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LOCAL TIMES FOR SUPERDIFFUSIONS

By STEPHEN M. KRONE

University of Utah and University of Massachusetts

In this work we study local times for a class of measure-valued Markov
processes known as superprocesses. We begin by deriving analogues of
well-known properties of ordinary local times. Then, restricting our atten-
tion to a class of superprocesses (which includes the important case of
super-Brownian motion), we prove more detailed properties of the local
times, such as joint continuity and a global Hélder condition. These are
then used to obtain path properties of the superprocesses themselves. For
example, we compute the Hausdorff dimension of the ‘“‘level sets” of
super-Brownian motion.

1. Introduction. In this paper we study local times for a class of mea-
sure-valued Markov processes known as superprocesses. Let £, be an-R%-valued
Feller Markov process with infinitesimal generator A and write My(R?) for
the space of (positive) finite Borel measures on B(R?), equipped with the weak
topology. A continuous M (R¢)-valued Markov process X, on a filtered proba-
bility space (Q, &, %, P) is called a (Dawson-Watanabe) superprocess over &
(or a super-¢ process) provided its Laplace functional has the representation

E[e"Xe®] = gm e,

for all ¢ € Cy(R?),, u € Mp(R?) and ¢ > 0, where u(¢) = u(t, x) is the unique
mild solution [cf. Iscoe (1986a)] of the nonlinear initial value problem

du N 1 9 0

i u = Su, u(0,x) = ¢(x).

[Here the expectation is with respect to the probability measure P,, which
gives the law of the process starting with initial measure u. We write (u, ¢) =
[red(x)p(dx), and C,(R?) denotes the space of bounded continuous functions
on R9] These processes arise as solutions of measure-valued martingale
problems and as high-density limits of systems of critical branching R<-valued
Markov processes [cf. Dawson (1978), Ethier and Kurtz (1986) and
Roelly—Coppoletta (1986)]. Adler and Lewin (1990) give a nice summary of the
above.

Much of the work on these processes has focused on super-Brownian
motion (i.e., £ is Brownian motion). Here it is known that, for d > 2, the
random measure X, is singular for all ¢ > 0, almost surely [cf. Perkins (1988)].
Moreover, its (Lebesgue-null, random) closed support S(X,) has Hausdorff
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1600 S. M. KRONE

dimension 2 and is compact [Dawson, Iscoe and Perkins (1989)]. Perkins
(1989) has shown that, for all ¢ > 0, the mass of X, is, essentially, uniformly
distributed over S(X,) according to a deterministic Hausdorff measure. This
allows one to get path properties of the measure-valued process by studying
the set-valued process S(X,). See Dawson, Iscoe and Perkins (1989) for
numerous deep and beautiful results of this type. The special (and qualita-
tively different) case of d = 1 is handled, for example, in Konno and Shiga
(1988) and Reimers (1989), where they show that X has a jointly continuous
density x(¢, y) for all ¢ > 0, a.s. So, in particular, S(X,) has positive Lebesgue
measure when d = 1.

To define local times (i.e., occupation densities) for measure-valued pro-
cesses, we must first give the appropriate notion of occupation time. This role
is filled by the weighted occupation time [cf. Iscoe (1986a)], a measure-valued
process Y, defined by

(1.1) Y(I) = [X,(T)ds, T eB(R?
0
or, more generally, for any B € B(R,),

(1.2) Yp(T) = [Bxs(r) ds.

[$B(S) denotes the Borel sets in S.]

For a fixed Borel set B in R, the local time, a(x, B) = a(x, o, B), of X
over B is the density, when it exists, of Yz(dx) with respect to Lebesgue
measure on R¢:

(1.3) J X(T)ds = [a(x,B)dx, VTeBRY.
B r

It is easy to see that the local time also satisfies

14 X, frds = , B) dx,

(1.4) [(Xo frds = [ f(x)a(x, B) dx

for all bounded Borel-measurable functions f on R?. We will often write «,(x)
for a(x,[0, ¢D.

Iscoe (1986b) and Sugitani (1989) showed that local times exist for super-
Brownian motion when d = 1, 2, 3, and Dynkin (1988) proved their existence
for a large class of superprocesses, which includes super-Brownian motion
when d < 3. Sugitani also showed that «,(x) is jointly continuous in the case
of super-Brownian motion. In this paper, we will prove joint continuity of the
local times for a class of superprocesses which, for the moment, we shall
simply call superdiffusions. These arise when the underlying motion is a
diffusion process; super-Brownian motion is, of course, a special case. We also
derive other properties of these local times, the most important of which is a
global Holder condition in the time variable. This will be used to study path
properties of the superdiffusions themselves.
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Before getting into the main results, let us derive some simple properties of
superprocess local times, some of which will be useful later in the paper. These
are analogues of properties that we have come to expect from ordinary local
times [cf. Geman and Horowitz (1980)]. Unless further conditions are stated,
we will be assuming simply that «,(x) is a local time for an arbitrary weakly
continuous superprocess on R¢ with initial mass w. We will often supress the
ubiquitous P,-a.s. clause in the theorems and proofs.

First note that, by standard results, a version of a(x, w, B) can be chosen so
that it is a kernel on R% X Q X B(R,) and ay(x,®) = 0. Consequently,
t = a,(x, ») is increasing and right continuous. From now on, whenever we
speak of the local time, we mean this nice version. Since X, € Mp(R?) and
t = X,(R?9) is continuous (weak continuity of X,), it follows from (1.3) that
a(x, w, dt) may be chosen to be a Radon measure (finite on compact sets) on
R,.

THEOREM 1.1. For any interval B in [0, ) and any bounded Borel function
fon R, X R?, .

(1.5) foRdf(t,x)Xt(dx)dt= fRdef(t,x)a(x,dt) dx, a.s.

ProoF. This is obvious when f is an indicator function of a product set in
R X R? because of (1.3). A monotone class argument does the rest. O
THEOREM 1.2. Fora.e. t> 0,
X,({x: a(x,[t —¢&,t +€]) =0 for some e > 0}) =0,

that is, for a.e. t, X, puts 0 mass on the collection of all points x whose local
times a (x) do not have t as a point of strict increase.

Proor. In (1.5), put

f(t’ x) = I{a(x,[t—s,t+s])=0, some ¢ > 0}
and then notice that {¢: a(x,[t — &,¢ + £]) = 0, some & > 0} is the complement
of the support of a(x, ). O
Define the x-level set M, of X by
M,={te[0,0):x € S(X,)}
This is the (random) set of times at which the support ‘“hits” x. We sometimes
write MY for M, N T, when we want to emphasize a particular time set T.

