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TRIANGLE CONDITION FOR ORIENTED PERCOLATION
IN HIGH DIMENSIONS

By Bao Gia NcUyYEN! AND WEI-SHIH YANG?

Illinois Institute of Technology and Temple University

In this paper, we apply the Brydges—Spencer lace expansion and the
Hara-Slade analysis to obtain the triangle condition for the nearest-
neighbor oriented bond percolation in high dimensions and for the spread-
out oriented bond percolation in Z¢ x Z, d > 5. Furthermore, we also
establish the infrared bound in the subcritical region and the mean-field
behavior for these models.

1. Motivation and main results.

1.1. Motivation. Hara and Slade (1990a) show that the triangle condition,
which was introduced by Aizenman and Newman (1984), holds for nearest-
neighbor unoriented percolation in sufficiently high dimensions and for a class
of spread-out unoriented percolation processes in dimensions d > 6. They note
that their technique may not be extended in a straightforward manner to
reproduce the same type of result for oriented percolation. One reason for the
breakdown of their proof in applying the technique to oriented percolation is
the symmetry of the unoriented models; that is, if x is connected to y, then y
is also connected to x. The symmetry property often plays a crucial role in
differentiating the two models. In this paper we show that the Hara-Slade
technique can be modified to produce the triangle condition for nearest-neigh-
bor oriented bond percolation in high dimensions and for a class of spread-out
oriented percolation processes in Z¢ X Z with d > 4 despite the lack of
symmetry of the model. The spread-out oriented percolation is believed to be
in the same universal class of nearest-neighbor oriented percolation. Our
results for the spread-out oriented percolation in dimensions d + 1 >4 + 1
strongly support a prediction by Obukhov (1980) that the critical dimension
decreases from 6 for unoriented percolation down to 4 + 1 for oriented perco-
lation.

Our modification of the Hara—Slade technique is based on the lace expan-
sion. Hara and Slade’s lace expansion originated from the Brydges—Spencer
lace expansion that has been used successfully in studying self-avoiding ran-
dom walks, as we may see from Brydges and Spencer (1985), Slade (1987,

Received November 1990; September 1992.

'Supported by the Education and Research Initiative Fund from Illinois Institute of Tech-
nology.

Research partially supported by NSF Grants DMS-89-02123 and DMS-90-96256.

AMS 1991 subject classifications. Primary 60K35; secondary 82A25.

Key words and phrases. Lace expansion, triangle condition, infrared bound, oriented percola-
tion, mean-field behavior.

1809

[Z8 (€
Y‘Jg
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [& )z
The Annals of Probability. STOR ®

WWww.jstor.org



1810 B. G. NGUYEN AND W.-S. YANG

1989) and Yang and Klein (1988). The lace expansion also has been applied to
study lattice trees and lattice animals [Hara and Slade (1990b, 1992¢)]. Our
observation is that oriented percolation is analogous to self-avoiding random
walk. As we shall see later, it looks like a type of “self-avoiding bubble walk.”
This observation has helped us to apply directly the Brydges—Spencer lace
expansion together with the techniques in Slade (1987) and Hara and Slade
(1990a). It turns out that by exploiting the Markov structure of the oriented
model, we have come up with a proof for establishing the triangle condition in
high dimensions that is much simpler than the proof given by Hara and Slade
(1990b) in the unoriented case. Furthermore, there seems to be no difficulty in
applying our method to the continuous-time version of oriented percolation:
the contact process. We note here that this method has also been exploited to
produce a Gaussian limit for the connectivity function of oriented percolation
for p < p, in our other works [see Yang and Nguyen (1991) and Nguyen and
Yang (1992)].

1.2. Main results. In this paper we first consider independent Bernoulli
nearest-neighbor oriented bond percolation defined on the (d + 1)-dimensional
lattice Z? X Z. From each (x,n) € Z% X Z there is an oriented bond to
(x e,y n+ 1), where ¢, ), u =1,...,d, are the canonical unit vectors in
Ze.If b = {(y,n),(x,n + 1)} is a bond, then we refer to (y,n) and (x,n + 1) as
the bottom and the top of the bond b, respectively. Let each oriented bond be
independently open with probability p and closed with probability 1 — p. Let
P, and E, denote the probability and the expectation of the model accordingly.
Declare that (x,n) can be reached from (y, m) if there is an open path
connecting (x,n) from (y, m); that is, there is a sequence of open bonds
{b;; 1 =1,...,n — m} such that the bottom of b, = (y, m), the top of b,,_,, =
(x, n) and the top of b, = the bottom of b, , for i = 1,...,n — m — 1. Denote
this event by {(y, m) — (x,n)}. We also declare that (x,n) is connected to
itself. Furthermore, we say that a (possibly random) set B € R? X R can be
reached from a (possibly random) set A € R¢ X R if some site (x,n) in the
closure B can be reached from some site (y, m) in the closure A. This event is
denoted by {A — B}.

Let C,={(x,n): (0,0) = (x,n)} and set |C,l equal to the number of
sites in C,. Consider the percolation probability as a function of p: 8(p) =
P(ICyl = »). Let p, = inf{p: 6(p) > 0}. It is well known that 0 <p, <1,
p. = 1/2d + o(d™ ") [see Cox and Durrett (1983)], p, = sup{p: E (ICy)) < o}
[see Aizenman and Barsky (1987) or Menshikov, Molchanov and Sidorenko
(1986)] and 6(p,) = 0 [see Bezuidenhout and Grimmett (1990)]. We are inter-
ested in understanding the critical behavior of oriented percolation by studying
the critical exponents vy, 8, 8 and A, defined as follows:

E,(ICol) ~ (p. —p) "’ as p 1 p.;
P,(ICol = ») ~ (p — p,)* as p | pe;
Y P (ICl=n)[1-e""]~h? as h |0;

l<n<wx

Ep(lColHl)/Ep(ICoI’) ~(p.—p) ™" asplp,.
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[Here E (ICoD) ~ (p, — p)~” as p 1 p, means that there are positive constants
K,, K, such that K(p, — p)™” < E(ICy]) < Ky(p, — p)~7, similarly for the
others.] It is believed that these critical exponents should take the mean-field
values

(1) y=B=1, 6=2, and A,,, =2, fort=1,2,...,

in more than four dimensions [see Obukhov (1980)]. One reason for believing
this is that in high dimensions (more than four) oriented percolation should
resemble percolation on the Bethe lattice for which it can be shown that these
critical exponents have the values in (1). Another, stronger, reason for this
belief is that in more than four dimensions the following triangle condition is
expected to hold:

(2) I%iglw sup{Vpc(x, n):l(x,n)l = R} =0,
where [(x, n)| = (lz|* + [n[*)'/2 with |x| = (Z¢_,|x,1*)*/? and

Vp(x, n) = Z Z Pp((O,O) - (ul, n1))Pp((u1,n1) - (u27n2))
(3) (uy,ny) (ug,ny)

X Pp((x7 n) - (u27 n2))
Condition (2) is a modified version of the following triangle condition:

(4) sup  V,(x,n) <,

(x,n)eZixZ
which is analogous to the one that was introduced by Aizenman and Newman
(1984) in the context of unoriented percolation. The modification was intro-
duced by Barsky and Aizenman (1991) in order to deal with the oriented (as
well as unoriented) situation. For unoriented percolation, using the
Riemann-Lebesgue lemma, one can show that the Aizenman-Newman trian-
gle condition implies the Barsky—Aizenman triangle condition. For oriented
percolation in dimensions d > d, = 4, we can obtain the Barsky—Aizenman
triangle condition from the infrared bound which is stated as follows: For
some positive constants ¢, and c,, uniformly with respect to p € (0, p,),
(5) U e —
c,lkI? + c,ltl
where W(E, ¢) is the Fourier transform of
P,(x,n), ifn=>1,
0, if n <0.

Y(x,n) = {

In order to be more precise on the Fourier transform and its related norms, we
introduce the following notation.

NotaTioN. The Fourier transform of a function f defined on Z? X Z is

f(k,t)y= ¥ ¥ f(x,n)e* e with (k,t) € [-7,7]* X [-7,7].

xeZinezZ
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The integrals [fdk and [[fdkdt mean

fke[_w w]dfdk and ff( fdrdt,

k) el—m, ¥ X[—m, 7]

respectively. We also use the following norms:

17l = £ If(x,n)l")l/q;

xeZz4

ir=( T T If(x,n)l")l/q;

xezZ?nez

17C.0ll = @) ([ e oy ae]

WAl = (27r)_d_1(fflf(k,t)l" dkdt)l/q.

