The Annals of Probability
1993, Vol. 21, No. 3, 1571-1590

THE TRANSITION FUNCTION OF A FLEMING-VIOT
PROCESS

By S. N. EtHier! anD R. C. GRIFFITHS

University of Utah and Monash University

Let S be a compact metric space, let 6 > 0, and let v, be a Borel
probability measure on S. An explicit formula is found for the transition
function of the Fleming-Viot process with type space S and mutation

operator (Af)(x) = (1/2)0/5(f(&) — f(x)vy(dé).

1. Introduction and statement of results. The familiar K-type
Wright-Fisher diffusion process in population genetics assumes values in the
simplex
(1]‘) AK= {p = (pl"'-’pK):pl 2 07---’pKZ prl + o +pK= 1}
and is characterized in terms of the generator

a

i= apj

1 K 92 K K
(1.2) L=— Z pi(6;; _P')— + Z ( q;;P;
2,7 S ap;op; T\

where the infinitesimal matrix (q,;) describes the mutation structure. Here
D(L) = {Fla,: F € C3R¥)). Fleming and Viot (1979) generalized this pro-
cess, replacing {1, ..., K} by a compact metric space S, A, by Z(S), the set of
Borel probability measures on S with the topology of weak convergence, and
L by

1 82
(Lo)(w) = 5 [ [ p(dx)(.(dy) - u(dy»—(w—;’)’%
(1.3)
)
+ [ p(dr) A 5ii7;)<x),

where 8¢(u)/8u(x) = lim, |, o6 Ho(u + 8,) — ¢(u)} and A is the generator
of a Feller semigroup on C(S). Here 2(X) = {¢: o(u) = F{ fi,u),...,
(fr-u)), FeC*RH), f,...,fr€ 2A), k>1} and (f,u) = [sfdu. We
refer to S as the type space and A as the mutation operator. See Ethier and
Kurtz (1993a) for a survey article on Fleming-Viot processes.

It was discovered by Wright (1949) that when

(1.4) g;=%0,>0, i,je(l,...,K},i+j
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the Wright-Fisher diffusion has a unique stationary distribution = € P(Ay),
given by

ree, + -+ +0g)
1.5 m(dp) = pi - pixldpy - dpg_.
( ) ( ) F(Gl) F(OK) 1 1 K—-1

This is the Dirichlet distribution with parameters 6,,...,0,. Shiga (1990)
established the analogous result for the Fleming-Viot process with

(1.6) (4)(x) = 30 [ (£(£) = F(x))wo(dE),

where 6 > 0 and vy € Z(8): There is a unique stationary distribution II, , €
P(H(8S)), which is the distribution of the H(S)-valued random variable v
characterized by the property that whenever K > 2 and A,,...,Ay is a
partition of S into Borel sets, (v(A,),. .., v(Ag)) has the Dirichlet distribution
with parameters 0v,(A,),. .., 0vo(Ag). [It is easy to generzlize (1.5), allowing
some of the parameters to be 0; see (1.26).] Ethier and Kurtz (1986, 1993b)
showed that

(1.7) ()= P{ i:lpiag, € '},

where (pq, py,...) has the Poisson-Dirichlet distribution with parameter 6
[Kingman (1975)], and &, &,,... are iid. v,, independent of (p,, p,,...). Of
course, (py, pg, - . .) assumes values in

(1.8) Vv, = {p=(p1,p2,...):p12p22 oo >0, ‘Zpi= 1};

in particular, I, ,, is concentrated on Z(8S), the set of purely atomic Borel
probability measures on S.

Shimakura (1977, 1981) and Griffiths (1979) derived an explicit formula for
the transition density of the Wright—Fisher diffusion assuming (1.4). This had
previously been done in the one-dimensional case (K = 2) by Malécot (1948),
Goldberg (1950), and Crow and Kimura (1956). Our aim here is to obtain the
analogous result for the Fleming-Viot process assuming (1.6), namely, an
explicit formula for the transition function of the process; a transition density
does not exist in general.

To state the main result, we need some additional notation. For each n > 1
define 7n,: 8" — F(S) by letting 7,(x,...,x,) be the empirical measure
determined by the (not necessarily distinct) points x;,...,x, € S:

(1.9) Na(X1seey %,) =018, + - +8,).

Given 6 > 0, let {D,, t > 0} be the pure death process in Z_ U{x} starting at o
with death rates

(1.10) A,=n(n-1+0)/2, n=0,
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(0 is an entrance boundary) and define
(1.11) d’(t)=P{D,=n}, n=0,t>0.
It is known [see, e.g., Tavaré (1984)] that

1- ) @m—1+0)(m) (—=1)" "9, e,
m=1
(1.12) dewt)={ . if n =0,
L @m = 1+0)(m) (=)™ (7 )(n + O)mpe
m=n
if n>1.

Here and elsewhere, we use the notation @) = @ = 1 and, for each n > 1,

(1.13) apy=a(a+1) - (a+n-1), ay=a(a—1)--(a—n+1).

THEOREM 1.1. Let S be a compact metric space, and let 8 > 0- and vy €
P(8). Then the Fleming-Viot process with type space S and mutation operator
A defined by (1.6) has transition function P(¢, u, dv) given for each t > 0 and
w € HS) by

P(t,pu,-) =dj(), , ()
(1.14) + i dg(t)f p*(dxy X -+ X dx,)
n=1 s"

Hn+0,(n+0)_1(nnn(x1 ..... xn)+0u0}( ')’

where u* € P(S™) is the n-fold product measure u X -+ X p.