THEOREM 1.3. For almost every x, the measure a(x,dt) lives on M, [i.e.,
t = a,(x) can only increase on M].

Proor. Put f(t,x) = I, c pey = Iy ¢ 5(x,) in (1.5) to see that a(x, M) =0
for a.e. x. (The “c”’ denotes complement.) O
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For a fixed interval T in R, define the zero set of the local time a(x, T) by
2(T) = {x € R*: a(x,T) = 0}.

Notice that X,(2(T)) = 0 for a.e. t € T [by (1.3)].
Below, we write A, for Lebesgue measure on R€.

THEOREM 1.4. If A4,(S(X,)) =0 fora.e.t > 0, then A(M,) =0 fora.e. x.
On the other hand, if X has a jointly continuous density x(¢, z), then A\ (M.Y) >
0 for all x € {z: x(¢t,2) > 0 for some t € T}. [So, e.g., if X is super-Brownian
motion and p € Mp(R?), then A(M,) =0 for a.e. x € R?% when d > 2, and
AMMI) >0 forall x € {z: x(¢t,2) > 0 for some t € T}, when d = 1]

Proor. If A,(S(X,)) = 0 for a.e. £ > 0, then

[ M) dx = fRdf:IMx(t) dt dx = j:fRdIS(Xt)(x) dxdt = 0.

To prove the second statement, suppose x(¢, z) > 0 for some (¢, z) € T x R,
By joint continuity, the density must be positive for all points in some
neighborhood of (¢, z). In particular, for any ball B,(2) of radius ¢ about z,

X,(B.(2)) = [B (z)x(t,y) dy > 0.

So X, charges every neighborhood of z, which is the same as saying z € S(X,),
or ¢t € MT. But this must happen for all times in some open interval B ¢ T
which contains ¢, forcing B € M.} and proving the assertion. O

ReEMARK. In the case when a jointly-continuous density (and hence a local
time) exists,

{z: x(t,2) > O for some t € T} = 2(T)".

To prove this, notice that Fubini’s theorem implies a(z,T) = [3x(s, 2) ds, and
then use the fact that ¢ — x(¢, 2) is continuous. So, in this case, Theorem 1.4
reads: If X has a jointly continuous density, then A, (M) >0 for all
x € AT,

This case points out a sharp difference between superprocess local times and
ordinary local times. For ordinary processes, existence of a local time implies
that the Lebesgue measure of a level set is 0.

THEOREM 1.5. For fixed x, if o(x,T) > 0 and t = a,(x) is continuous, then
MY is uncountable.

Proor. By continuity, a(x, dt) has no atoms. Since this measure is sup-
ported on MY, it follows that, if MT is countable, then it must be contained in

2(1). O
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See Section 2 for more information on the size of M,Y when a(x,T) > 0 and
X belongs to a particular class of superprocesses.
The closed range of X over T is defined as

R(T) = U S(X)).
teT
As far as X is concerned, during the interval T, this is where all the action

takes place. Not surprisingly, it is also where the local time lives (as a function
of x).

THEOREM 1.6. P,-a.s., a(x,T) =0 fora.e x € R(T)-.
Proor. From (1.3) we have [ga(x, T)dx = [1XAR(T))dt = 0. O

REMARK. When x — a(x,T) is continuous, we can say a bit more.

(i) First of all, note that the above theorem will hold for all x € R(T)
because R(T)° is open. Thus, we have 2(T)° ¢ R(T). In fact, since P(T)° is
open, 2(T)° c R(T)°. It would be interesting to know if the reverse inclusion
holds.

(ii) Equation (1.3) implies that, for a.e. ¢ € T, X, puts zero mass on the
closed set R(T)\ 2(T) [i.e., X,(R(T) N 2(T)) = 0l. In fact, (T) is nowhere
dense in R(T). To see this, we must show that there is no nonempty open ball
B,(2) contained in R(T) N (T). Suppose there is, and pick a function f&
C,(R?) which has support equal to B,(z) and takes value 1 on B, 5(2). Then
0 = [,y f(x)alx, T) dx = [r(X,, f) dt, and hence (X,,f>=0forall t T,
by weak continuity of X. From this it follows that X,(B, »(2)) = 0 for all
t € T. This tells us, in particular, that B, ,,(2) N [U,c1S(X,)] = &, since for
x to be in S(X,), it must be that X, charges every open ball about x. But this
forces z ¢ R(T), contradicting the assumption that B,(z) € R(T).

(iii) We also have that R(T) has nonempty interior, P,-a.s. (no matter how
small the interval T is), as long as X,(R%) > 0 for some ¢ € T. To see this,
recall that X,R?) is a continuous function of ¢. Thus 0 < [; X (R?)ds =
[gea(x, T) dx, so that 2(T)¢ is a nonempty open set in R(T).

In the case of super-Brownian motion starting at u € M #(R?), we can say a
bit more about the structure of M,. Let us write S, for S(X,), and S,_=
{x:3x,€8, Vn,with x, - x, for some sequence ¢, - ¢ — }. It is known [cf.
Perkins (1990), pages 457-458] that, a.s., S, € S,_, {8} is right continuous,
and U,. (S,_\ S,) is countable. Using this, it is easy to see that, P,-a.s.,

(1.6) M, is a closed set for all but countably many x.
Evans and Perkins (1991), Theorem 3.3] show that

{x} N ( U (5,\ st)) -2, Pas,

t>0
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for all u € Mz(R?). It follows that, for each fixed x,
(1.7 M, is closed, P -as.

From (1.6), we have that MF = M, N F is closed for all but countably many x,
a.s., when F C [0, ) is closed. Finally, when d > 2, P(x ¢ S, fora.e. x) = 1,
since S, has Lebesgue-measure 0. Hence, for any countable collection of times
{t}, P(x & S, Vi, for ae. x) = 1. Using this, it follows that, if d > 2,

(1.8) P(Mp isclosed forae. x) = 1

provided the Borel set B differs from a closed set by at most countably many
points.

We conclude this section by mentioning that most of what was done above
holds (with minor measurability conditions) for any weakly continuous mea-
sure-valued random process having an occupation density. In only a few places
did we use any special properties of superprocesses.