To see how the infrared bound (5) implies the Barsky-Aizenman triangle
condition (2), we argue as follows. Since d > d, = 4, the RHS of (5) is
L ,.yintegrable with respect to the Lebesgue measure dk dt over [—, 7]¢ X
[—, 7] for some & > 0. Thus || %3] ,.. is uniformly bounded on pE (0 D).
By the Hausdorff-Young 1nequa11ty, | ¥ % ¥+ ¥, is uniformly bounded on
p €(0,p,), where (1 + &)~! + (¢)7! = 1. Thus ||V, [l < = because || V|l is
left continuous as a function of p; hence, (2) follows

The triangle condition (2) plays a very important role in showing the
mean-field behavior of the (unoriented as well as oriented) percolation process,
as we may see from Aizenman and Newman (1984) for y = 1, Aizenman and
Barsky (1987) for {8 = 1, 8 = 2} and Nguyen (1987) or Barsky and Aizenman
(1991) for (A, = 2, t = 2,3,...}.

In this paper we establish the following result:

THEOREM 1. For nearest-neighbor independent Bernoulli oriented bond
percolation on Z¢ X Z, there exists a sufficiently large number d o Such that for
d > d, the triangle conditions (2) and (4) and the infrared bound (5) are
satisfied. Furthermore, the critical exponents take mean-field values as in (1).

Our method of calculating d, is tedious; hence we have made no attempt to
compute its best possible value. Even though it seems that we have an efficient
expansion for oriented percolation, a new idea would be needed to obtain the
triangle condition right down to the predicted critical dimension of four. The
problem of achieving the mean-field behavior right down to the critical dimen-
sion d, = 6 remains unsolved for unoriented percolation. Hara and Slade
(1992a, b) show that for self-avoiding random walk the mean-field behavior
may be obtained right down to the critical dimension four. It would be an
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important problem to combine their work and our method to obtain the
mean-field behavior for oriented percolation down to the critical dimension.

In addition to the nearest-neighbor situation, we also apply our technique to
obtain the triangle conditions (2) and (4) and the infrared bound (5) for the
spread-out oriented percolation process in Z¢ X Z, d > 4. In this model each
oriented bond b = {(y,n),(x,n + 1)} is independently open with probability
Po,x—y and closed with probability (1 — p, . _,), where

pO,x = pOx = pg(x/L)L_d
for some nonnegative function g defined on R¢ such that the following hold:

1. [pag(x)dx = 1;

2. g(x) < const. exp(—¢|x|) for some ¢ > 0;

3. g is invariant under rotations by 7 /2 and reflections in the coordinate
hyperplanes;

4. 3'g(x) is piecewise continuous and [Rald’g(x)|dx < o

5. g(x) and d’g(x) are continuous at 0 and g(0) > 0.

Here 4! means I werd,, for I € {1,2,...,d}, and is interpreted as a distribu-
tion. This sort of spread-out distribution was introduced by Hara and Slade
(1990a) to study unoriented percolation in dimensions d > 6. It is commonly
believed that the spread-out percolation model belongs to the same universal
class as the nearest-neighbor percolation model.

The notions of cluster, connectedness, and so forth, of the spread-out model
can be defined similarly to the nearest-neighbor case. The following theorem is
an analogue of Theorem 1.

THEOREM 2. For the spread-out bond percolation model defined on Z¢ X Z
with d > 4, if L, is sufficiently large, then whenever L > L, the triangle
conditions (2) and (4) and the infrared bound (5) hold; moreover, the critical
exponents take mean-field values as in (1).

The remainder of our paper consists of five sections. In Section 2 we discuss
the lace expansion method for decomposing W(k,¢) into a sum of the lace
parts. In Section 3 we describe the Feynman-type diagrams that play an
important role in the proofs. In Section 4 we show that the lace parts can be
estimated in terms of the Feynman diagrams. The proofs of Theorems 1 and 2
are given in Sections 5 and 6, respectively.

2. Lace expansion. Given a configuration n, we say that a bond b is
pivotal for the connection (0,0) - (x,n), n > 1, if every open path in 7
reaching (x,n) from (0,0) must use b. Observe that if there are no pivotal
bonds for (0,0) — (x,n), then there are at least two disjoint open paths
reaching (x, n) from (0, 0). In this case we say that (0, 0) is doubly connected to
(x,n), denoted by (0,0) = (x,n). On the other hand, if (0,0) is not doubly
connected to (x,n), then there are exactly m, m > 1, pivotal bonds
by, by,...,b, for (0,0) » (x,n). We may arrange these pivotal bonds in

m
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natural order in the direction from (0, 0) to (x, n) and write b, < b, < -+ <
b,,. Thus by varying n in {(0, 0) — (x, n)} we can decompose this event into the
union of {(0,0) = (x,n)} and

U U {b1,b;,...,b,, are exactly m pivotal bonds for (0,0) — (x,n)},
m=1

where the second union is over the collection of m bonds b, <b, < -+ <b,,
in the lattice Z¢ X Z. Note that this decomposition is disjoint. Our next step is
to write

I{b,,b,,...,b,, are exactly m pivotal bonds for (0,0) - (x,n)},

where I denotes the indicator function, as a product of 2m + 1 independent
random variables and a Gibbs factor describing the interaction of the oriented
percolation process. To do so we set

B, = {(u,t) €Z?%xZ:(0,0) > (u,t) - bottom of bl},*
B, = {(u,t) € Z? X Z: top of b, - (u,t) — bottom of bi+1},
fori=1,2,...,m -1,
B, = {(u,t) € Z% X Z: top of b, = (u,t) - (x,n)}
We declare that, for i = 1,...,m — 1,
B, bubbles iff the top of b, = the bottom of b, ;

and
B, bubbles iff (0,0) = the bottom of b,

B,, bubbles iff the top of b,, = (x, m).
We then write

I{(0,0) — (x,n) with exactly m pivotal bonds b, <b, < --- <b,,}
= J11(b,; open) [ ] I( B, bubbles)(Gibbs factor)
i=1 i=0

with the Gibbs factor defined by I'ly_; . ;. ,,(1 + U;;), where
U;; = —I(B; - B, without using b, ,,...,b;),

since all the reference bonds b,,..., b,, are not pivotal unless the Gibbs factor
n05i<jsm(1 + [sz) =1

Expand the Gibbs product as XI1;; U, ;, where G runs over all subsets
of @, =1{ij: 0 <i <j < m}. Each G can be represented by a graph on the set

of vertices {0,1,..., m} with bonds ij € G. A graph G is called connected if



TRIANGLE CONDITION FOR ORIENTED PERCOLATION 1815
UijeG[i,j] = [0, m]. Define, for n > 1,

V(x,n;by,...,b,;G) = E, [Ill(bi open)[IOI(Bi bubbles) [T U],

ijeq

P,((0,0) = (x,n))

Y(x,n) = + Y Yy Y ¥(x,n;b,...5,;G), ifn<l,
m=1b,< -+ <b,, Ge B,
O’ if n < 0,
£,((0,0) = (x,n))
V.(x,n) = + Y Y Y Ww(x,n;b,...b,;G), ifn=>1,
m=1b;< -+ <b,, G connected
07 if n < 0.

Note that the function ¥ is still the same as the one defined earlier. Using the
same argument as in Brydges and Spencer (1985) and exploiting the Markov
property of the oriented percolation model, we can show the following.
THEOREM 3. For p < p,, we have the following renewal equations:
1+ W(k,t)
1 - 2dpe”D(k)(1 + ¥,(k,t))’
where D(k) = (1/d)L?_, cos k;, for the nearest-neighbor model, and
1+ ¥ (k,t)
1 - ppgle*Dy(k)(1 + V. (k, 1))’

where p;' = L. g(x/L)L™? and Dy(k) = p, X .g(x/L)L~%** for the
spread-out model.

(6) 1+ W(k,t) =

(7 1+ W(k,t) =

Note that for p < p, the function ¥ W(x, n) decays exponentially as n —
with a positive rate which is known as the inverse correlation length [see
Aizenman and Newman (1984)]. Thus ¥ (%,¢) is well defined for (k,t) €
[—m, 7] X [—m,w]if p < p,. Notice also that, even though the connected part
W¥.(x, n) may be well defined for unoriented percolation, the renewal equations
in Theorem 3 may not hold in this case due to the lack of the Markov property
(this is the reason the Hara-Slade expansion for unoriented percolation is
more complicated to deal with, in our opinion).