In particular, for each ¢ >0 and u € £(S), P(¢,u, ) is a mixture of
probability distributions of the form (1.7). It is therefore concentrated on
Z(8) [in fact, a stronger conclusion holds; see Ethier and Kurtz (1987) or
Shiga (1990)].

When S ={1,..., K}, the theorem includes the case (1.4) and, more gener-
ally, the case in which

(1.15) qu=%0120, i,je{l,...,K},i¢j; 01+"'+0K>0.

Here Shimakura (1981) derived the transition function and Griffiths (1979) its
absolutely continuous part.

The theorem has a number of corollaries.

Shiga (1990) proved a strong ergodic theorem in this setting; specifically, he
showed that, for each u € #(8S),

(116) tllm”P(t,/.L’ ) - Ho,yo(')”var = O’

where || - |l,ar denotes the total variation norm. An immediate consequence of
Theorem 1.1 is the following estimate of the rate of convergence in (1.16). (We
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note that the same estimate can be derived by means of a coupling argument
[Ethier and Kurtz (1993c)].)

CoroLLARY 1.2. Under the assumptions of Theorem 1.1 and for each
u € A(8S),

(1.17) IP(t, ey ) =Ty, (Illvar <1 —df(2), t>0.

Moreover, equality holds in (1.17) if u and v, are mutually singular.

Tavaré (1984) has shown that e ™ < 1 — di(¢) < (1 + 8) e forall ¢ > 0.
Here A, = 6/2.

If v, is nonatomic (and hence S is uncountable), the Fleming—Viot process
of Theorem 1.1 is referred to as the labeled infinitely-many-neutral-alleles
diffusion model. But there is a simpler, albeit less informative, way of describ-
ing the model. Topologize V, as a subset of the product space [0, 1]*, let

(1.18) vV, = {p = (Pfl,Pz"“):pl 2py> 0 20, .Zpi <1

be the closure of V, in [0, 1]*, and define ®: P2(S) — ¥, by letting ®(u) be the
sequence of descending order statistics of the sizes (or masses) of the atoms of
u. The image of the Fleming—-Viot process of Theorem 1.1 (with v, nonatomic)
under the mapping & is referred to as the unlabeled infinitely-many-
neutral-alleles diffusion model, and it was characterized by Ethier and Kurtz
(1981). The following result shows that the unlabeled model converges to
equilibrium more rapidly than the labeled model.

CoroLLARY 1.3. Suppose, in addition to the assumptions of Theorem 1.1,
that v, is nonatomic. Then, for each t > 0, the Borel probability measure
P(t,u,®71(-)) on V, depends on u € P(S) only through ®(u). In addition,
for each u € P(8S),

(1.19) 1IP(t, 1, ®71()) = T, (@7 Dllvar < 1 — () — d2(), t>0.

Of course, by (1.7), the Borel probability measure HO,VO(CI)_IC)) on V, is just
the Poisson-Dirichlet distribution with parameter 6. Tavaré (1984) has shown
that e 2 <1 — d§(®) — d%(¢) < (1/2X2 + 0)(3 + 8) e ** for all ¢ > 0. Here
Ag=1+0.

It is not surprising that the rates of convergence in (1.17) and (1.19) differ.
Ethier (1992) showed that the complete set of eigenvalues for the generator of
the unlabeled model consists of 0,— A,,— Ag,... . A similar argument shows
that, at least when S = [0, 1] and v, is Lebesgue measure, the complete set of
eigenvalues for the generator of the labeled model consists of 0,— A;,— Ay,
—As, ... . Thus, ignoring multiplicities, the labeled model has an extra eigen-
value —A,, which Ewens and Kirby (1975) have referred to in the discrete-time
context as the labeling eigenvalue.
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The two versions of the infinitely-many-neutral-alleles diffusion model have
another significant difference: the unlabeled model has a transition density
[Griffiths (1979), Ethier (1992)], whereas the labeled model does not. The
latter assertion is a consequence of the next corollary. A possible explanation
for this behavior is the fact that the nonzero eigenvalues have finite multiplici-
ties in the unlabeled model, thereby permitting an eigenfunction expansion,
whereas they have infinite multiplicities in the labeled model.

CoRrOLLARY 1.4. Suppose, in addition to the assumptions of Theorem 1.1,
that S is uncountable. Then, for each t > 0, there exists no o-finite positive
Borel measure I1 on P(S) such that P(¢, u, - ) < II(*) for all u € F(S).

Next, we consider the case in which 6 = 0. By (1.12),

0, if n =0,
1- Y (2m —1)(—1)" e mm-1t/2 Cifn=1,
(1.20) d°(t) ={ . "7?
T (2m = )(m) (=) () gy e,
m=n

if n > 2.

Note that d°(¢) is the probability that there are n equivalence classes at time ¢
in Kingman’s (1982) coalescent.

CoroLLARY 1.5. Let S be a compact metric space. Then the Fleming-Viot
process with type space S and mutation operator A = 0 has transition function
P(t, u, dv) given for each t > 0 and u € P(S) by

Here, for each ¢ > 0 and u € 9(S), P(t, u, * ) is concentrated on the sub-
set of Z(S) consisting of those measures with only finitely many atoms.
When S ={1,..., K}, Corollary 1.5 includes the case in which gq,; = 0 for all
i,je(l1,...,K}; cf. (1.4) and (1.15). In particular, it generalizes results of
Kimura (1955, 1956), Littler and Fackerell (1975), Griffiths (1979) and
Shimakura (1981).