2. Main results. We begin by specifying the class of superprocesses that
we will be working with. Let ¢,, £ > 0, be the solution of the stochastic
differential equation

d¢, = a(&,) dW, + b(¢,) dt,

where the following assumptions are made on the coefficients. Assume that
o= (g;;)and b =(b),i,j=1,...,d, are bounded (matrix-valued and vector-
valued) functions. Let a,;(x) = ré_.o; #(x)0;,(x) and suppose the differential
operator A, given by

1 4 a%f d of
Af(x) = §i,JZ=1ai,~(x)axiaxj(x) + i§1bi(x)3_xi(x)’ fe C3(R?),

[CZ([R?) denotes the family of bounded continuous functions on R? with two
bounded continuous derivatives] satisfies:

(1) The functions

da;; J%a,; b,
Fij» i dx; * 9x;9x;’ dx;
are bounded and Hoélder continuous on R%, i,j =1,...,d.
(ii) There is a positive constant y such that
d d
Yoa () =y YA
i,j=1 i=1
for any real A,,..., A, and all x € R?.

Then ¢ is an R%valued diffusion with generator A. We call such a process a
smooth uniformly elliptic diffusion.

Let X,, t > 0, be the superprocess over ¢ with values in Mz(R?). We call
this process a smooth uniformly elliptic superdiffusion. Of course, super-
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Brownian motion belongs to this class. Dynkin (1988) proved that these
superprocesses (and some others) have local times, when d = 1,2, 3, as long as
the initial mass distribution u belongs to My B(Rd) the set of measures in
M;([R?%) having bounded density with respect to Lebesgue measure, say
u(dx) < Kdx for some constant K.

For the remainder of this section, we shall assume that a(x, B) is a local
time for a smooth uniformly elliptic superdiffusion X, with initial mass
n € My 5(R?), d < 3. Recall that A, denotes Lebesgue measure on R?. We are
now ready to state the main results of this paper. In the case of super-Brownian
motion, the first two results are implicit in Sugitani (1989), whose methods
play a major role in our proofs.

THEOREM 2.1. The local time is jointly continuous P -a.s., that is, (¢, a) —
aa) is continuous on R, X R%. Furthermore, it satisfies the following local
Holder condition: On any rectangle R =[0,T1 X [-m,m]? cR, X R?, if v €
(0,min{2 — d /2, 1}), then there is a random variable A and a constant D=

D(R), both positive, such that, with probability 1,

|at(y) - as(x)l Sl)l(t’y) - (s’x)lu’

for all (¢,y),(s, x) € R satisfying |(t,y) — (s, x)| < A. (| - | denotes the appro-
priate Euclidean norm.)

For certain applications (cf. Theorem 2.8), one needs a Holder condition in
the time variable which holds uniformly in the space variable. This is the
purpose of the next result.

THEOREM 2.2. The following global Holder condition is satisfied for any
fixed finite interval T in R,: If v € (0,min{2 — d/2, 1)), then there exists a
positive random variable n and a positive constant C such that, with P,-prob-
ability 1, whenever s,t € T satisfy 0 <t — s < n, then

(2.1) la(x) — a,(2)[ < C(t —s)",
uniformly in x € R9.

THEOREM 2.3. For any finite interval T C R,, the “approximate local
time”

a,(x,T) E/\ Bl/n(x) fX l/n(x) ds

converges to a(x, B) as n —» «, both P,-a.s. and in Lk(P,L) for every x € R?
and any positive integer k. In fact we have, a.s., a,(x,T) = a(x, T) uniformly
in x.

Note that the preceding theorem suggests the formal relation a(x,T) =
[p{X,, 8, ds, so that a(x, T) can be thought of as the amount of mass that X
puts on x during T.



1606 S. M. KRONE

For ordinary processes, smoothness of the local time can be used to demon-
strate irregularity of the sample paths of the process. [See Geman and Horowitz
(1980) for some examples.] Theorems 2.4 and 2.8 below have a similar flavor.
Namely, the Holder continuity of the superdiffusion local time, as embodied in
Theorem 2.2, is used to show that the sample paths of the superdiffusion (or,
more precisely, of its support) are quite irregular. For the first application,
recall that the level sets of X,, defined as

Ml={teT:xeS(X,)},

have Lebesgue measure 0 for a.e. x, (at least for super-Brownian motion) when
d > 2. We examine the Hausdorff dimension dim M,T to get a better gauge of
the size of such a set. [See Adler (1981) for the definition of Hausdorff
dimension.]

THEOREM 2.4. For any smooth uniformly elliptic superdiffusion X, on R¢,
d < 3, with initial mass u € My z(R?), we have, P -a.s.,

(2.2) dim MT > min{2 - d/2,1} whenever a(x,T) > 0.

(Notice that, for the case of one-dimensional super-Brownian motion, the
existence of a continuous density gives dim M, = 1.)

Before stating our next theorem, we recall from Dawson, Iscoe and Perkins
(1989) the following one-sided modulus of continuity for S(X,) in the case of
super-Brownian motion. For this we define, for any § > 0, the §-enlargement
of a closed set A by

A’ = {x € R?: dist(x, A) < 5}.
THEOREM 2.5 (Dawson, Iscoe and Perkins). Let X, be super-Brownian
motion on R%, d > 1, with initial mass w € Mp(R?). Then P,-a.s., for each

¢ > 2, there is a positive random variable & = 8(c, w) such that if s,t > 0
satisfy 0 <t — s < 8, then

(23) S(X,) < S(X,)",
where h(¢) = (¢1In1/t)'/2

So, essentially, the support spreads no faster than its h(-)-enlargement.
This theorem will be used to get an upper bound on dim M,.

THEOREM 2.6. Let X, be super-Brownian motion with p € My(R%), d > 1.
Then, for each x € R?,

(2.4) dim M, < min{2 - d/2,1}, P,-a.s.

REMARK. In case d > 4 [i.e., min{2 — d/2,1} < 0], (2.4) is to be interpreted
as dim M, = 0. This is already contained in Dawson, Iscoe and Perkins (1989)
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where it is shown that, with probability 1, the support never hits a fixed point
x when u € Mp(R9), d > 4.

CoroLLARY 2.7. Let X, be super-Brownian motion with pu € My 5(R?),
d < 3. Then, foreachxeRd we have, P,-a.s.,

(2.5) a(x,[0,0)) > 0 = dim M, = min{2 — d/2,1}.

Our next theorem gives a sort of converse to Theorem 2.5 for d = 3 when
the support is not enlarged fast enough.

THEOREM 2.8. Let X, be super-Brownian motion with p € My 5(R®).
Let T,h,8 be fixed positive numbers and define ¢(s) = s¥/2*5. Set Q =
{0: X(0,R3) >0V ¢t <[0,T + hl}. Then, for every constant q > 0,

. 1 cPp(s—t)
(2.6) lim —A{s € [¢, + €]: S(X,) € S(X,)* }=0
el0 &
a.s.on Q,Vtelo,T]

So, provided the process does not die, the proportion of time in [¢, ¢ + £] that
S(X,) spends completely within the ¢(s — ¢)-width enlargement of S(X,) goes
to 0 a.s. as £/0. In fact, as we shall see in the proof, it even escapes the
¢(e)-width enlargement. This result is analogous to the classical result which
says that one-dimensional Brownian motion leaves the “cone” with square-
root-shaped boundaries. It also shows (at least in the case d = 3) that the
exponent 1/2 on the ¢ in Theorem 2.5 is the best possible.