Further, we can decompose the connected part V¥, into the lace parts as
follows. From any connected graph G defined on {0,1,..., m} we set induc-
tively s, =0, ¢t; = max{¢t: 0t € G}, ¢,,, = max{t: st € G for some s <¢},
S;+1 = min{s: st; ; € G}. This defines a lace .#(G) which is a graph consisting
of all the bonds {L; = s;¢,} obtained from G in this fashion. The number of
bonds in .£(G) is called the order of the lace. Given a lace L ={L,,..., L},
we denote by (L) the set of bonds st & L that are compatible with L in such
a way that Z(L U {st})) = L, and we let A(x,n;b,,...,b, ;L) be an event

s Ymos
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such that its indicator function is equal to

TT1(5; open) [T1(B; bubbles) TT1U,;| TT (1+1U,).

ijeL ijeC(L)
Define
\Ifo(x,n) = Pp((O’O) = (x’n))
V,(x,n) = Y, Y Y E,(A(x,n;by,...,b,;L)),
m=1b;< -+ <b,, L
where L runs over laces of order [ defined on {0,1,..., m}. Then, following
Brydges and Spencer (1985), we can obtain, for p < p,,
(8) Bk, t) = L (-1)"¥(k,2).
=0

3. Description of Feynman-type diagrams. In this section we de-
scribe the Feynman-type diagrams that will be used later in the paper. We use
the same Feynman diagram notation as in Hara and Slade (1990a) with
modification for orientation since our model is oriented:

(y, m) (x,n) represents P, ((y,m) — (x,n))
(y, m) b represents P, ((y, m) — bottom of b)P,(b open).

The following are examples of Feynman diagrams that will play an important
role in the proof of our main results.

ExampLE 1. Given a bond b and sites (y, m), (x,n) and («, n), define the

triangle T[((x,, n,), (x5, n,)), (b, (u, n))] as
P,((x;,n;) — bottom of b)P,(b open) P (topof b — (u,n))
XV(u —x9,n — ny).

The diagram T[((x,, n,), (x5, ny)), (b, (u, n))] with (x,,n,) = (x4, n,) = (0,0) is
denoted by T[(0,0), (b, (u, n))]. Furthermore, whenever site (x;, n;) is the top
of b, we write b, instead of “top of b,.”” Also, we set

T[((xl’ ny), (xg, n2)), ((u,n), b)] = T[((xz» ny), (xq, nl))’ (6, (u, n))] .

Their defined diagrams are as follows [note that the slashed oriented wavy
lines connecting (x;, n;) and (u, n) represent ¥(u — x;,n — n,)l:

(Iz’wn) (z2,n2) b

[

Wi\
(zy.my) b (z1.n4) (u.n)

T[((Il- n'l)v (.t:, n”.’))v (b~(u~ n))] T[((Ilf nl)’ ('r‘Zv n"l))v ((u~ n)! b)]
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ExaMpLE 2. Given [ pairs of sites and bonds {(b;,(x;,n;), i = 1,2,...,1},
set a;(b;,(u;,n;) = (b, (u;,n;) or ((u;,n,;),b,) depending on whether o, = id
or a permutation of sites and bonds. Let o = (o, ..., ;). The diagram

D/[(b;,(u;,n;)),i=1,2,...,1;0]
is defined by

T[(O’O)’ Ul(bl’ (ul’ nl))] i=2l_1.. IT[‘@—I(bi—l’ (ui—l’ ni—l))’ Ui(bi’ (ui’ nz))] :

For [ =4 and o0,05,0,=id and o, a permutation, the diagram D, is
represented by

uhnl Us,na) / u4,n4
s
oY ﬁ % f
A.m PN ,4,,,
W\
U» Fls 3

ExampLE 3. The diagram D,(x,n) is deﬁned as the sum of D,[(b,,(u;, n;)),
i=12,...,l;0]over {(b;,(u;,n;),i=1,...,1} and o such that o, = id and
(u;,,n) = (x n) This diagram is represented by

(z.n)

(0.0)

Here we use the convention that labelled vertices and bonds are fixed and
unlabelled vertices and bonds are summed over the lattice Z¢ X Z. Note that
(I — 1) vertical wavy lines that are not oriented represent the sum over o such
that o, = id.
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ExampLE 4. Fora = (a(1),...,a(d),a(d + 1) welet 6, = [17_,47aa(d+D),
where 6“(“) is the a(u)th partlal derlvatlve with respect to the w- coordlnate of
k and 6“(‘“1) is the a(d + Dth partial derivative with respect to the last
coordlnate t. We set

Ta[((xl’nl)’(x2’n2))’(b’(uan))]
= P,((xy,n;) — bottom of b)P,(b open)
d+1
x T |(bop of b)) = (1, 21)0 |
Pt

X Py(topof b = (u,n))¥(u — x,,n — ny),

where (top of b),,, and (x;,n,),,, are the u-coordinates of the top of b and
(x1,n,), repsectively. Similarly, we set

Ta[((xla nl)’ (x2’ 2))’ (b’ (u’ n))]
d+1
= P,((1,n,) = bottom of b)P,(b open) TT |((,n) — (x4;75))e "™
w=1

X P(topof b > (u,n))¥(u —xy,n — ny).

The corresponding diagrams are as follows:

(zq,n1) O b (z2,n,) 0 (u.n)

(£2,n2) (u.n) (zy,ny) £

ExampLE 5. We also define the diagram §,,D/[(b;, (x;, n)), j =
1,2,...,l;0] as the diagram D,[(b;,(u;,n;)), j=1,2,...,[;0] in which the
triangle

T[a'i—l(bi—l’ (i1 ni—l))’ O'i(bi: (u;s n’z))]
is replaced by

Ta[ l(bi 1’(uz i L 1)) U(bz’(uwnz))]
[(If i =1, we set o;_4(b;_,(u;_1,n;_1) = (0,0).] This naturally induces the
diagram §,,D(x, n) by summing Sle[(bj,(u n;), j=12,...,1;0] over
{(6;,(u;,n;)), j=1,2,...,1} and o in the same way as before ThlS process
may be iterated to produce the diagram §,,8,,D/(b;, (u;, n,), j =
1,2,...,0;0] for i #i'. If i =i, then §,,5,, is lnterpreted as 8i(a+a,). For

iaYid

l= 4, Oy apermutation and oy, 03, 0, = id, the diagram 6,,8,,D/[(b;,(u;, n;)),



TRIANGLE CONDITION FOR ORIENTED PERCOLATION 1819

Jj=12,...,1; 0] is represented by the following:

(upni‘ /b'.‘ (u31n3)‘/au (uq.n4)

£ 344
Y

Y

We make the following remarks concerning these Feynman diagrams.

REMARK 1. Let

T, = sup P {T[((xl’nl)?(x2’n2))’(b’(u7n))]

(xly nl)y(xzy nz) b,(u, n)

+T[((%g,n5), (%1, ny)), (b, (u, n))]}

Then we observe that T, ,,D,(x,n) < T{.

REMARK 2. By writing (x,n),, as a telescoping sum X!_((x;,n,) —
(x;_1,n;_1))) where (x4, n,) = (0,0), (x,,n,) = (x,n) and (x;, n,) are in the
upper corners of the diagram D,(x, n), we can easily show that

Dy(x,n)|(x,n)w| < i_ilﬁi“[Dl(x,p)].
REMARK 3. By a similar argument we can obtain
Di(x sl Iz, < z ERACYERSE
REMARK 4. For a = (a(1),...,a(d), a(d + 1)), we let
Ta = sup M {Ta[((xl’nl)?(x2?n2))’(b’(u’n’))]

(xl’ nl),(xg, nz) b(u,n)
+Ta[((xl7 nl)’ (x2’ n2))’ (b’ (u’ n))]}

Then, using proof by induction on [ > 2, we can improve the preceding
inequalities as follows:

E 6ia[Dl(x7n)] =< TaTé_l’

(x,n)

’ if i+ .’
E aia(sja’[Dl(x’n)] = s

(x,n)

—_——
el
|

23
.'o
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4. Estimates for ¥,(x,n). Having introduced the defined diagrams, we
now want to prove the following theorems concerning the estimates for the
lace parts ¥,(x, n).

THEOREM 4. Y (x,n) < ¥¥(x,n) < £,TI(0,0),(d,(x,n))].

Proor. By the well-known van den Berg—Kesten inequality [van den Berg
and Kesten (1985)], we have

Yo(x,n) < ¥%(x,n)
<V¥(x,n) Y P,{(0,0) — bottom of b} P,(b open)

b: top of b=(x,n)

< %T[(0,0),(b,(x,n))]. O

THEOREM 5. V¥ (x,n) < X,TI(0,0), (b, (x,n))].