There are analogues of Corollaries 1.2 and 1.3 when 6 = 0.

CoroLLARY 1.6. Under the assumptions of Corollary 1.5 and for each

22)  |PCn) - (@) 5, ()

<1-4d%¢), t>0.

var

By the inequalities following the statement of Corollary 1.3, we have
e'<1—-d%t)<3eforallt>0.
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CoroLLARY 1.7.  Under the assumptions of Corollary 1.5 and for each t > 0,
the Borel probability measure P(¢, u, ®(-)) on V, depends on u € F(S) only
through ®(w). In addition, for each u € F(8S),

(1.23) ”P(tn“’q)_l(’)) = 8a,0,0,.. 5 ()llvar <1 = d?(t)> t>0.

In particular, when 6 = 0, the unlabeled model is ergodic, whereas the
labeled model is not.

Corollary 1.5 also yields a description of a probability distribution on V, that
occurs in a theorem of Cox and Griffeath (1990) on the mean field asymptotics
for the planar stepping stone model with infinitely many types. See also Cox
(1989).

CoROLLARY 1.8. Under the assumptions of Corollary 1.5 and for each t > 0
and nonatomic u € F(S),

(1.24) P(t,u,®7Y(:)) = z_jldg(t)P{(qf,,...,U(;;,,o,o,...)e 4

where Ug,, ..., Uy, are the descending order statistics of the coordinates of
wy,..., UM, which is uniformly distributed over A ,,.

We next provide an alternative form for Theorem 1.1 (6 > 0) and Corollary
1.5 (8 = 0) in the special case in which S is finite or countably infinite. In this
case it is more conventional to replace the state space #(S) by Ax or

(1.25) A, = {P=(P1,P2,~--):P120,P220,-~’ Zpi= 1},
i=1

the latter topologized as a subset of the product space [0,1]*. To state the
result, we need to generalize the Dirichlet distribution (1.5) in two directions,
allowing K =  and allowing some of the parameters to be 0. If 1 < K < o, let
6;,>20,...,0, >0, assume 6, + -+ +0, >0, and put © = (6,,...,0,). If
K=o, let 6, >0, 0,>0,..., assume 0 < 0; + 0, + -+ <o, and put © =
(61,0,,...). For 1 < K < », we define Dirichlet(8) € Z(A) by

P{(Y,/Z,...,Yy/Z) €}, ifK<w,

(1.26) Dirichlet(®)(-) = P{(Y,/2,Y,/2,.. ) < ), K=o

where Y,,Y,,... are independent with Y; being gamma(6,, 1) distributed (by
definition, the gamma(0, 1) distribution is §,), and Z = =X ,Y,. This definition
is consistent with (1.5). When all parameters are 0, the Dirichlet distribution
can be defined arbitrarily.

CoroLLARY 1.9. (i) Let 2 <K <o, let 6, >0,...,0, >0, and put 0 =
0, + - +0g¢ and O =(0,,...,0;). Then the diffusion process in Ay with
generator L, given by (1.2) with infinitesimal matrix (q,;) satisfying q; ;=
(1/2)9; for all i,j€{1,...,K} for which i+ j, has transition function
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P(t, p, dq) given for each t > 0 and p € Ay by

© K
(127) P(t,p,") = L d°(t) Y (Z)pr' Dirichlet(a + ©)(").

n=0 as(Z )X lal=n

(i) Let K = o, let 6, > 0, 0,>0,..., assume that 0 =0, + 0, + -+ < o,
and put © = (0,,0,,...). Then the diffusion process in A, with generator L,
given by (1.2) [except that K = © and D(L) = {F|s: F € CXR”) depends on
only finitely many coordinates}] with infinitesimal matrix (g, ;) satisfying
q;; =(1/2)9; foralli, j = 1 for which i + j, has transition function P(¢, p, dq)
given for each t > 0 and p € A, by (1.27) with K = .

If 6 = 0, the n = 0 term in (1.27) is absent, and the probabilities d’(¢) are
given by (1.20). See Ethier (1981) for the details of the characterization of the
infinite-dimensional diffusion process in (ii).

The formula (1.27), which first appeared in this form in Griffiths and Li
(1983) (assuming K < © and 6, = -+ = 0 > 0) and Tavaré (1984) (assum-
ing K <wand 6; > 0,...,0 > 0), has a simple intuitive interpretation based
on Griffiths’ (1980) work on lines of descent. See Donnelly and Tavaré (1987)
for a lucid account, which includes a (nonrigorous) derivation of (1.27) using
these ideas. Of course, our formula (1.14) has a similar interpretation.

It follows that, if 6 > 0, the diffusion process of Corollary 1.9 has a
transition density with respect to its unique stationary distribution [namely,
Dirichlet(®)] if and only if 6, > 0 for each i. Part (ii) of the corollary answers a
question raised by Shimakura [(1981), Section 6-5].