3. Proofs.

3.1. Preliminary estimates for the underlying motion. Throughout this
section, we will use the letter C to denote a generic positive constant (possibly
depending on certain parameters) whose value may change from line to line.
Let &, t > 0, be a smooth uniformly elliptic diffusion in R?. It can be shown
[cf. Dynkin (1965), Theorem 0.5] that ¢ has a transition density p,(x, y) with
the following properties:

(i) P(x,y) < My~ /2B ==l /1,
(ii) %pt(x,y) < Mt=(@+1/2p=Bly—="/t i=1,...,d,
where M and B are positive constants. We also have
(iii) %pt(x,y) < Mt=@+D/2=By=2P/t  j—1 . d.

The last inequality can be obtained by using Kolmogorov’s forward equation
and the smoothness conditions on the a;; and b, (cf. Section 2) to see that the



1608 S. M. KRONE

function (¢,y) — p,(x,y) is the solution of a PDE which is similar to that
satisfied by the function (¢, x) — p,(x, y) in Dynkin’s Theorem 0.5; hence (iii)
follows from (ii).

Following Rosen (1987), we use these bounds to derive, for all x, y, w € R?
and ¢ > 0,

lp(x +w,y) — pi(x,9)l

(3‘1) 8, —(d+8)/2( ,—Blx—y2/t —Blx+tw-y/¢
< Clw|°t (e +e ),

where & can be any number in [0, 1] and C is a constant. (There is a similar
inequality for differences in the second coordinate.) We break up the proof
into two cases. If |w| > ¢/2, then t /2 <t @*+9/2||°. Now use (i) and
the triangle inequality to get (3.1). On the other hand, if |w| < ¢'/2, then
lwl|/t'/? < |w|®/¢°/2, and hence

(3.2) t-@HD/2 | < g @H/2y)2
Now by the mean value theorem, we have for some s € [0, 1],

p.(x + w,y) — p(x,¥) = |V, p,(x + sw,y) - wl
< IV, p(x + sw, )l lwl

d
<Clwl Y
i-1

axipt(x + sw,y)‘

< ClwIt_(d+1)/2e—l3|x—y+sw|2/t [by (ll)] .
By (3.2), it is enough to prove that, for some constant C,
(3.3) e By rswl/t o O BRI/t 4 g By tult by

for any s €[0,1]. This can be shown by considering separately the cases
(x —y) w=>=0and (x — y) - w < 0, where in the second case the assumption
lw|? < t is used. Equation (3.1) is now proven.

If we write

b,(x,y) =b(y —x) =b(t,y — x) = (2mt) Ve b=/

for the transzition density of standard d-dimensional Brownian motion, then
¢/ 2Byt = Cb, ,54(x, y). Thus, replacing 1/28 with «, we can summa-
rize (i) and (3.1) as follows.

Lemma 3.1. If p(x,y) is the transition density of a smooth uniformly
elliptic diffusion in R?, then there are positive constants a, c¢; = c{a), ¢, =
cola, 8), such that

(3.4) pPx,y) <cib(x,y)
and

(3.5) Ip(x +w,y) — p(x,5) < colwl’t722[b,,(x,y) + b (x + w,¥)],
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for any 6 € [0,1]. There is a similar inequality for differences in the second
coordinate.

It follows easily from (3.4) that, if u € My 5(R?) [say u(dx) < Kdx], then
there is a constant c¢; = c3(K, a, d) such that

(3.6) jﬂ;dpt(x,y)p,(dx) <cg, forallt,y.

In Section 3.2 we will need the following properties of the Brownian
transition density:

(3.7) b (x)b,(x) < C(s +1t) “?b(st/(s +1),x),
(by(x) +b,(3))(b(x) +b(y))
< C(s+1t) ¥?[b(st/(s + ), x) +b(st/(s+1),y)].
Equation (3.7) is easy to derive. Equation (3.8) follows from (3.7) and

b(x)b,(y) <b,(x)b,(x) +b,(y)b(y)-
This last inequality is proved by showing

(3.8)

e—ac—bd < e—ac—bc + e—ad—bd

(where a = 1/2t, b = 1/2s, ¢ = x2, d = y?), which is easily verified by consid-
ering separately the cases ¢ < d and d < c.

For later use, we record here two theorems from Dawson and Perkins
[(1991), ef. Theorems 8.12 and 8.10]. These extend the modulus of continuity
and compact support properties of super-Brownian motion to a large class of
superprocesses whose underlying motion is a diffusion (strong Markov process
with continuous sample paths). Let

#={h:[0,1] - [0,»): h continuous, nondecreasing and A (0) = 0}.

THEOREM 3.2 (Dawson and Perkins). Suppose £(t) is an R%valued diffu-
sion process which satisfies, for some h € #,

X 67% sup P*(|¢(r87) — x| = h(r8’)) <o, VO (0,1),r>0
Jj=1 xeR? .

and, if f(r) = supg <, <1 hay>o R(ur)/h(u) for 0 <r <1, then

[ () n1/ryrtdr <.

0
If X is the super-¢ process starting at u € Mz(R?), then P -a.s., for each
¢ > 1, there is a positive random variable &6 = 6(c, w) such that if s,t >0

satisfy 0 <t — s < 6, then
S(X,) € S(X,)"™.
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THEOREM 3.3 (Dawson and Perkins). Suppose ¢ is an R%valued diffusion
such that, for some h €

T 4% sup PA(E(2") - x| = h(2)) < =,

n=1 xeR%
['R(r)(n1/ryrtdr <o,
0

If X is the super-¢ process starting at u € My(R?), then P-a.s., S(X,) is
compact for all t > 0.

We note that the bound in (i) can be used to verify directly that smooth
uniformly elliptic diffusions satisfy the conditions of Theorems 3.2 and 3.3
with h(u) = u”, for any v < 1/2. In short, and this is what we use later, any
smooth uniformly elliptic superdiffusion has compact support and propagates
with finite speed.

3.2. Moment inequalities for superdiffusion local times. It is easy to see
that, when u € My, z(R?), the function (¢, x) = E,a,(x) is Lipschitz continu-
ous. Hence, when proving smoothness results for the local time, it is enough to
work with @(x) = a(x) — E, a(x).

