much of the theory to
a random walk S, taking values in a countable abelian group . Ornstein
(1969) and Port and Stone (1969) showed how to define the recurrent potential
kernel for a random walk taking values in R?, or even a locally compact abelian
group rather than one with a countable state space. Finally, Brunel and Revuz
(1974-1977) extended the theory to random walks on arbitrary (not necessar-
ily abelian) locally compact groups. These extensions to groups raised the
question for what groups & does there exist a recurrent random walk which
does not live on a subgroup of ¢ (i.e., for which = closure of U7 supp(S,)).
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Even though there were many intermediate contributions [see in particular
Baldi, Lohoué and Peyriére (1977)] a satisfactory answer to this difficult
question was only given by Varopoulos in 1986 [see Varopoulos (1990) for a
summary and references].

3. Recurrence criterion. In connection with the question of recurrence
of random walks we wish to mention a rather specific, but quite elegant result
of Frank’s. To put this in context, we remind the reader that Polya (1921)
proved that simple random walk on Z¢ is recurrent if d = 1 or 2 and transient
if d > 3. Chung and Fuchs (1951) proved the following necessary and suffi-
cient condition for recurrence of a general random walk: If

$(0) = Ee'X,
then S, is (interval) recurrent if and only if for some & > 0 (and then for all
e>0)

1
_— = o0

(12) llTn’ll |o|55Re 1= 26(0) do

Here X may take values in R¢, in which case 6 is also to be taken in R? and
60X is to be replaced by (8, X), the inner product of § and X; |0| is then the
Euclidean norm of 6, and the integral in (12) is a d-dimensional integral. Even
though this is a very appealing and useful criterion, it still involves the
unpleasant limit as ¢ 7 1. Can one take the limit inside the integral, that is, can
(12) be replaced by

1 -—--——1 df = »?
(13) Joro B T g0y 20 =

Note that this makes sense because Re[l — ¢(8)]~! > 0, as one easily sees.
Frank showed that (13) is indeed necessary and sufficient for interval recur-
rence of a random walk on Z¢ (see [S18)], Theorem 8.2). The extensions of this
criterion to R? and abelian group valued random walks can be found in [S20],
Ornstein (1969) and Port and Stone (1969). Perhaps somewhat surprisingly, it
is by no means easy to prove that (13) is equivalent to (12); in fact as far as the
author knows it has not been decided whether the left-hand sides of (12) and
(13) are always equal. Frank’s proof rests on the whole potential theoretical
apparatus. In particular, it uses (9) plus the nontrivial fact that A(x,y) - «~ as

X —> ©Oory — o

4. Random walk in random environment. Frank was one of the first
people to consider random walk in random environment. He thought up the
model described below by himself, but on a trip to the Soviet Union found out
that several Russian mathematicians were working on the same model which
had arisen in some applied situations [see Chernov (1967) and Temkin (1972)].
Eventually this trip by Frank to the Soviet Union resulted in the joint paper
[S41] with Kesten and Kozlov. We note that S, in this model is no¢ the sum of
iid. random variables, so that the term ‘“random walk’ here is used in a
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different sense than in the preceding sections. Consider an i.i.d. family {p(v, - ):
v € Z% of probability vectors on Z?. Thus, for each v, p(v,w) > 0 and
Y, ecz¢p(v, w) = 1. These p(v, - )’s form the environment. Once it is chosen it
stays fixed forever. Conditionally on the environment one now takes S, as a
Markov chain with transition probabilities

P{S,., =yIS, =x} =p(x,y — x).

What makes this process difficult and interesting is that {S,} by itself is not
Markovian; every time when S takes a step away from x we obtain some
more information about the environment at x, that is, about p(x, - ). This
model was the subject of a number of Ph.D. dissertations at Cornell, for
students of Frank as well as of the author. [See Solomon (1975), Ritter (1976),
Kalikow (1981) and Key (1984).] Criteria for recurrence were given and limit
laws were investigated. In the one-dimensional case under the further restric-
tion that S, can move only one step to the left or one step to the right and
that S, — o w.p.1 [or equivalently, E(log(p(0, 1)/p(0, —1)) > 0)] the possible
limit laws for S, (under mild conditions) were fully determined in [S41]. The
model has become very popular with statistical physicists because typically in
dimension 1, S, should not be normalized by Vn to obtain a limit law. The
literature on this model is far too extensive to cite. We content ourselves with
the mention of two fundamental papers: (a) Sinai (1982) which studies the
so-called critical case in one dimension, and proves that (log n)~2S, has a limit
law in this case; and (b) Bricmont and Kupiainen (1991) which shows that in
certain cases in dimension greater than or equal to 3, S, has diffusive
behavior, that is, {n~'/2S,,};. o converges weakly to a d-dimensional Brown-
ian motion.