Proor. Consider the lace event A(x,n;b,,...,b,,;L) with L = 0m. Ob-
serve from the definition of the lace event that

(0,0) — bottom of b,, with exactly m pivotal bonds b, < --- <b, _;.

Moreover, we can find, in addition to the open bond b,,, three disjoint paths in
{(0,0) - (x, n)}, {(0,0) - bottom of b,, via b,,...,b,,_;} and {top of b,, —
(x,n)}. Thus, by the van den Berg-Kesten inequality [van den Berg and
Kesten (1985)],

©

V(x,n) = ), Yy E,(A(x,n;by,...,b,; L =0m))

m=1b,< - <b,,

< Y. ¥(x,n)P,(b,, open) P, (top of b,, > (x,n))

X Y, E,(0,0) - bottom of b,, with
by by
exactly m pivotal bonds b; < -+ <b,,_;)

= %T[(O,O),(b,(x,n))]-

THEOREM 6. Forl > 2 we have ¥,(x,n) < D/(x,n).

Proor. Consider the lace event A(x,n;b...,b,;L) with L =
{L,,..., L)}, where L, =s;t;, s; =0, t;=m. We say that the event
A(x,n;by,...,b, ;L) is compatible with {;,, i =1,...,1} if b,_; = b, 1=
2,...,1,and b, = b,,. It is clear from the definition of lace that the family of
lace events A(x,n;b,,...,b,,; L) indexed by L for fixed {(x,n); b,,...,b,,} are
mutually disjoint. Thus the family of lace events A(x,n;b,,...,b,,;L), in-
dexed by b,,...,b,,; L, that are compatible with {b;, i = 1,..., 1} is a mutually
disjoint family of events since the bond b is pivotal to {top of b, = bottom of
b,,,) if and only if b € {b,...,b,,} and b is between these two bonds (same
reason for {(0, 0) — bottom of b,}). To prove the theorem, it is enough to show
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that each configuration € A(x, n;b,,...,b,,; L) that is compatible with {5,,
i =1,...,1} belongs to the event which corresponds to the Feynman diagram
D/(x,n;0) with ﬁxed {b,, i=1,...,1} and o. Next choose arbitrarily from
each event Us tp 1= ,1, an open path &; that determines this event. To
be more precise, we want 9 to be a path connectlng the top of B, (which is
the bottom of b, . ) from the bottom of B, (which is the top of b ) without
using any bond b between B, and B,. There are two cases:

CasE 1 (&; hits &, ;). Let (u;,n;) be the first site where &, hits &, ,
(e.g., see bubble B, in Figure la, bubble B, in Figure 1b).

Cast 2 (&, does not hit &, ;). Let (¢, n;) be the first site where &, hits
B,,. There are two subcases:

(a) If we can find a path in b, _ = top of b, > (u;, ;) that is disjoint from
P, P, .1, then we let (u;, n;) = (u;, n;) (e.g., bubble B, in Figure 1a).

(b) Otherwise, we let (u,,n;) = the top of B, (e.g., bubble B, in Figure
1b).

Fic. 1. Two lace events of order 4 and their corresponding Feynman diagrams.
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Let us assume the claim that one can find mutually disjoint paths such as
[(0,0) = (uy,ny)], [(0,0) — bottom of 51], [top of b, - (u, nl)]
and either
[top of B, — bottom of B,y |, [(;,u,) = (i1 ni01)],

(T.1) -
[tOP of b, — (ui+1’ni+1)]
or
(T.2) [tOP of b; - (ui+1>ni+1)], [(ui’ui) — bottom Of5i+1],
2

[tOP of Biﬂ = (Uj1s ni+1)]

for i=1,...,1 -1 and (u,,n,) = (x,n); see Figure 1a, b. Note that all the
connections corresponding to the paths & are of length at least 1. Thus (T.1)
and (T.2) correspond respectively to

T[(bi’(ui’ni))’ (bi+1’ (ui+1,ni+1))]
and

T[((ui’ni)’ bi)’ (bi+1’(ui+1’ni+1))]'
Let 0(b,,(u;,n,)) = (b;,(u,, n,)) if there are an even number of (T.2) types in
the last (I — i) triangles, and let 0,(3;,(u;,n;) = (u;,n;),b;) otherwise. By
the van den Berg—Kesten inequality [van den Berg and Kesten (1985)], the
sum over the A(x,n;b,,...,b,;L) that are compatible with {b,,(u;,n;),
i=1,...,1} and o is less than the diagram D,(x,n) with these fixed bonds,
sites and permutations o. To get the theorem, we simply sum both sides over
{b,,(u;,n,),i=1,...,1}and o.

It is left to justify the claim. We wish to point out that if &, hits &, ,, then
they must hit in bubble B, ; hence (u;,n;) € B,. Thus we can find an open
path from b, to b,,, that is disjoint from Z, and ;1. On the other hand,
suppose that &, does not hit &, . If s,,; #t;, then we can always find a
path from b;  to (u, ;) that is disjoint from @ and P, If ;.1 =t;, then
such a path may not exist. However, there exists a path connecting the bottom
of B,  to (u;,n;), which is the top of B, , and is disjoint from &, and
;. 1. With these observations we can find the disjoint paths as described in
the claim above. O

5. Proof of Theorem 1. Note that since we are not attempting to achieve
the best possible value for d,, we prove Theorem 1 for d, > 9 even though it
is possible to prove Theorem 1 for d, > 5 with a more complicated argument
as in Section 6 of our paper (see also Remark 5).

One essential ingredient of our proof of Theorem 1 is the following assump-
tion.

AssSUMPTION (Pg). There exist K-constants K, K,, K, and K, u,v
1,2,...,d, such that

To<K,', T,<Kd' T,<Kd?** T <K,d>*?

M =
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and

T,<K,d™®? ifu+v.

This assumption is then improved by a bootstrapping argument “(P;g)
implies (P,x)” which has been used successfully for many mathematical
physics models [Slade (1987) and Hara and Slade (1990a, b, 1992a)] in high
dimensions. For our proof of Theorem 1, we first verify, in Section 5.1, that
the assumption (Px) holds for some K ®-constants (K¢, K, K, KZ K} in
the case of p < 1/2d; then, in Section 5.2, we bootstrap Assumption (Py) for
the case'1/2d < p < p, by proving the following theorem.

THEOREM 7 (Bootstrap theorem). There exists a d, which is sufficiently
large that, whenever d > d,, we can find some K'-constants for which (Pyy.)
implies (Pyg:) for every p € (0, p,).

This theorem creates a gap in the quantities appearing on the LHS of
Assumption (Pg) for d > d,. Furthermore, these quantities are continuous on
[0, p.) and are left continuous at p, [for the proof of this one may follow the
proof of Lemma 4.2 in Hara and Slade (1990a)]; therefore, they must be
bounded above by the gap for p < p,. This shows the Aizenman-Newman
triangle condition for d > d,. The infrared bound (5) will be shown in the
course of doing this analysis. The Barsky—-Aizenman triangle condition then
follows from the infrared bound.

5.1. Casep <1/2d,d > 9. Lemmas 1-3 are needed to estimate the trian-
gles in terms of the related Fourier transforms for every p € (0, p,).

LEmMA 1. Let
P(x) = Z Y(x,n),
n=1

To(x) = sup 3. T[((0,0),(x,n)),(b,(y, m))].

n€Zp (y,m)

Then Ty(x) < ® = D(x) + 4dpD * @+ D(x) + 2dpD * P *  * O(x).

Proor. We have

To(x) = sup ). T[((0,0),(x,n)),(b,(y,m))]

neZ b,(y,m)

sup Y, X X T[((0,0),(x,n)),(d,(y,m))],

n o (y,m)j=12b
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where the following hold:

(a) T} is over bonds b such that the bottom of b = (0,0) and the top of
b= (y ’ m);

(b) X} is over bonds b such that the bottom of & = (0, 0) and the top of
b+* (y,m);

(c) L} is over bonds b such that the bottom of b # (0,0) and the top of
b= (y,m)

(d) L is over bonds b such that the bottom of b # (0,0) and the top of
b+ (y,m).

This divides To(x) into four terms accordingly. The first term is equal to

Y X YuLD¥(y-x1-n)< Y o(y)0(y—x) = dxd(x).
neZ (y,:lyl=1 y

The second term is equal to

sup Y, Y Y(u,)¥(y-u,m-1)¥(y—x,m—n)
NEZ y:lul=1(y,m)

<Y Y Y(u,1)P(y —u)P(y —x) = 2dpD * d* d(x).