The following lemma is central to the proofs of Theorems 2.1 and 2.2.

LEmMA 3.4. Let a(x, B) be the local time for a smooth uniformly elliptic
superdiffusion with initial mass u € My, R, d <3, and let a(x,B) =
a(x, B) — E, a(x, B). Fix a time interval [0,T] and let

vy = min{2 — d/2,1}, ifd=1,3,
y € (0,min{2 — d/2,1}), ifd = 2.

Then, for every even integer k > 2, there is a constant c,, such that
(3.9) E,[a(x, B)*| < c,y(B)*

and, if 0 <8 <,

(3.10) E,|&(a, B) — &(b, B)* < c,la — b[*,(B)* /2,

for any interval B c[0,T] satisfying A(B) <1, and any x,a,b € R%. [In
(3.9), ¢, depends on a and T, while in (3.10) it also depends on 8.]

Our proof of Lemma 3.4 will be based on results of Sugitani (1989) which
we summarize below. If X is a random variable, say that

(3.11) Elexp(6X)] = exp( i ane")

n=1
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holds formally provided E|X|" < » and

o)

k=1

dn
E(X") =— (exp(
do 0=0
for every n > 1.
The following result is Lemma 3.2 in Sugitani (1989).

LemMmA 3.5. Suppose (3.11) holds formally. If, for some integer N, there
exist r,b > 0 such that

(3.12) la,| <br®, forl<n <2N,
then there exists C = C(b, N) > 0 such that
(8.13) E(X*N) < Cr?N,

Write q,(x,y) = [{p,(x,y)ds and let P, denote the transition semigroup of
a smooth uniformly elliptic diffusion with transition density p,(x, ). The next
two lemmas were proved by Sugitani in the case of super-Brownian motion,
and they extend trivially to the superdiffusion case.

LEmMMmA 3.6. Suppose a(x, B) is the local time of a smooth uniformly

elliptic superdiffusion starting at u € Mg, 3R, d <3, and let a(x, B) be
defined as above. Then

(3.14) B [exp0(,(a) = a(@)] = ep[2 £ (6/2)" s (5,0
n=2

holds formally, where the v,(s, t) are determined by
vi(s,t) = Py(?),

(8.15) v,(s,t) = Pu,(t) + nil /sPs—r(vk(r7t)vn—k(r’t)) dr, nz=2,
k=1"0
with
vi(2, %) = q,(x,0),
(3.16)

o) = T [P () a())ds, n 32
k=1"0

LemMmaA 3.7. Let a(x, B) and u be as above. Then
E,[exp8(a(a,[s,s +t]) —a@(b,[s,s +t]))]

(317) - e[z £ (0/2)" 05,0
n=2
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holds formally, where the u ,(s,t) are determined by
uy(s,t) = Puy(2),

(3.18) u,(s,t) =Pu,(t) + nilfosPs_,(uk(r,t)un_k(r,t))dr, n>2,
k=1
with
u(t,x) = qux,a) —qx,b),
(3.19)

n—1 ‘
w(t) = & [Pes(@a(s)ni(s)) ds, n=2.

Proor orF LEMMA 3.4. We begin by proving (3.9). Set g/x,y) =
1¢b (x, ) ds. Using (3.4) and (3.7), it follows as in the proof of Lemma 3.4 in
Sugitani (1989) that there exist positive constants a, = a,(a) such that

3.20) v (¢,x) <a,t" D427, (x,a), n=1,t>0,xecR?
n n 2at

Next, we claim that for any R > 0 there exist positive constants b, =
b, (R, a) such that

(3.21) U8, 8, %) < btV (Paw())(x)

for every s <R, t <1, a,x € R% and n > 1, where w(¢, x) = @,,,(x, a). The
case n =1 follows from (3.20). Now proceed by induction, assuming that
(3.21) holds for v,(s,t), k € {1,...,n — 1}. From (3.20), we have

(3.22) Pu,(t) < a,t" " X2-d/Dp 3(¢).

Forl<k<n-1,
[Py (0a(r, )0,y (7, 1)) dr
0
(3.23) < byb, 4t [P, (Pan())’ dr
0
< byb,_yt" "2 Pan(t) [ I Paw(t)ll. dr.
0
But
— 2at
Pao()(2)] = [P,(%,)Tauey, @) dy < 1 [ " du [ dy by, (2,5)0.(3, @)
= clafr+2tbau(x, a)du < clafr+2t(27rau)_d/2 du.
So
JUPw()l dr = C(a) [*du [ dr(r+u) ™.
0 0 0

Straightforward calculations show that, for d = 1 and 3, this is bounded above
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by C(R, a)t®=4/D71 for s < R, where C(R, a) is a positive constant. In the
case d = 2, use the fact that, for any n € (0, 1), there is a positive constant
C(n) such that In(1 + ¢) < C(n)t", for all ¢ > 0, to get

[*du [ dr(r+u)"t < C(R, ).
0 0

Plugging the above estimates into (3.23), and using (3.15) and (3.22), finishes
the proof of (3.21).

Equation (3.9) now follows from Lemma 3.5, Lemma 3.6, (3.21) and the fact
that (u, Pw(?)) < 2aKt, when u(dx) < Kdx.

Next we go to the proof of (3.10). Similarly to the above, it suffices to show
that the u ,(s,t) in Lemma 3.7 satisfy

(3.24) (s lu (s, 0)) < byla — b"o¢rr=0/2)

for all n > 1, for some positive constants b,,.
It follows by induction, along with (3.4), (3.5) and (3.8), that the u () of
Lemma 3.7 satisfy

(3.25) lu, (t) < a,la — b*2t-D0=3/25(¢),
where

a(t,x) = Y575/ 2[b,(x,a) + byy(x,b)] ds
0
and the a, = a,(a, §) are positive constants. The proof is very similar to that

of Sugitani’s Lemma 3.2, so we omit it.
The next step is to show that

(3.26) lu,(s,t)l <b,la— bt~ Dr=8/Dpg(¢), n>1.