5. Brownian motion. The processes with stationary independent incre-
ments, also called Lévy processes, are continuous time analogues of random
walks and share many of their properties. The simplest and best known among
these is Brownian motion, which corresponds to a random walk with finite
variance. Frank’s contributions have mainly been to two-dimensional Brown-
ian motion. This process visits w.p.1 each open subset of R? infinitely often
(i.e., for arbitrarily large ¢) but it does not hit points; in other words, if B(¢) is
a two-dimensional Brownian motion, then for each x, T < « and & > 0,

P{|B(¢) — x| <& forsome ¢ > T} =1,
but
P{B(t) = x for some ¢ > 0} = 0.

We say that this process is interval recurrent but not point recurrent. Already
in his 1953 Ph.D. dissertation (see [S5]) Frank investigated how close B(t)
comes to a fixed point x. First he finds the asymptotic behavior of the hitting
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probability of small discs. For fixed 0 < ¢, < t,,
) 1 . 1 to
(14) lim log(—)P{ min |B(¢) — B(0)] <r} = —log —.
ri0 r t<t<t, 2 t,

He then uses this to prove that for a given positive, decreasing function g, one
has

(15) P{|B(t) - x| = g(t)ft eventually} = {(1)’
according as
" 1 diverges
16 - )
(1) ,El kllog g(k)| {converges.

An analogous result for the rate of escape to infinity of a higher dimensional
random walk is due to Dvoretzky and Erdés (1951). By changing B(¢#) to
the equivalent process ¢B(1/¢), Frank also obtains an analogous result for the
behavior of B(¢) — B(0) for small ¢, rather than large ¢. An analogue of the
results (14)-(16) for random walks in the domain of attraction of a symmetric
stable law is in [S2].

The preceding result is close in flavor to some of Frank’s later work on
random walk. Rather different though is Frank’s result (still from his thesis)
on the winding number of two-dimensional Brownian motion. He shows that if
0(¢), t = 1, is a continuous choice of the argument of B(¢), then

(17) 10—270( t) has a Cauchy limit distribution as ¢t — .

Both of these results have led to many further investigations. For a recent
paper on the fine structure of two-dimensional Brownian motion which uses
Frank’s estimate (14), see LeGall (1991) in the Festschrift in honor of Frank.
This Festschrift also contains the article Yor (1991) with a considerable
generalization of Frank’s result (17) on the winding number. Other papers
have studied further aspects of the entanglement of planar Brownian motion
and related questions for Brownian motion on manifolds [e.g., Lyons and
McKean (1984)]. :

In [S19] Frank deals with a rather different aspect of Brownian motion.
This paper dates from the same time as the potential theoretical papers
discussed in Section 2, and deals with a continuous time potential theoretical
question. It gives for a Brownian motion B(-) in dimensions 2 and 3 an
asymptotic expansion as ¢ — « for the expected volume of the set

(18) Wa(#) = U (B(s) + 4).

s<t

This is the set swept out by moving A along the Brownian path up till time ¢,
{B(s): s < t}. In the special case when A is the unit ball this set is called the
Wiener sausage. Its analogue for a discrete time random walk which takes
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values in Z¢ is the range of the random walk up till time 7, that is, the set
R,={S,:0<k <n}.

In the discussion to Kingman (1973) Frank gave us a nice application of
Kingman’s subadditive ergodic theorem, the existence w.p.1 of the limits

1

n (volume of W,(t)) ast — o,
(19) .
Py (cardinality of R,) as n — .

The first limit is the capacity of A in dimension 3, and the second limit is
P{S, # 0forall n > 1|8, = 0}.

The volume of W,(#) minus the volume of A is also interpreted in [S19] as the
total heat flow in time ¢ from A to A°.

More precise results about the distribution of the Wiener sausage, going
beyond just the strong law (19), can be found in LeGall (1988); large deviation
estimates for this volume have been considered in Donsker and Varadhan
(1975). Limit laws for the range of a random walk have been considered by
Jain and Pruitt (1972) (and its references). Finally, Port (1991) in the
Festschrift for Frank considers analogous problems for the ‘Lévy sausage,”
the volume swept out by a ball moving along the path of a Lévy process.

Frank Spitzer has had a major influence on probability theory in the last
30-40 years, both through his own work, and through the work of his
students and collaborators. His enthusiasm was infectious. He was always
searching for elegant new phenomena. In fact he had neither the inclination,
nor much patience for extending known results if this did not lead to some
surprises. Extending the validity of some theorems, by which most of us make
a living, held little appeal to him. I still remember that Frank once complained
to me after a visitor filled the blackboard in his room with lots of formulae
which Frank thought boring: “ What did he expect me to do? Eat a bunch of
formulae?”’ Frank’s work has given major impetus to what one can call “the
general theory of random walk”: results which hold for ¢ll random walks,
such as the existence of the potential kernel, the existence of limits of hitting
distributions and ratio limit theorems. His work also helped explain the
combinatorial nature of results for the maxima of random walks and various
other quantities studied in fluctuation theory. Frank’s work on Brownian
motion has led to deep studies of the winding number of Brownian motion and
asymptotics of the Wiener sausage. After random walk and Brownian motion
Frank turned to models which involve more dependence. He was one of the
creators of what is nowadays called interacting particle systems. This field is so
important and huge that a separate survey by David Griffeath in this issue is
devoted to it.
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