Y uw:lul=1

The third term is equal to

sup ). Y Y(u,m-1)¥(y—-u,1)¥(y—x,m—n)
nEZ (y,m) u:ly-—ul=1

<Y Y Y(y-u,)®(u)®(y—x)=2dpD*dxD(x).

Y u:ly—ul=1

The last term is

sup Y. Y, Y W(uy,n)V(uy—u, )V(y —uy,m —uy — 1)

nE€Z (y,m) (uy,ny) tg: lug—ugl=1
XW(y —x,m —n)

<XY x V(u)V(uy —u, NO(y — uy)d(y — x)

Y Uy ugiluj—ugl=1

= 2dpD * @ * & + P(x). |
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Similarly, with the same proof we can show the following.

LemMmA 2. If we let, for a = (a(1),...,a(d), a(d + 1)),

w d
,(x) = Y W(x,n) 1 lx(u)la(")lnla(dﬂ),
uw=1

n=1

T(x) =sup 3}, T,[((0,0),(x,n)),(b,(y,m))],

n€Zp, (y,m)

Te(x) = sup ), T°[((0,0),(x,n)),(b,(y,m))],

n€Z p, (y,m)
then both T,(x) and T%(x) are less than
O« Dy (x) + 4dpD * D+ D, (x) + 2dpD * P+ O+ D, (x).

It is easy to see that ‘
1Dl =¥, 00z, UD22 = #2C,0) o 1D, N2 = [0, 8(-,0) ],

where 9,¥(k,0) = 9,¥(k,t) evaluated at ¢ = 0. Then using the Cauchy-
Schwarz inequality and the Fourier inversion formula we can translate Lemma
2 into the following lemma.

LEMMA 3.
Ty < {(1 + 4dp)|¥(-,0)[l, + 2dplw2(-,0) [} ¥ (-, 0) ],
both T, and T* < {(1 + 4dp) | ¥(-,0) ||, + 2dp| ¥2(-, 0)[l,}[| 6.8 (-, 0)],.

Observe that, for p < 1/2d, by counting over all the paths connecting (0, 0)
to (x,n), we can show that ¥(x,n) < Prob(S, = x), where {S,; n = 1,2,...}
is the d-dimensional simple random walk; that is, S, = X; + X, + --- +X,,
and {X;} are i.i.d. with Prob(X; = x) equal to
1/2d, ifx= te, foru=1,...,d,
0, otherwise.

Define G(k,t) = £2_,D(k)"ei** = e*D(k)1 — e**D(k))~!. Then we have the
following lemma.

D(x) =

Lemma 4. Forp <1/2d,
T, < (816, 0)[, +1G2(-,0) [} G(-, 0) 5,
both T, and T* < (3| G(-,0)[, +[G%(-,0)|}|9.G(-,0) -

REMARK 5. As we shall see later, only 3aé(-,0) with a = u, uv, uu,t are
needed in our proof. Note that the quantities in the RHS of the above
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inequalities (with @ = u, uv, uu, ¢) are finite only if the dimension d > 8. This
is the reason our proof works for d > 9. To improve this bound to d > 5, we
need to use the same argument as in Section 6.

To obtain the upper bounds for the RHS of the inequalities in Lemma 3, we
invoke the following lemma [whose proof can be found in Slade (1987)].

LeEMMA 5. Let S, be the d-dimensional simple random walk. Then

T a8 Prob(S,, = 0) = O(d"Y).

n=1

This result implies further that
[ba - )7 < coar2, D@ ~0) 7, < a2,

’ -1
<c,,d.

<cd7l, llaﬂaﬂﬁ(l _D)_z“z

.

|la,5¢1-5)7"]
and, for u # v,
la.pa b -0)7°|, < a2, |oaDa - D), <c.d2
and

la-0)"],<01), ifm=23,...,[(d-1),2].

Applying Lemma 5 to Lemma 3, we can verify that (Py) holds for some
K %-constants depending only on Prob(S, = x). For instance,

106, 0)]l, =[a(1 - eD(R))(1 - e*D(R)) 2|, (with ¢ = 0)

=”DA(k)(1 - D(k))_2,,2 < cpd~1/2,

The others, which can be estimated easily in the same way, are left to the
reader.

5.2. Bootstrapping argument. We now want to show Theorem 7 and the
infrared bound (5). The next three lemmas estimate the lace parts and their
derivatives in terms of the corresponding triangles for p < p,.

LEmMMA 6. For laces of order 0 and 1, a = (a(1),...,a(d), a(d + 1)), we
have

Z |\Apl(k’t)| = TO’
[=0,1

Y o (k0| <T,.
[=0,1

Proor. Proofs of these are trivial.
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LemMA 7. For laces of order | > 2, we have the following:
[k, 0)] < T5;
|04, (k, )| < ITT
|0, ,(k, t)| < IT, T4

|0, 9,(k,t)| < IT,, Ti" +1(1 - VT, T, T2,

Proor. The first three inequalities are trivial. We only give a proof for the
last inequality. From Remarks 1-4 we have

|ap,1/\i,l(k’t)| = Z Dl(x’n)'x(#)x(”)'

(x,n)
l
< X 8,8,[Di(x,n)]
i, j=1

<IT, T '+ 1(1 - DT, T T,

Taking the results in Lemma 7 and summing over /, we obtain estimates for
the connected part and their derivatives as in Lemma 8. O

LemMmA 8. For T, < 1, we have
V(R t)] < IZ Te=To(1-To)
=1
a8k, t)| < TITT = T(1-Ty) ",
=1

o 0,(k,t)| < LT =T(1-T,) ",
-1

|0, 9.(k,t)|< IT,Ti+ L (- )T, T,T{?
=1 =2

3

=T,(1-T) " +2TT,(1-T,) "

From this point we assume p < p,, with 2dp, < 2 [which is possible if d is
large enough, due to a result of Cox and Durrett (1983)], together with
Assumption (Pg). It is easy to see from Lemma 8 that (Pg) implies the
following.



1828 B. G. NGUYEN AND W.-S. YANG
COROLLARY 1. ‘
| (k, )| < 2Kod 1,
|00 (k,t)| < 4K,d71,
|0,9,(k, t)| < 4K,d~%2,

3,5

nte

(k,t)| < 4K,,d=3/2 + 2'K2d "3,

E

(s

J,(k,t)| < 4K,,d75/% + 2°K2d™°, ifp #v.

COROLLARY 2. Let F(k,t) = 1 — 2dpe*D(kX1 + ¥ (k,t)). Then
0, F| < (2% + 23K,d~1)\D,
o, Fl < 2%9,D| + 2°K,d~*/2|D|,
19, Fl < 226,, Dl + 2°K,d /%9, D| + (2°K,,,d~** + 2°K2d~*) D,
9,0, F| < 220,,D| + 2°K,d~%?29,D| + 2°K,d~%?9, D|
+(2°K,,d %% + 25K 2d~°)DI, for u+v.
Proor. For the first inequality, we have
0, F| < 2dp|D| |1 + ¥.| + 2dp|D| |9,¥,|
< 22|D| + 23K, d~ D).
To see the second inequality, we have

19, F| = 2dp|a,D(1 + ¥,) + Da,¥,

< 2dp|(1 +,)

19, DI + 2dpla, .| 1D
<22, D| + 2°K,d~%?D|.

Proof for the third is similar:

19, Fl = 2dp|a,,D(1 +¥,) + 20,099, + D9, ¥,

< 2dpla,, DI |1 + ¥, + 216, DI 19,9, + DI 19, ¥,

upe

< 229,, Dl + 2*K,d =329, D| + (2°K,,,d~*/% + 2°K 2d~*)D|.
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For the fourth inequality, with u # v, we have

19,, Fl = 2dp|d,,D(1 + ¥,) +3,D9,%, +9,09,%, + D3, ¥,

< 2dp{|0w,1§| 11+ %) +19,Dl 0., + 13,1 19.0,] + || |awxirc|}
< 2%y, Dl + 2°K,d~3/%9,D| + 2°K,d /%3, D|
+(2°K,,d %2 + 2°K 2d~®)|DI. O

COROLLARY 3.
¥, (%,2) — ¥,(0,2) = O(d=32)IRI?,

|V, (k,¢) — ¥ (k,0) = O(d V)t

Proor. Interpolating between 0 and % by sk, for s € [0, 1], we have

. N 1 d? ,
|9 (&, ¢) — ¥,00,8)] = [0 ds(1 = 5) =5 W (sk, 1)

d
Yk, k9, V. (sk,t)

rviuv e

<(1/2) sup

O0<s<1

urv=1

d
<(1/2) ¥ T.,(01-T,) Tk,k,

,v=1

d
+ ¥ TT(1-T,) kb,

d /20 4 1/2
om-1)’| £ ml | £ e
pm,v=1 m,v=1
N 12 4 1/2
+(1 - TO) Yy T:Ty2 Yy kﬁkf

m,v=1 m,v=1

2 d 2 2
= (1/2)(1 - Ty) |k|2[ Y T2 +d(1-T,) I’T?