It is known [Shiga (1990), Ethier (1990)] that the Fleming—Viot process of
Theorem 1.1 is reversible with respect to its unique stationary distribution
(1.7). In the setting of Corollary 1.9 with 6 > 0, the analogous result is clear
from (1.27), at least if K <o and 6, > 0,...,0; > 0. It is therefore disap-
pointing that the reversibility of the Fleming—Viot process of Theorem 1.1
does not seem to be an immediate consequence of (1.14). Our last corollary
remedies this situation.

CoroLLARY 1.10. Under the assumptions of Theorem 1.1 and for each
t>0,

Ho,uo(d/"')P(t’/"" dv)
= dg(t)nﬂ,vo(d#’)no,vo(dv)
(128) & ., .
+ Eldn(t) fg(s)l—lo’,,o(d/\) fs A(dxy X e X dax,)

X {Hn+9,(n+0)_1(nnn(x1 ..... xn)+9v0)(d#)nn+o,(n+o)—1(nnn(x1 ..... x,,)+ov0)(dV)}'
In particular, 11, , (du)P(¢t, u,dv) =11, , (dv)P(t,v,du) for each t > 0.
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We now comment briefly on the proof of Theorem 1.1. Perhaps the most
efficient proof of the theorem would take Corollary 1.9() for granted. This
would then give (1.14) for all sets of the form ¥~'(B), where B is a Borel
subset of Ax and ¥: P(S) — Ay is given by ¥(v) = (v(A,),..., v(Ag)); here
K >2and Ay,..., Ay is a partition of S into Borel sets. The theorem would
then follow easily. Alternatively, Corollary 1.9(G) would give (1.14) in the
special case in which both u and v, are purely atomic with only finitely many
atoms, and since the set of measures in &(S) with only finitely many atoms is
dense in Z(S), the theorem would follow by a continuity argument.

Instead, for the sake of clarity and elegance, we provide a self-contained
proof. It does not seem to substantially simplify matters to treat the finite-
dimensional case first. (We use the first approach of the preceding paragraph,
however, in the proof of Corollary 1.10.) An interesting aspect of the proof is
that the formula (1.12) for the pure death probabilities (1.11) is not used;
rather, we use the fact that these probabilities satisfy the Kolmogorov forward
equation. .

As a byproduct of the proof, we obtain an explicit formula for the “mo-
ments”’

(1.29) /g(s)< fisv) L o, v)P(t, p,dv),

where m > 1, f,,..., [, €C(S), t>0, and u € F(8S); see (3.13) below.
Dynkin (1989) implicitly used the function-valued dual process introduced by
Dawson and Hochberg (1982) to obtain an analytical expression for similar
moments in a very general framework. But because of our special choice of A
[see (1.6)], a simpler dual process is available and Dynkin’s result is not needed
here.

Section 2 contains some lemmas, and the proofs of the theorem and the
corollaries can be found in Section 3.

Finally, we remark that similarly explicit formulas can be derived for the
transition functions of certain measure-valued branching diffusions with im-
migration. This is not surprising, in view of the relationship [Shiga (1990)]
between such diffusions and Fleming-Viot processes. See Ethier and Griffiths
(1993).

2. Lemmas. The Poisson-Dirichlet distribution with parameter 6 > 0
can be described as follows [Kingman (1975)]: Consider an inhomogeneous
Poisson point process on (0, ») with intensity function u~'e %, u > 0. With
probability 1, the points can be arranged in decreasing order o, > o, > -+ -
and have a finite sum s = o; + o, + - - . Moreover,

(2.1) (01/8,05/s,...) is Poisson-Dirichlet(9)

and is independent of s.
Unless otherwise noted, S (a compact metric space), 8 > 0, and vy € P(8)
are fixed throughout.
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LemMaA 2.1. Let 6,,0, > 0 and v,,v, € P(8S). If the P(8S)-valued random
variables p, and p, have distributions 11, , and ,, ,,, if the [0, 1]-valued
random variable ¢ is beta(6,,0,) distributed, and if u,, wy and & are
independent, then

(2.2) P{g/'l'l +(1-¢e)puy € } = H01+o2,(91+02)—1(01u1+92vz)(')-

Proor. Let oy >0,> --- and s be as in (2.1) with 6 =6, + 6,. Let
ED, €D, ... beiid. vy, let €2, ¢, ... be iid. vy, and let xq, xs,... be iid.
with Ply; = 1} = 6,/(6, + 6,) = 1 — P{y; = 2}. Assume that {o;}, (€M}, (£},

)

and {x;} are independent. Define the sequences o, 0§?, ..., 0®,0{?, ..., and
é1, €2 ... by
(2.3) O:I(X‘)=0'l and §l=§‘§/\/z) ifJ= |{k:1$k Sl, Xk=Xl}|'
Then, with s, =0 + o’ + -+ and s, =@ + 0@ + -+, we have s =
s; + s, and .
© @ © @) ©

s, o Sy o o;
(2.4) — Y 8o+t —Y% =8 = L —0,,

s /2y st Y s 71 82 s

It remains to check that {0"} and {o{®} are independent Poisson point
processes on (0, ) with intensity functions 8,z e * and 6,u"'e * (u > 0);
that s,/s is beta(8,, 8,) [cf. Donnelly and Tavaré (1987)]; that ¢, £,,... are
iid. (8; + 6,)7"0,v, + 0,v,); and that the required independence holds. The
result then follows from (2.4). O

LemMa 2.2. Let 1 <K <» and suppose there exist distinct points
X .o..,%g €8 such that vy({x) + -+ +v({xg) = 1. Put O =
Ovo({x ), ..., 00({xk)), and let (V,,...,Vg) be Ap-valued with distribution
Dirichlet(®) [see (1.26)].