The case n = 1 is immediate from (3.25). Assume u,(s, t) satisfies (3.26) for
1 < k <n — 1 and proceed by induction. First note that

(3.27) |Pu, () < a,la — b*°t~D0=3/2P z(t)
by (3.25). Next [cf. (3.18)], we must bound

n—1 s
Py [ Per (s O (7, ) dr

n—1
< Y byb, yla — b"en=20-3/2 fsPs_r(P,ﬁ(t))2 dr.
k=1 0
But P,_(P.u(®))? <|IP,u(®)l-P,u(t), and
— 2t _
IPa(6) ()| = [dyp,(2,7) [*daq > *[b4(y,a) + boy(y, )]
2t
=< cl'/; q_a/z[ba(r+q)(x’a’) + baz(r+q)(x’ b)] dq

< C(a)/ftq'ﬁ/z(r +q) *dgq.
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Thus, for s < R,

(328)  [IPEG(t)ldr < C(a) [*dgq=* [Fdr(r +q) "%,
0 0 0

Handling these temporal integrals in much the same way as those in the proof
of (3.9), we conclude that

['P,_(Pa(t))’dr < C(a, R}, s <R.
0

Hence we have

n—-1 s
L [ Pellan(r, )l i, )] dr
k=1
(3.29) . '
< ( Y akan_k)C(a, 8, R)la — bI”‘st(”‘IXV“S/z)PSE(t).
k=1
Using (3.27) and (3.29) in (3.18) completes the induction on u (s, t).
We complete the proof of (3.24) by noting that
{m,Pu(t)) < 4Ke,t. O
Proor oF THEOREM 2.1. From Lemma 3.4 we have, for all s,¢ [0, T]
with |t — s| <1, and all x,y € R?,
E la,(x) — a,(x)I* < cylt — s/*”
and
E la(y) - at(x)lk < cly - xl*?,

when £ is an even integer and c, is a constant depending on T'. [The second
inequality follows from (3.10) with 6 = y.] Using the fact that (a + b)* <
2k~ 1(a* + b*) (convexity), the above inequalities can be used to show

E,la,(y) — a,(x)I" < 2%¢,(t, ) — (s, )",

which is enough to yield the conditions in the multiparameter version of
Kolmogorov’s lemma [cf. Karatzas and Shreve (1988), page 55), thus proving
the theorem. O

Proor or THEOREM 2.2. This proof is modeled after the proof of Theorem
3 in Geman, Horowitz and Rosen (1984). We will write A(B) rather than
A(B).

Since ¢t — E a,(x) is Lipschitz continuous in ¢ (uniformly in x) when
p € My p(R?), it suffices to show, P,-as.,

(3.30) la,(x) —a(x) <C(t-s)’, 0<t-s<n,

uniformly in x € R¢, where we recall that @(x) = a,(x) — E, a/(x).
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To simplify writing, we consider only the case T = [0, 1]. Let &, denote the
collection of intervals obtained by dyadically partitioning [0, 1] into 2" inter-
vals, each of length 27". Let 6, = 27"/2 and set G, ={x € R% x| <n,
x = 0, p for some p € Z%. So G, consists of points in the lattice of step size 6,
which are contained in the ball of radius n, centered at the origin. Note that
#G, < Cnd2n4/2,

Let £ > 0 be arbitrary, but fixed, and y as in Lemma 3.4. We have, for any
even k,

P| max(x, B) > A(B)” " for some B < 9,,]
x€G,

< ¥ ¥ Pla(x,B) = A(B)""°] < Cnigra+d/2—ke),
x€G, Be 9,
where the last inequality follows from Markov’s inequality and (3.9). By
choosing k large enough, this will be summable in n. The Borel-Cantelli
lemma yields, a.s.,

(3:31)  maxa(x,B) < A(B)"™° forall B € ,, when n > Nj,
x€qG,

where N, is some positive random variable.

Notice that this proves the theorem for x € G, when [s,¢] is a dyadic
interval with small enough length. Now we start ““filling in’’ the space between
the points in the lattice G, by defining for x € G, and n,h € Z_,

h
F(n,h,x)={yeR%:y=x+6,) 27¢ for¢; € {0, 1},
j=1

that is, the set of ‘“dyadic points up to order %4 in the 6,-cube with lower left
corner at x.” Two points y, # y, € F(n, h, x) are said to be linked if they are
adjacent, that is, if y, — y, = ¥6,27" for some ¢ € {0, + 1}. There are 2"
points in F(n, h, x), and so there can be no more than 2%*d linked pairs in
F(n, h, x).

We have

P{i@(yy, B) = @(y2, B)| > lyy = aI"°A(B)"™",
forsome B 9,,x€G,,h =1,
and linked pair y,,y, € F(n, h,x)}

Begn xEGn h=1 Y1, Y2

IA

> Iy, — 321*?A(B)" %)

< C2rpdgnd/2 Y gdhly — y [*/2\(B)*/? [by (3.10)]
h=1

(332) < Cndzn(1+d/2—3ke/4) Z 2h(d—ke/2)’
h=1
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where the innermost sum after the first inequality is over all linked pairs
¥, ¥ € F(n, h, x), and the last inequality follows from ly; — 5ol <
2~ (n /2+h)‘/—

Now the sum over A in (3.32) is finite when % > 2d /e, and hence the
sum over n of the quantity in (3.32) is finite when % also satisfies 3ke /4 >
1 + d/2. Since our bounds hold for all (positive) even %k, we may invoke
Borel-Cantelli to get the existence of a positive random variable N, such that,
a.s.,

(3.33) la(y1, B) = a(ys, B)l < ly; — 35l""A(B)""",

forevery B € Z,, x € G,, h > 1, and linked pair y,, y, € F(n, h, x),if n > N,,.

Since X, has compact support and propagates with finite speed, there is a
random variable N; > 0 such that, a.s., R(T) € B,(0) for all ¢t € T when
n > N,. Now pick n > N, N,, N, and let z be an arbitrary point in R?. If
z & B,(0) then a(z, T) = 0 a.s. (cf. Theorem 1.6 and the remarks following it),
and so (3.30) holds trivially for all such z. If z € B,(0), then there is an
x € G, such that z =1lim, __,y,, where y, =x + 0 Zh_IZ_Jd/ with ¢; €
{0,1}% and y, = x. Since each pair y,,y,_; is linked in F(n h,x), (3.33)
implies

(2, B) - a(x, B) < T aon, B) = G-, B)

< Xl _yh—1|€/2)‘(B)y_€
h=1

oo

<CA(B)" ***/* ¥ 27h/2 <C\(B)"°, Be g,.

h=1

So using this and (3.31), we have that (3.30) holds for all x € R® whenever
[s,t]€ 9,, n > N;, N,, N, (i.e., for |t — s| small). To complete the proof, use
the fact [cf. Billingsley (1965), page 140] that any interval [s, ¢] of length less
than n can be covered by 4 or fewer dyadic intervals, each of length less
than n. O

3.3. Remaining proofs.

Proor oF THEOREM 2.3. Set vf(z,...,2T) =E[a(z,T) - a(z,, T
We need the following lemma.