m,v=1

=0(d~ %)kl
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Similarly, interpolating between 0 and ¢ by st, for s € [0, 1], we have

¥, (k,¢) — B,(k,0)] =‘flas‘ifc(k,st) ds
0

< It|f01|3s\ifc(k,st)|ds
=0(d Y. O
COROLLARY 4. For 1/2d < p < p, and d sufficiently large, we have
(9) IF(k,6)] 2 (1/2)[1 = e“D(k)| = cslkl® + ¢,
for some positive constants cg, ¢, > 0; in particular,
(10) |F(k,0)| = (1/2)|1 = D(k)| = cylkl®.
Proor. We write
F(k,t) = F(0,0) + 2dp(1 — e**D(k))
+ 2dp(¥,(0,0) — e“D(k)¥,(%,¢)).
However, the modulus of the third term is bounded above by 2dp times
|[9,(0,0) = #,00,)| +[¥,(0,2) — W,(k, )| +| ¥, (k,2) (1 - e*D(R))]
(12) <0(d~Yltl + O(d~%2)k> + O(d~ 1|1 - eD(E)].
On the other hand, simple algebra shows from (6) of Theorem 3 that

(11)

1+%,(0,0) = [1+¥(0,0)][1 + 2dp¥(0,0)]

so both [1 + ¥(0,0)] and [1 + ‘i’c(O, 0)] are nonnegative since the first one
clearly is. This shows from (6) that F(0,0) = 1 — 2dp¥(0, 0) is nonnegative.
Thus, since the real part of (1 — e*’D(k)) is nonnegative,

|F(0,0) + 2dp(1 — e“D(k))| > |2dp(1 — e"D(%))|.
Combining (11) and (12) and the above result, we obtain
|F(k,¢)| 2| F(0,0) + 2dp(1 — e“D(k))| — 2dpO(d~1)|(1 - e“D(k))|
- 0(d=32)|k® — O(d~ V)¢l
> 2dp(1 — O(d™Y))|(1 — e*D(k))| — O(d~32)IkI* — O(d~Y)le.

Furthermore, it is easy to see that for {(%, ¢): [(k, ¢)| < ¢}, for a small enough
e >0,

(13) |1 — e*D(k)| = const. |t| + const.d ||
However, 1 — e“D(k) is bounded below by a positive constant for

{(k,t) S [—w,w]d X [—m, 7] |(k,t)] > 8},
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which implies that, for d > d,, large enough,
|F(k,t)| 2 (1/2)|(1 = e*D(k))| = cylkl® + c,tl.
In particular, we have |F(k, 0)| > (1/2)|1 — D(k)| > cslkl® O

We now apply Corollaries 1-4 to estimate the L,- and L ([, 7]%)-norms of
¥(-,0) and its derivatives.

COROLLARY 5.
19, 0)]l, < 2%,d=2 + 0(d~ ).
Proor. We have

\p( ,0) +2dpD(1 + ¥,(-,0))|
~2dpD(1 + ¥,(-,0)) |,

||‘i’(,0)”2

sllﬁfc(-,O) lAEC 07, + 2dpl1 + (-, 0) LI BEC-, 0) 7,
<[t 0)ll2 - 0) 7. + 21 + 4 0 Ll2B1 - B) 7,
= 0(d™Y) + 8cod~ V2. O
COROLLARY 6.
|92+, 0) [, < 25¢4d =172 + 0(a-32).
Proor. We have
[¥.(-,0) + 2dpD(1 + ¥,(-,0))]”
[1 - 2dpD(1 + ¥,(-,0))]"

[#2¢-,0)]; =

2

<l 0l #c, 072l

(1+¢,(. )|l BF(-, 0) 72,

D*F(-,0) %],

<[¥(-,0) ILJ|4<1 -D)” ||2
+ 4dp| ¥, 0)(1 + ¥,(-,0)|[4D1 - By,
+|2dp(1 + (-, 0)) 2402 - By 7],

=0(d™?) + O(d"'d~?) + 28¢,d~1/2, O
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COROLLARY 7.
lob(-,0), < 2%,d~* + 0(d22).
Proor. We have
lob (-0, =[ob.(-, 00 F(-,0)7F = (1 + ¥,(-,0)) 4, F(-,0)F(-,0) 2,

<[at- 0|2 - ),

+][1+ 8-, 0) ||°°” (22,0 + 23K#d‘3/2f))22(1 - 15)'2H2

<0(d=2) + 22a,0(1 - D) *|, 5) [
< 0(d™3/?) + 25%,d™ . O
COROLLARY 8.
|8, 8, 0)], < 2%,,d* + O(d~2).
Proor. We have
3,9(-,0)], ]| L@+ B, 0)F(,0)” ]]]
< |8, 8.-, 00 F(-,0) 7, + 2[3,8.(-,0) 3, F(-,0) ',
+2(1 +¥,(-,0))9,F(-,0)3,F(-,0)F(-,0) |,
+(1 + ¥,(,0))9,,F(-,00F(-,0) 72| .

The first term is O(d ~3/2), the second is O(d ~3/2d 1), the third term is of the
same order as

”(22|3#ﬁ| + st#d—3/2|ﬁ|)2(1 - D)'3H2
< const | (3,0)°(1 - D) °|, + 0(a-22)|2(3,0) (1 - D)’

A —3
+o(a=)| b1 - )",
which is of order O(d~2), and the last term is bounded by 2 times

22)o,,D(1 - D) *|, +|a. 01 - D) *|,0(a D) *|,0(a-32)
< 23(:Wd_1 + 0(d™?). O
COROLLARY 9.

3, 9(-,0), = (2%, + 2%,,)d"2 + O(d~%?), foru +v.
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Proor. For u # v, we have

8,[(1 + 8.0, 0)F(-,0) 7|,

a#v\i,( i) 0) “2 =

<lo. 2., 0 F(,0)7Y,

+os (- 0) 8, F (-, 0) 7Y, +

2%.(-,0)4,F(-,0) 7',
+2)(1 + ¥,(-,0))a,F(-,0)3,F(-,0)F(-,0)°|,
+](1 + #.(-,0)) 8, F(-,0)F(+,0) |
The first three terms are of order O(d ~°/%), the fourth is bounded by 27 times
|‘(22|a#1§| + 23K#d“3/2|f)|)(22|avDA| + 23K, d~%/2DI)(1 - 15)‘3”2
<249,00,0(1 - D) °|, + 0(a-*2)a, 001 - D)’
+o@)|pra -7,

which is dominated by c¢|,,d =2 + O(d~%/2), and the last term is bounded by 2
times

2o, 01 - D) *|, +|o.5(1 - D) *|,0(d-%72) +|D(1 - D) *|,0(D-572)

< 2%,,d™%+ 0(d™%?). O

COROLLARY 10.

loj#(-,0)|, < 2°c;d~2/2 + O(d™ ).
Proor. We have
las¥ (-, 0) [, =llob(-,0) F(-, 00" = (1 + ¥) 9, F(-,0) F(+,0) |,
<l 0] 2 - By 7Y,

1+ w0, 0L @2 + 22k,a-1) D22 - 577,

< 22K, d7'0(1) + 2%c,d 12 + O(d™Y).
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We note that the constants c,, ¢, c,, c,,, ¢,, and c,, are independent of
the constants in (Py). Applying Corollaries 5-10 to Lemma 3, we obtain

T, < {(1 + 4dp)2%c,d /2 + O(d ") + 2dp2°c,d ™% + O(d 1)}
x {2%c,d 1% + O(d™ 1)}
=K,d" '+ 0(d™%?),
and similarly for the others:

T, < Kyd~' + 0(d~3?),

T, <K.d"¥2+0(d"?),

<K,,d"¥2+0(d?),

mt—

T#,, <K, d5?+0(d"?), foru+v.
For K-constants which are 3 times the K'-constants and for d large enough,
we obtain the bootstrap theorem. Thus the numerator 1 + ¥ (k,t) of P(k, t)
is bounded above by 2 and, from Corollary 3, the denomlnator F(k,t) of
W(k, t) is bounded below by (1/2)1 — e“D(k))"!; so the infrared bound (5)
holds. This proves Theorem 1. O

6. Proof of infrared bound for spread-out model. Our proof of Theo-
rem 2 for the spread-out model follows the same idea as in the proof of
Theorem 1 in Section 5 and it is quite analogous to the proof in the last section
of Hara and Slade (1990a). The only differences are in the following:

(i) estimates involving the random walk S, ;
(ii) estimates involving ¥(k, ¢), ¥ (k, t) and their derivatives.