Alternatively, let K = o and suppose there exist distinct points x,, x,,... € S
such that vo({x;) + vo({xsh) + -+ = 1. Put © = (Ov ({x), 0v,({x,)), ...), and
let (V,V,,...) be A -valued with distribution Dirichlet(®).

Then, in either case,

K
(2.5) M, , ()= P{ Y Ve, € }
j=1
Proor. Let oy >0, > -+ and s be as in (2.1), and let &, &,,... be iid.

vy, independent of {c;}. Then
= S g

(26) Z ——6§, = Z { Z _} O, 5

i-1 8 j=1liz1l:g=x, §

and the result follows as before [cf. Donnelly and Tavaré (1987)]. O
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LemMa 2.3. Foreachn>1,m=>1, f,,..., f, € C(S), and u € P(8S),
j:snE[ 11< fi’ {n(xl’ LR xn)>]/“’n(dx1 X oo X dxn)

m k
- Ly gt B TT( T fom),

k=1"(m) genim, k) j=1 \iep;

(2.7)

where {,(x4,...,x,) is defined in terms of a A -valued Dirichlet(1,...,1) (or
uniform) random variable (U,,...,U)) by

(2.8) {2y, y%,) = U8, + - +U, 8, ,
and w(m, k) is the set of partitions B of {1,..., m} into k nonempty subsets
B, ..., By, labeled so that min B; < - -+ < min B,.

Proor. We proceed by inductionon n. Let m > 1, f,..., f,, € C(S), and
w € F(8) be arbitrary. If n = 1, both sides of (2.7) are equal to IT™, f,, u).

So let us suppose that n > 2. Let Y;,...,Y, be independent exponential
random variables with parameter 1, and put Z, = Y; + --+ +Y,. Then we can
define [consistently with (2.8)]

n Y"] n—1 Y]
(29) {n(xl”“’xn) = 'gl Z_axj’ gn—l(xl""’xn—l) = 'g]_ Z—_laxj’
J n Jj n
to conclude that
Zn—l

Y,
Cn(Xgs. oy x,_1) + -0,

(2.10) L(xg,.00,%,) = 7 7

It follows that
L"E[ le]:_< fi’gn(xl’ Tt xn)>:|l"n(dx1 X tee X dxn)

m VA -1
=f"E[il:_[1{ ; <fi)§n—1(x1”"’xn—1)>

Y,
+ Z_nfz(xn)}

%)z

n n

wr(dxy X -+ X dx,,)
- Y E
(2.11) Mc@,...,m)
TR DUSURANCIREN B § R CN
i ieM ieM°

(n - 1)(IMI)1(|M°|)

Mc(l,...,m) 7 (m)

R B K A A ]
Sn ieM

><< Il fi,ﬂ>,

ieM°

W (dxy X -+ X da,)
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where the sum over M c{1,..., m} contains 2™ terms and M°® =
{1,..., m} — M. Now by the induction hypothesis, the right-hand side of (2.11)
is equal to

(n = Dqarp IMIV M (n = 1)

)y Y Il Iyl

Mc(l,...,m): M#@ T (m) =1 (7 = D)amp ycncar, iy

(212) ]._.[<l_.[fw/-">< ]._.[ fwl’">+ < ]._.[ finu'>y
iey, Nimy Viefy,...,

where (M, 1) is the set of partitions y of M into I nonempty subsets
Y1 ---»7; labeled so that miny; < -+ < miny,.

It remains to check that the right-hand side of (2.7) coincides with (2.12).
Fix k €{1,...,m} and B € w(m, k), and compare coefficients of

1
(2.13) — Byl - B! ﬂ < Il fnu>
(m) LEB;

On the right-hand side of (2.7) the coefficient of (2.13) is n;;. In (2 12) we get
k + 1 contributions, depending on whether M€ is B,..., B8,, or empty. Thus,
the coefficient of (2.13) is

(2.14) k(n—Dp-y+ (n = D= (k+n—k)(n— )1 =ny,

as required. O

LEmMA 2.4. For each m > 1and fy,..., f,, € C(S),

f9(3)< f]_,V> Tt <fm’ V>H9,,,0(dV)
(2.15) n o
S VRN CAESVIB ARSI s [ § P

=1 yen(m,D Oimy j=1 \iey,
Proor. This is a restatement of Lemma 2.2 of Ethier (1990). O

LemMA 2.5. The probabilities d’(¢) defined by (1.11) have the following
properties:

@ E,cz, dot) =1 foreach t > 0.
(ii) Ifao, ay,a,,... is a real sequence such that lim, . a, = a € R exists,
then lim, ¥, .5 a,dit) = a.

(i) X, ez, n’d"(t) <o foreachr > 1and ¢t > 0.
(iv) The Kolmogorov forward equation holds, that is,

(2.16) —d"(t) = —A,dot) ¥ A,,,d%. (t), neZ,t>0.