LemMa 3.8. For any compact interval T Cc R, (2q,...,2,) = vi(z,...,
2,;'T) is uniformly continuous on R,
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ProoF. Let Z=1(z,...,2,), W= (wy,...,w,) € R¥ and set a;, =
a(z; + w;; T), B; = a(z;; T). Then
vi(Z + w;T) —vf(zT)
=E,u[0‘1 oy =By Bl
= E“[(ozl —Bpay oy + (g = By)Biag @y
+ o+ (ay = B)Br  Br-al-

(3.34)

Now, for example,
|E[.L[(a1 - B1)0‘2 e ak]l < ”a1 - B]_”k”azllk e ”ak”k

follows from the generalized Hélder inequality [cf. Gilbarg and Trudinger
(1983), page 146], where | -[lx is the norm in L*(P,). Next note that
letgllg, - . ., llallx can be bounded using (3.9), and lle; — Bllx < Clw,|> follows
from (3.10). (Clearly it is enough to consider even k.) The other terms in (3.34)
can be handled in the same way. Putting all this together yields

be(z + w;T) — vi(2T) < Clal’,

where || - || is the Euclidean norm in R?*. O

We now return to the proof of Theorem 2.3. Let b, = A,(B; ,,(x)). Then,
using (1.3), we have a.s. a,(x,T) = b;lfBl/n(x)a(Z, Tdz - a(x,T) as n — ,
for all x € R?, where we have used the continuity of z — a(z, B).

To see that this convergence is uniform in x, first note that a(x,T) — 0 as
lx] - 0. This is obvious when u has compact support, by the modulus of
continuity result in Theorem 3.2. The general case of u € M #(R?) can be
reduced to the previous one as follows. Using the particle picture in Dawson
and Perkins (1991), if we start with w,(:) = u(- N B,(0)°), then the small
amount of mass in B,,(0)° will die very quickly, say by time (M), where
e(M) - 0 as M — . Hence, under P, , we have for any ¢, a(x) = o, (x)
for all |x| > M. This goes to 0 as M — =, by continuity in ¢ of the local time.

Thus we have that z — a(z,T) is uniformly continuous. Now an easy
argument shows that b, Yfp, . a(z,T)dz — a(x,T) uniformly in x.

To prove convergence in Lk(PM), for any even integer &,

E,[a,(x,T) — a(z,T)]"

k
(k) D Elapx,Dat " (x,T)]

m=0

0(,’,2)(—1)”‘15“[1;;'”/3 a(z,T) -+ a(z,, T)a*™(x,T) dz

l/n(x)m

H R

(,’fl)(—l)mb;”‘fB VE(21s ey 2y Xy ooy 23 T) dE.

0 1/a(0)™
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Thus, by the continuity of vf(z,,..., z;;T), we have for all x,
lim E,[a,(x,T) - a(x,T)]*
n—oo

k
=X (,ﬁ)(—l)mv;;(x,,”,x;'r) =vf(x,...,x;T)(1 - 1)" =0.

m=0

(Note that the L* convergence actually holds uniformly in x.) O

Proor oF THEOREM 2.4. Fix an w for which (2.1) holds and suppose that
dim M.F = v < min{2 — d/2,1}. It is enough to treat the case when T is a
finite interval. We will show that a(x,T) = 0. For small intervals B c T, it
follows from (2.1) that a(x, B) < CA((B)". So, since a(x, - ) is a finite Borel
measure on T and M. is a Borel set, Lemma 8.7.1. of Adler (1981) implies
that a(x, M,Y) = 0, and hence a(x,T) = 0. O

Proor or THEOREM 2.6. For d < 2, the result is trivial because M, C R,.
In the case of d > 3, it is enough to consider a finite time interval; we work
with the interval [0, 1] for simplicity.

We begin by showing that, P,-as.,

(3.35) dim M, < min{2 — d/2,1} fora.e.x € R%.
For each n, we form a dyadic cover, {O,,,}2_,, of [0, 1] by defining

Omn = [(m - 1)/2n,m/2n]

Note that £%_, diam O,,, = 1, for each n. Following Kahane [(1985), page
140], we set

0,. ifxeR(O
Opn(x) =

@, ifx&R(O

mn)’

mn)'

[R(T) was defined in Section 1.] Then, for each x and n, {0, ()2_, is a
(random) cover for M, = M[*(w). So, roughly speaking, we use only those
0,,, during which the support visits x.

It is easy to see that the theorem will be proved if we can show that, P -as,

2n
(3.36) liminf Y (diam O,,,(x))" <
m=1

n—o

holds for a.e. x, whenever g > 2 — d /2.

Recall the notation of Theorem 2.5. Using an idea in Tribe (1989), for a > 0,
we let Q, ={w: 8(3,w) > a} be the set of paths for which the one-sided
modulus of continuity holds (with ¢ = 3) on intervals of length less than a. By
Theorem 2.5, (), increases to a set of full probability as a | 0. Clearly then, it
suffices to show that, for any fixed @ > 0 and A c R of finite Lebesgue
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measure, (3.36) holds for a.e. x € A whenever w € ,. This will be accom-
plished by showing

(3.37) [[Ahmlnf Y. (diam Omn(x)) dx;Q,

n—oow

when B8 > 2 —d/2.
Now

2"

E|[ ¥ (diamOmn(x))de;Qa]
Amp=1

2n

=Eﬂ[ z

/ (diam 0,,,,)” dx; na]
m=1"ANER(0,,,)

Z 27"E, [A,(ANER(0,,)); Q]

m=1

2n n ’
< ¥ 27E,[04(A 0 S(Xinoyyer) 75 0
m=1

as long as 27" < @, where the last line follows from Theorem 2.5 with ¢ = 3.
Now from Dawson, Iscoe and Perkins [(1989), page 159], given ¢ > 0, there
is a constant ¢ = ¢(d) such that, for all ¢ > ¢2 and all x € R?, d > 3,

PIX(B.(x)) > 0] < ce®? [ b,.a(, y)u(dy)

= ce?? [ broa(y, ¥ u(dy).
Since x € S(X,)° if and only if X,(B(x)) > 0, this implies that, for all ¢ > &2,
E M (ANS(X));Q,] <E,[r,(ANS(X))]
(3.38) = [ B[ X,(B.(x)) > 0] dx
A
< Cu(R%)e?~2,
Apply this, with ¢ = 3h(27"), to get
E,[1,(A 0 5(X)*?™);0,] < Cu(R)392(n27" In2)“~/
=C(n2)¥* ', V¥it>(9In2)n27".
Thus we have, for 27" < a,
2"-
Eﬂ[[ Y, (diam O,,,(x))" dx; Qa]
Am=1
[9n In2]+1 2n