In the previous section the quantities in item (ii) are estimated in terms of L,-
and L,([—m,w]%)-norms. They need to be replaced by L,- or Ly([—, w]? x
[, m]D-estimates with respect to the Lebesgue measure (27) @D dk dt.

Recall that p,, = pg(x/L)L~? and p;' = ¥, g(x/L)L~?, where g satisfies
the conditions described in Section 1. We also use pi to denote pL&(x/L)L™9,
the normalized version of p,,. The renewal equation (6) in Theorem 3
takes the form

1+ W, (k,t)
1 —pppleDy(k)(1 + W, (k, 1))’

(14) 1+ W(k,t) =
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where AﬁL(k) =p.L.8(x/L)L%e'*=* Later we shall see that all the estimates
of ¥, ¥, and their derivatives can be expressed in terms of L,- or L;(—, 7]?
X [—1r, m]-norms. Note that the asymptotic behavior of

Cu(k,t) = {1 - e*Dy(k))

is (c,|kI?L? + c,lt) ! for small & and ¢. Thus [[|C,(k, ) dkdt < = for d > 4.
This gives a heuristic argument why the infrared bound (5) is satisfied for
oriented percolation in d + 1 > 5 (unlike d > 6 for unoriented percolation).

Estimates of W.(k,t) and its derivatives can be bounded using Feynman
diagrams as in Section 4. However, to improve L, ([—r,]%)-estimates to
L,(-m, w]? X [—m, w])-estimates, we need to improve the estimates of
{¥,(x,n); I > 0} as follows:

(15) ¥Y,(x,n) < E/(x,n), forl=>1,
(16) Yo(x,n) < ¥3(x,n),
where

E/(x,n) = Y. D,[(b;,(u;,n;));i=1,2,...,1,0]
XPp(top of b, —» (x,n))Pp((ul,nl) - (x,n)),

with the summation taken over the set {{b;,(u;,n;); i =1,2,...,1}, ). For
instance, the Feynman diagram for E,(x, n) is given by

(0,0) g’ (ryn)
'/
».vv \

The proof of (16) is contained in the proof of Theorem 4, and the proof of
(15) can proceed as in the proof of Theorem 6 with only a change in the
estimate on the last bubble [see also Yang and Nguyen (1991) for more details].

To estimate 3,w‘i'z(k, t), we use the method described in Section 3.2 of Hara
and Slade (1990a). Let

W= Y xI’PZ((0,0) - (x,n)),

(x,n)

Wy = L [xI’P,((0,0) = (x,n))

(x,n)

X{P,((y,m) = (x,n)) + P,((x,n) = (y,m))},
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Wy = L EPoutl’P,((x,1) = (x,7))P,((0,0) > (x +y,n +m)),

(x,n) u

W= sup W,
(y, m)
W= sup W,
(y,m)
Q = sup Y, P,(topof b - (x,n))P,((0,0) > (x,n)).
b (x,n)
Similarly, let U, U,,,, U,,,, U and U’ be defined in the same way as W, W,

Wy’m, W and W' but W1th |x|? replaced by n. Using the same argument as that

in Hara and Slade [(1990a), page 364], together with (15) and (16), we get, for
[>1,

A7) |3, %, (k,t)| < WT, + PWTLQ + ppp WIS (1 + Ty),,

(18) %, (k, )| < UT¢{ + (1 - VT'TE'Q + pp *UT{ (1 + T);

also, we can easily see that

(19) |6, 90(k,t)| < W,
(20) |obo(k,t)| < T,
(21) 0.9,k t)| <|3,,9,(k,1)|, forl=0,1,2,....

The undifferentiated ¥,(k, ) can be estimated by using Lemmas 6 and 7 of
Section 5.2:

(22) L Wkt <T
1=0,1
(23) |¥,(k,t)| < TL, forl>2.

Next we want to invoke the following estimates from Lemma 5.1 of Hara and
Slade (1990a).

LemMa 9. Given d > 4, we have

supp(L’Z(p‘L’) =0(L™%),
Supp0x)lx|2 = O(L¢*?),

Z(p%g)) |x|4 — O(L_d+4)-

Note that Lemma 5.1 of Hara and Slade (1990a) states that d > 6. However,
the above estimates hold for d > 4.
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Let M >0 be such that [, cge. x<u&x)dx >0, 8, =7/LM and 6§ =

37 [rad,8(x) dx/2L. Since g is continuous at 0 and g(0) > 0, we can choose
M so small that (3/2)(gad,8(x)dx < 1/M. Hence 6, > 4.

LEMMA 10. There exist constants ¢ = ¢(M) and L, such that, for all
L=>L,,

24) [1-e*Dy(m)[ = &(|1 - Dy(k)[* +11 - cost]), ifDy(k) = 0,
it 2 1 A 2 A
(25) |1-eDy(k)| = (|1 + Dy(k)| + 11+ costl), if Dy(k) <0,
(26) |1 —eiDy (k)| > c(R2L2 + [t]), for k| < 8,
(27) |ﬁL(k)| < %, for |k| = 6.
Proor. For the first two inequalities, (24) and (25),

11— eDy(k)|" = (1 = Dy(k))* + 2D, (k)(1 - cos?)

S(l1=Dum)[ + (1 - cost)), if Dy(k) =0,

|\

[

11— eDy(k)|" = (1 + Dy(k))* — 2D,(k)(1 + cost)

|

A1+ Dk + (1 + cost)), if Dy(k) <0.

If D, (k) > 0, (26) follows from (24) and Lemma 5.5 of Hara and Slade (1990a).
For |k| < &,

1+ D, (k) =Y L %(x/L)(1 + cos kx)

Y L 7%(x/L)
x: lkx|<m/2

Y. L %(x/L)

x:|x|<LM/2

v

"

~ g(x)dx
lx|<M/2

=a>0
if L is sufficiently large. By (25), we then have

|1 — ei’ﬁL(k)| > const. > c(IkIzL2 + 1¢1),

for |k| < &, and some sufficiently small constant c. Inequality (27) follows
from Lemma 5.5 of Hara and Slade (1990a).

The estimates of D, (k) and its derivatives for |k| > & can be obtained using
(5.34) of Hara and Slade (1990a) and the argument in the proof of Lemma 5.7
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of Hara and Slade (1990a). Let I ¢ {1,2,...,d}, I # &, and let
Ry={keR“8<|k|<mforallvel,lk,|<s forallp¢I}.

Then we have, for s = 0,1, 2,

O(LsN—%), if N> 2

O(L*N~4In L), if N>1.

Here d; =9, if s =1, and 9] = d,, if s = 2. For small &, we use (26) to get

A N
3,fDL(k). =

(28) (277)‘de dk

@)~ fdr [ dk|1- et Dy(r)|
(29) |k <8,
=0(L(d-2(N-1)7"),
ford>2(N-1),N=1,2,....
Furthermore, consider {p,(x,y); n =0,1,2,...; x,y € Z%, the n-step tran-

sition functions of the random walk with one-step transition probabilities p§L.
Let

TL = sup an—nl(xl’ u)pm—n(u’ v)pm—nz(x2’ U),
(xl,nl),(xz,nz)

U= X pa(0,%)n,
n>0,x

WL_ Z P;%(O,x)|x|2,
n>1l,x

Q= sup Y [P(0,2)py (¥, %) + Pu(0,2) Py_n(x, )],
(y,m)(x,n)

ULym= 2 Pu(0,2)0[Pp_n(%,5) + Pp_m(¥, x)],

n>0,x

WL»y,m = Z pn(o’x)lxlz[pm—n(x’y) +pn—m(y’x)]’

nx>1l,x

where the summation ¥ in T}, is over {m,n,u,v: n —n,; > 1, m — n, > 0}.
The following lemma gives the estimates of these quantities in terms of L.