REMARK. We have implicitly assumed that § > 0. But the lemma holds also
for 6 = 0.
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Proor. Define the operator Q) on C(Z,) by

0, if n=0,
(2.17) (2f)(n) = {An(f(n—l)—f(n))’ ;fzr;zl,

and let Z, U{x} denote the one-point compactification of Z,. We begin by
showing that the Hille-Yosida theorem applies to the operator Q, on C(Z,
U{e}) with domain 2(Q,) = {f € C(Z,U{=}): lim,_, (Qf)Xn) exists and is
finite}, defined by (Q,fXn) =(QfXn) for each n € Z, and (Q,fXw) =
lim, |, (Q f)(n). Since 2({,) contains the functions f for which (Q f)r) =0
for all sufficiently large n, it is dense in C(Z, U{x}). Given g € C(Z, U{~}) and
A > 0, the equation (A — Q) f = g can be solved recursively for f, beginning
with f(0) = A7'g(0). An inductive argument then shows that |f(n)| < A~1||g||
for all n € Z,. Moreover, Qf=Af~-g, so |[f(n — 1) — f(n)| < 21;"Ig|| for
each n > 1. It follows from A, ! <  that {f(n)} is a Cauchy sequence, and
hence so is {(Q f)X(n)}. In other words, f € 2(Q,) and (A — Q) f = g.

Let {S(¢)} denote the resulting Feller semigroup on C(Z, U{w}). For each
N=>1, )

feel N 0
[ et L dit)dt= [ e'S(t)Igs,..., w() dt
0 n— 0
(2.18) 0

0

A
- (1-0,)7'1 = -
( 0) ©,1,..., N)(°°) n=l;+1 1+,

so, letting N — « and using YA,! < » once again, we obtain
o €L, ez, di(t) dt = 1; since the sum in the latter integral is nondecreasing
in ¢ and bounded by 1, (i) follows.

As for (ii), define f e C(Z,U{»}) by f(n) =a, foreach n € Z, and f(x) =
a. Then lim, ,, S(¢) f(®) = f(), which by (i) is equivalent to the desired
result.

Next, let T,,T,,... be independent exponential random variables with
parameters Aq, A,, ... . Then

dg(t)=P{ f} T, <t< f:Tm}

m=n+1 =n

sP{ i Tm>t}

(219) Se_\/;{t:E:l:GXI){‘:/r7 i Tm}]

< Ce Vnt
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for all n > 3, where C =TI1%_,(1 — Vn /A,)"", since A, > Vn for such n.
This implies (iii).

Turning to (iv), fix n € Z, and ¢ > 0. Then, using (i),
dé(t+h) —di(t mn(R) — 8,

MG g g P

meZ,:m>n

for all » > 0, where p,,,(h) = S(h)I,(m). Now

Punh) _ 1= e it
h =< h =< )‘n+1

(2.20)

(2.21) sup

meZ,:mx=n+1

for all A > 0, so we can apply the dominated convergence theorem to (2.20) to
get (2.16). (A continuous function with a continuous right derivative is differ-
entiable.) O

3. Proofs. This section contains the proofs of the results stated in
Section 1.

Proor oF THEOREM 1.1. The formula
3.1 T(t = P(t,u,d
(3.1) Be(w) = [ o) P(t . dv)

defines a Feller semigroup {Z(¢)} on C(£(S)), which is generated by the
closure of .Z defined by (1.3) and (1.6) [Ethier and Kurtz (1993a)]. For each
t>0and u € H(S), let Q(¢, u, - ) denote the right-hand side of (1.14), and
define the one-parameter family {Z(¢), ¢ > 0} of bounded linear operators on
C(#(8S)) by

(3.2) %(t)o(n) = fg(s)go(v)Q(t,u,dv).

For each m > 1 and f,,..., f,, € C(S), define ¢, = . € C(F(S)) by
(3.3) Croeos ) = Cfomd o (s ),

;€ 9(.£) and

.....

t
(B4 T f = Cruecpn * [T ()L g, ds, 20,

t
(35)  %(t)er, .. f. = gt j;)@/(s),/qofl ,,,,, ; ds, t>0,
forall m > 1and f,,..., f,, € C(S). Then, in view of the identity

Lot = ) Prrvecis fomts Fifys Fivtroeor Fymts Fyatoeeor Fm
l<i<j<m
m
(3.6) +30 2 Vo) @h, o fyn franees
j=1
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(3.4) and (3.5) would imply that, for each m > 1, the function

hm() = sup sup |T()ep, .. 1, (R)
fio-es fm€C(8): peP(S)
(3°7) max1<z<m”fz"<1
%) ey, . ()l
satisfies
(3.8) ho(t) <24, [Ro(s)ds, >0,
0

and hence is identically 0 by Gronwall’s inequality. From this we could
conclude that J(t) = %(t) for all ¢ > 0, and consequently that P(t,u, - ) =
Q(t, u, ) for all ¢ >0 and p € H(S), as required. Thus, to complete the
proof, it is enough to verify (3.5).