< Y 27", (A)+C Y 9-n(B+d/2-Dpd/2-1
m=1 m=[9n In2]+2
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where [b] denotes the greatest integer < b. The first sum goes to 0 as
n > o as long as B > 0. The second sum is bounded above by
CY2_ 2 mbB+d/2=Dpd/2-1 = Ognrg~n(B+d/2=Dpd/2-1 which also tends to 0
whenever 8 + d/2 — 1 > 1. Thus, for any 8 > 2 — d /2,

[fAhmmf Y (diam O,,,(x))" dx; Q ]

< liminfE#[f Y, (diam O,,,(%))" dx;Qa] =0,
n—e Am=1

proving (3.37), as desired.
To get Theorem 2.6 from (3.35), we employ a result in Evans and Perkins
(1991). Remember that we only have to treat the case d > 3. We know

E,JRdl(dim M, >B)dx =0

for B > 2 — d /2. Fubini’s theorem (the requisite measurability will be proved
later) implies

P(dim M, >p) =0, a.e.x.

But Theorem 1.1 in Evans and Perkins (1991) implies that, for any ¢ > 0 and
w,v € MF(IRd) P(X.,. €dw) and P(X,. € dw), considered as measures on
paths in M (R?), are absolutely continuous with respect to each other. If, for
some y € R, P (dim M, > B) > 0, then translating u by x — y we must have
P(dim M, > B) >0 for every x. This contradicts (3.35), so the theorem is
proved

We now prove the measurability which was needed in the above application
of Fubini’s theorem.

Lemma 3.9. If X, is super-Brownian motion with u € Mp(R?), d > 1,
then (x,w)— dim M,(w) is measurable with respect to the completion of
BRY) X F.

Proor. The case d = 1 is trivial. We consider the composition

(%, 0) > M(0) <5 dim M, (0).

Cutler (1984) showed that dim: F(R) — R is a measurable map, where F(R) is
the collection of closed subsets of R under the compact topology (see Cutler for
definitions). Thus it remains to prove that M: R% X Q — F(R) is measurable.
Equation (1.6) implies that, off a set of A, X P,-measure 0, M () is indeed a
closed set. Similar to the proof of Corollary 4.4.1.1 in Cutler (1984), it is
enough to show that, for any open set G C R,

(3.39) {(x,0): My(0) NG * 2} € BRY) X &

where the bar denotes completion.
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We can write G as a disjoint union of a countable collection of open
intervals, so it is enough to prove (3.39) when G is of the form [0, b) or (a, b),
where 0 < a < b < ». The case b = » can be handled with a countable union,
so we need only consider 0 < a < b < . Finally, since A, X P ({x, w): M (@) N
{a, b} # &) = 0 when a, b > 0 (S, is singular for all ¢ > 0, a.s., when d > 2),
and {(x, w): 0 € M, (w)} = S, X Q is measurable, it is enough to show that
{(x, w): M (0) N[a,b] # T} is measurable when 0 < a, b < .

Let A; ={(x,0): x € U,.«S;_(0)\ S(w))}. Then A; X P(A) =0. We
have

{(x,0): M,(0) N [a,b] + @)
= U n {(x,w): X,(B1/n(x)) > O}

tela,bln=1

=N U {(x,0) €45 X,(B,,,(x)) >0} UA

n>1tela,b)

N U {(z,0) €A X,(B,,.(x)) >0} UA,

nx1tela,blNQ

(3.40)

Il

where A C A,. The last equality is a consequence of the weak continuity of X,;
the second equality is proved as follows. The inclusion ““ C ” is trivial. To prove
the reverse inclusion, suppose

(xr,0)e N U {(x,0) € AS: X,(By,,(x)) > 0}.
n>1tela,b
Then there is a sequence {¢,} € [a, b] such that th(Bl/n(x)) >0, n>1.
Compactness implies that {¢,} has a subsequence which converges to some
point in [a, b]. Without loss of generality, assume ¢, — ¢ € [a, b]. Then it
follows that x € S,_. But for (x, w) € AS, x € S,_(w) implies x € S,(w), and
hence X,(B,,,(x)) > 0V n > 1, proving the desired inclusion.

The proof is finished by showing that {(x, ®): X(B, (%)) > 0} € BR?) x
&. A monotone class argument shows that {(¢, x, w): [ga f(x, y) X,(dy) > 0} is
jointly measurable for all bounded measurable f(x,y), and this yields the
desired result. O

REMARK. The results in Chapter 1 can also be improved slightly for a large
class of superprocesses (e.g., when the underlying process has a transition
density) by using Theorem 1.1 of Evans and Perkins (1991). These results can
be shown to hold for each fixed x (or ¢) P, -a.s., rather than P, -a.s. for a.e. x
(or t). For example, in Theorem 1.2 we have

P(X,({x: a(x,[t —&,t +¢]) =0,some e >0})=0forae.t>0)=1.
This can be improved to say, for each t > 0,
P(X,({x:a(x,[t —¢,t +&]) =0,s0omee > 0})=0)=1.
We omit the details.
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Proor oF THEOREM 2.8. Recall the notation in Theorem 2.8. Let m =
m(w) = min, ¢ o 7457 X,(R?) > 0 for all w € Q. We prove the theorem only in
the case of q = 1; the same proof works for other values of ¢ with only slight
notational changes. Begin by noticing that, for ¢ €[0,T], 0 <& < h, and
w € (),

t+e t+£

IS(X )C S(X,)*e- t))(S) ds < —f S(X )d>(s t)) ds,

since if S(X,) € S(X)?¢~9, then X, (S(X)*¢"D)/m = X, (R®)/m > 1. So it
suffices to show

t+e

X (S(X)¢(E)) ds > 0 a.s.on Q.
To this end, set ¢, = 2 " and use the definition of local time to get

Z E [ T (S (x) %) ds;ﬁ]

n=1

_ -1
- z gnHE#[fS(X)W a(x,[t,¢ +6,]) dx; Q]

<C i_o‘,ls;jle}/HE#[,\d(S(X,)""en’)]

(Theorem 2.2 with v = 1/2 — §/2).

Since d = 3, we may bound the expectation as in (3.38) to see that this sum is
finite. It follows that

7l ‘”"X(S(X)""E) ds >0, asn > w,

a.s.on Q forall t €[0,T]
Now note that if ¢,,, <& <e¢,, then

et [TX(S(X,)*7) ds < e}, HE"XS(S(X,)"’(E")) ds
¢
The result follows by letting £ | 0. O
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