LemMA 11. Given d > 4 and & > 0, there exists L, such that, for all
L > L,, the following hold:

T, < O(In LI"L™?/(d ~ 4)),

W, < O(L™4*%/(d - 4)),

QL <O(L?/(d - 2)) +4,

U, < O(L™In LI%/(d - 2)),
Wi ym < O(L™*2In LI*/(d - 4)),
Uy, ym < O(L™%In LI%).
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Proor. We have

T, < (27) 7" [[drdt|Dy(R)| |1 - e*Dy(k)|
3 -d-1 D
< 33(2m) fdtflklzadk| L(R)]

+ o(2m) 47 [dt flk|<6dk(lk|2L2 +1e) "

By (28) and (29),
T, = O(L™9In LI*) + O(L™%/(d - 4)).
Similarly,
d —
W, = X (2m) 7 [[ dkde s, Dy(R)[1 - Dy ()|
nw=1

By (5.35) in Hara and Slade (1990a),
(30) |6,D.(k)| < 2L2Ik#|/Rd[x3g(x)|dx,

for all k. We then split the last integral into two regions: |k| > § and |k| < 6.
By (28), the integral over |k| > 6 is equal to O(L?~¢). By Lemma 10, the
integral over |k| < & is bounded by

const. L[ dt [ dR(RI*L? + l)) k7,
|k|<8

which is of order O(L?/(d — 4)). Hence, the total bound for W, is of order
O(L%2/(d — 4)), for d > 4. Again using (28) and (29), we have for d >
2(N - 1),

@m) " [[drde |[Dy(k)[ 1 - Dy ()| "
_[O(L7¢/(d - 2N + 2)), for N > 2
~lo(L%/(d - 2N + 2)) + O(L~%In LI¥), for N = 1.

Furthermore, for d > 2,

2

Q< 2|1+ e Dy(k)(1 - eDy(r)) |

2

< {11l +] Do) (1 + D) )

<4+0(L/(d - 2))
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and both U, and U}, ,,, are bounded by
(2 - eBuiy) a1 - by~
< (2m) "7 [[ dkdt|Dy(R)|[1 — Dy (k)|

<O(L™?n LI/(d - 2)),
by (28) and (29). To bound W, ,,,, we use

Wyl < (2m) ™" [[ di i (1 - Dy (k) a1 - eDy(k)) |
p=1
d 3
< (2m) " [[ dha z;,li(1 — eDy(k)) "3, Dy ()]

d 47 A
+2(2m) "7 [[ deat ;11(1 — e*Dy(k)) [a.Dum)]’].

Thus the first term, is bounded by O(L2~¢|In L|?%). The second term is equal to
2W,,, which is also of order O(L2~?/(d — 4)). O

REMARK 6. Durrett (1985) indicates that one can extend the work of
Aizenman and Newman (1984) to show that if p < p_, then P((0,0) — (y, m))
decays exponentially as (y, m) — « for the nearest-neighbor oriented percola-
tion model. Notice that because of the complication due to the long-range
interactions of the spread-out oriented percolation, some modification is needed
to show this same result. One can apply the same modification shown in
Appendix A of Hara (1990), even though the proof there is given for the
spread-out unoriented percolation. However, any change from the unoriented
situation to the oriented case of this result is straightforward, so we omit the
proof. Thus, for any L > 0, there exists a constant M, = M,(p, L) such that
W,, <L %and U, <L for all |(y, m)| > M(p, L).

Now let d > 4 be fixed. Let (Py) be the statement that there exists a
constant K such that for all p; <p < p,_, the following hold:

pp.' <K,
T,, U < KL=%In L%,
W < KL?>7 9,
W,,, < KL*~9|In LI, for every |(y, m)| < My(p, L),

ym —

U,, <KL 9InL|%, forevery|(y,m)| < M(p,L).

ym —
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LEMMA 12. Assume (Pg) holds. Then there exist constants L, and K’
depending on K and independent of p such that, for all L > L,
W < K'L? 9In LI,
_Q- < K/L2—d + 4’
W' < K'L>?In LI%,
W' < K'L*79,
U<K'L 4 L%
l_]/ SKIL_(d_z)/2,
U <KL @272
Proor. The first estimate follows from Assumption (Pg). Let B =
Tz ¥%(x,n). Then B < W < KL*>¢. Using the same argument as in the

proof of Lemma 3.3 of Hara and Slade (1990a), we also get the same type of
estimates for W':

172
(31) W'<W2p0y+(WB>”22p0ylyl+W1/2(Zp |y|2) ,

1/2
(32) W= 2WEpy, + 2BEpolyl + 431/2{ Y p2lyl } T apyJal”

y#+a
Then by Assumptlon (Py) and symmetry of p,,, W' is bounded by const.

L?~%; also, W/, is bounded by const. L~9*2|In le The bound on @ is as
follows:

— . 12 o 12

Q <2l +¥llz <4+ 4ll ¥l

=4+ 4B <4 + const. L™¢.
The estimate for U follows from the same argument as that for W. For
estimating U’ and U,,, we need estimates similar to (31) and (32). Let
Tn(x) = P,((0,0) - (x,n)). Then for a € Z¢,1=0,1,2,...,

ZpOy Z Tn— l(x y)Tl+n(x+a)n

x,n>1

= ZP0y7'1+1(y +a)+ ZPOy > To-1(x = ¥)710(x + a)n
y y x,n=2

172
<(Zpd) W2+ Thy T n@nen(a+y+a)(n+ D)
y

y x,n>1

/2
<(Tp) W2 4280y T r®)rw(a+y+ayn
y

y x,n>1
1/2_ .
< (Zpﬁy) W2+ 23 po, U
Y y

< const. [L_(d_z‘)/2 + L™ %(In L)d]
<K'L~¢@-2/2, o
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LeMMA 13. Assume (Py). Then there exists a universal constant K" and a
constant L, depending on K such that

(33) IF(k,t)| = K"|1 — €D, (k).

Proor. Write F(k,t) = X + Y + Z, where
X=1-pp;'(DL(0) +¥,(0,0)),
Y =pp;'(1 - e"“Dy(k)),
Z = pp;*(¥.(0,0) — "Dy (k) ¥, (k,1)).
If p<p,, then X > 0. Since Re(Y) > 0 we have |X + Y| > |Y|. Therefore,

IF| = |X + Y| - |Z| > |Y| — |Z]. Applying (Py) we have, for L sufficiently
large,

|V (&, ¢t) - \P(Ot)‘—w ds(l—s) \I’(sk )

d
Y kk, 9,5 (sk,t)

n'lv Yuv e

<(1/2) sup

O0<s<l1

ur=1

d 2
< const. L™¢%2|In le( Yy k#) ,

d‘i’Ot
E; c( ’s)

|.00,2) = ¥,(0,0)| < ["ds
0

< const. L~@=2/2|]n L|%)

and

4 gppL{llifc(O,O) — e (0,0)| +|ei*¥,(0,0) — e ¥,(0,1)|

+|ei,(0,2) — e*¥,(0,£) Dy (k)]

eW,(0,8) Dy (k) — e (k,£)Dy(k)|}.

Combining these estimates we get, for any ¢ > 0, |Z| < (|k|* + |¢]) if L is
suﬁimently large. From Lemma 10, |Y| > const. (IklzL2 + |t) = %, for |k| < 8,
and |Y] > 3, for |k| > 8. Therefore, there exist constants K” and L,(K) such
that |F| > K"|1 — e”DL(k)I forall p, <p <p,andall L>L, O

LemMA 14. There exist a constant K' and a constant L, such that for all
prL <p <p, L = L,, the assumption (Pyg) implies (Pyy).
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ProoF. To estimate pp;', we note that for p <p,, ppL(DL(O) +
¥.(0,0)) > 0. However, ¥,(0,0) = O(L"~ “|In . LI%), so pp;t < 3 if L is suffi-
ciently large. To obtain the estimate for T,, we use the Fourier inversion
formula:

- —d— n N 3
To < (2m) """ [[ dkdtpp; | Dy(R) || ¥ (R, 0)]".
By Lemma 13, the r.h.s. is bounded by

const. (2m) """ [[ dkdppz | Dy (k)| |1 + F(R)[ 1 - Dy (k)|

< 2const. (27) """ [[ dkdtpp; Y| Dy(R)| |1 — e*Dy(k)|

if L is large enough, by (22) and assumption (P;/). Using the same argument

as in estimating T, of Lemma 11, T, can be bounded by 2K'L?~%|In L|%. The

other estimates for W, U, Wy, and U,,, can be handled similarly; the only

change is that ¥ (%, t) must be replaced by H#V‘I’c(k t) and 9 ‘If (&, t), and their
L,(~-m, w)% X [—, w])-norms can be estimated using (28) and (29).

Finally, we want to prove that the infrared bound stated in Theorem 2
holds. When p € (0, p,), T, W, U and so on can be estimated by the estimates
based on the random walk with transition function p;; therefore, (Py) holds
for some constant K#. Furthermore, since they are continuous functions of p
for p < p,, by Lemma 14 (P,) holds for p < p, if L is large enough. This
then gives the desired infrared bound stated in Theorem 2. O
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