Fix m>1, fi,..., f, € C(S), and u € L(8S). It will suffice to show that

4 .
G ZD¢r (W)= X O 1 e fyn e £l )

l<i<j<m

%02<fp”o>%(t)¢fl Frets s k)

—AaZ(t) ey, p(R)
for all ¢ > 0, and

(3.10) im () er,, 7, (1) = ep,. p (1)
For each n > 1 and (x,,...,x,) € S”, Lemmas 2.1 and 2.2 imply that
Hn+0,(n+0)_l(nnn(x1 ,,,,, xn)+0v0)( ")

=Ple(Us,, + - +U,8, ) + (1 —e)A € -},

where ¢ is beta(n, 8) distributed, (U,,...,U,) is A ,-valued Dirichlet(1, ..., 1),
A has distribution I, , , and &, (Uy,.. U ) and A are independent; there-
fore, using the notation in (2.8),

(3.11)

f@(S)(pfl ..... fm(V)Hn+e,(n+o)‘1(nn,,(x1 ..... )y +0vg(AV)
= E[ ljl< firel(xg,...,x,) + (1 — e)A}]
= Y E[5|M|(1 - g)lMcl]E[ ]_IL( fir C(x15- 0, %))

Mc{1,..., m}

xE[ <f,-,A>],

ieM®
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where M¢ ={1,..., m} — M. It follows from this and Lemmas 2.3 and 2.4 that

YWy = a0 T

M| k
(3.13) x{an L et s TT(I7 )}

k=1 pBem(M,k)

{'Af (=0t (i - 10 1T f>}

=1 'yG‘rr(Mc 1) Jj=1 le'y

for all ¢> 0, where w(M, k) is as in (2.12) and the first (resp., second)
expression within braces is 1 if M (resp., M°) is empty.

Notice that (3.10) is immediate from (3.13) and Lemma 2.5(ii).

Fix t>0and Mc{l,...,m}. If M+ @, fix k(l,...,IM|}-and B €
m(M,k); if M=@, put k=0. If M+ @, fix le{1,...,IM°]} and y €
m(M¢, 1); if M¢ = @&, put [ = 0. We verify (3.9) by comparing coefficients of

{lﬁln 18T (T m}}
zeBJ
(3.14)
X{(Im ~ 1)t (il - 10 TT( 1T f>}

Jj=1 i€y;

on both sides of (3.9) [after substituting (3.13)]; the first (resp., second)
expression within braces in (3.14) is 1 if M (resp., M°) is empty. The
coefficient of (3.14) on the left-hand side of (3.9) is

; Y (Al 0 T r)
ng() n( ) (n + 0)(m) - ngo{ Andn(t) - An+1dn+l(t)} (n + 0)(m)
- k) (n + L) }
(3.15) nZ An“d"”(t){ (n+0)m  (n+1+8)m
- nz=: n( ) (n + 0)(m)

x{%(n+m—1+0)(m—k)—)‘m}’

where the interchange of summation and differentiation is justified by Lemma
2.5(iii); the first equality uses Lemma 2.5(iv), and the rest is algebra. The
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coefficient of (3.14) on the right-hand side of (3.9) is

}k: Y Byl™ lzd%t)—””—

11<i<j<m:i,jE€By ( n+ 0)("1 D

l )
+ Y z (vl-1)7" % dﬁ(t)Tn[k]—

UI'=11<i<jsm:i,jey, n=0 (n+0)im-n

!

+l9 % v olzd(t)—””—

U'=11<i<m:vy,={i) n= ( + 0)(m Y]
—A,, Z d? (t)—(n T 00,
_ v _ 18] -1
(3.16) = E di(t )(n " 9)<m> {(n +m—1+9) . |BZ,,,|22( 2‘)|Bk,|

+ ¥ (lyzl'l)(lwl EEIREE ll _Am}

U lypl=2 U |ypl=1

* 1
k l
wa-e En o)
k=1 =1
* 1
=nz=: n( )?n_'__o)(m){g(n+m—l+0)(m—k)—)tm}.

This proves (3.9) and completes the proof. O

ProoF or COROLLARY 1.2. Observe that if II, and II, are finite positive
Borel measures on &(8S), then

”Hl - Hz”var = sup |H1(F) - Hz(r)l
(3 17) e B(F(S))

< max{II,( £(8)), I(L(8))},

and equality holds if II, and II, are mutually singular. This implies (1.17).

Now if u and v, are mutually singular, there exists A € #(S)
such that w(A) =1 and vy (A) = 0. Letting T = {vr € 2(S): v(A) = 0}, we
conclude from (1.7) that II,, (I =1 and, if n>1 and x,,...,x, €A,
I, 0,(n+0) Ynmucan,.. ., )+ 0w L ) = 0. Thus, the measures II; and II, to which
we apply (3.17) are mutually singular. O
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Proor oF CoroLLARY 1.3. For the first assertion, it is enough to show, for
fixed n > 1, that

depends on u € (8) only through ®(u). By Lemmas 2.1 and 2.2, (3.18) is
equal to

n o]

(819) [ w(dr;x o x dxn)P{<b(e L Us, +(1-e) L piag,.) S }

" i=1 i=1
where ¢ is beta(n, 9) distributed, (U,,...,U,) is A, -valued Dirichlet
,...,1,(py, py, ...) is Poisson-Dirichlet(9), ¢,,¢&,,... are iid. vy, and e,
Uy, ...,U0), (py,py,...), and (£,&,,...) are independent. Since vy is
nonatomic, the probability in (3.19) depends on (x,..., x,) only through the
partition of (1,...,n} induced by (x,,...,x,) (ie., the partition of {1,...,n}
for which i and j belong to the same subset if and only if x; = x;), and the
p"(dxy X - -+ X dx,)-distribution of the partition of {1,...,n} induced by
(x1,...,%,) depends on u only through ®(u).

As for (1.19), it suffices to show that (3.18) with n = 1 coincides with
I, , (®7'(+)). By (3.19), this is equivalent to the following assertion: If &, is
beta(1, 6) distributed and (p;, py, ...) is Poisson-Dirichlet(6) and is indepen-
dent of £, then the descending order statistics of &,,(1 — £¢)p;, (1 — £4)p,, . . .
also have the Poisson-Dirichlet() distribution. But the latter is an immediate
consequence of the fact that p,, p,,... are distributed as the descending order
statistics of &;,(1 — £))ey,(1 — £,X1 ~ £,)e5,..., where &;,¢,,... are iid.
beta(1, 6) [see, e.g., Donnelly and Joyce (1989)]. O

ProoF oF CorOLLARY 1.4. Foreach x € S,let I, = {u € P(S): u({x}) > 0}.
By (1.7), I, ,(T,)=1 if x €S and v, €T,. Consequently, Theorem 1.1
implies that P(¢,68,,I,) > 1 —d§(t) > 0 for all £ > 0 and x € S. Thus, if for
some ¢ > 0 there were a o-finite positive Borel measure IT on Z(S) such that
P(t,u, ) <II(-) for all u € P(8), it would necessarily be the case that
IIT,) > 0 forall x €8S.

But we claim that, if S is uncountable, there does not exist a o-finite
positive Borel measure IT on #(S) such that II(T,) > 0 for all x € S. Suppose
not, that is, suppose that such a II exists. By the uncountability of S and the
o-finiteness of II, there exists a finite positive Borel measure on Z(S), also
denoted by II, such that II(I,) > 0 for uncountably many x € S. It follows
that there exist ¢ > 0 and distinct x,x,,... € S such that II{u € P(S):
p({x,}) > ¢} > ¢ for each n > 1. But this implies that IT{u € P(S): u({x,)) > ¢
for infinitely many n > 1} > ¢, a contradiction. O

Proor oF COROLLARY 1.5. Temporarily denote . [defined by (1.3) and
(1.6)] by £, denote {7(¢)} [defined by (3.1)] by {Z,(#)}, and denote P(t,u, - )
[given by (1.14)] by Py(t,pu, ). As 0 - 0, Lo - Lo for all ¢ € D(L),
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hence J,(t)p = T(t)¢ for all ¢ € C(F(S)) and ¢ > 0 by Trotter’s semigroup
approximation theorem, and therefore P,(¢,u, ) = Py(¢, u, ) for each ¢ > 0
and pu € A(S). Consequently, the corollary will follow from Theorem 1.1,
provided the map E: (0, @) X P(8) —» P(F(S)) defined by E(6,v,) =11, , is
continuous. But this is immediate from Lemma 2.4. O

Proor oF CoroLLARY 1.6. Noting that II, , = §; for each x €S, the
proof is similar to that of Corollary 1.2. O

Proor oF CoroLLARY 1.7. The proof of the first assertion is similar to the
proof of the corresponding result in Corollary 1.3, and the second assertion is
immediate from Corollary 1.6. O

Proor oF CoroLLARY 1.8. This follows from Corollary 1.5 and Lemma 2.2.
0O

Proor or CoroLLARY 1.9. (i) Let S ={1,..., K} and choose v, € #(8S) so
that vy =06, + -+ +0x0%. Given p € Ag, define p € P(S) by u =
P61 + * - +pgdk, and observe that, for each n > 1,

j:sn,u,"(dxl X X dxn)Hn+0,(n+0)"l(nnn(x1 ..... xn)+0v0)(’)
(3.20) K
= Xz (Z) l_[pia‘Hn+0,(n+0)“1((a1+01)51+ +(aK+9K)aK)( ).
«€ @)K lal=n i=1
Thus, the result follows from Theorem 1.1, Corollary 1.5 and Lemma 2.2.
(ii) Put S = N U {x} and proceed as above. O

ProoF oF COROLLARY 1.10. By Theorem 1.1, it is enough to show, for fixed
n > 1, that

l—lo’,,o(dp,)fsnp,"(dxl X X dxn)nn+0,(n+0)_1(nnn(x1 ..... x,,)+ov0)(dV)

(3.21) = fg(s)no,uo(dA)-/:snAn(dxl X+ X dxn)

X {Hn+(9,(n+(9)—1(m1n(x1 ..... xn)+0vo)(d/‘l’)

Hn+0,(n+0)"1(nnn(x1 ..... x,,)+ovo)(dV)}-

For this it suffices to show that the integrals of {fj, ) {f., 1"
(g1, v - (g, v) with respect to these measures are equal, whenever m,[ > 1
and f,..., [, &1 ---, & are simple functions on S. Thus, we need only show
that, if K> 2 and A,,..., Ag is a partition of S into Borel sets, and if ¥:
P(S) = Ay is defined by ¥(v) = (v(A)),...,v(Ag)), then the two measures
in (3.21) give the same mass to ¥~ (B) X ¥~(C), where B and C are
arbitrary Borel subsets of A . But with ® = (8v,(A,), ..., 0v,(Ag)), the latter
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assertion is equivalent to

y (Z)E{ﬁ VL."‘tIB(Vl,...,VK)]Dirichlet(a + ©)(C)
i=1

ae@Z )X lal=n

<o E (el

acs@Z X lal=n

(3.22)

X Dirichlet(a + ©)( B)Dirichlet(a + 0)(C),

where (Vi,...,Vg) has distribution Dirichlet(®), and this is easily seen to
hold. O
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