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CONSERVATION OF LOCAL EQUILIBRIUM FOR
ATTRACTIVE PARTICLE SYSTEMS ON Z¢

By C. LanDiM

Université de Rouen

We prove conservation of local equilibrium for attractive particle sys-
tems. Our method applies as well to gradient asymmetric processes with
mean drift 0 under diffusive (N2) rescaling. The hydrodynamical behavior
is proved for bounded continuous initial profiles under Euler (N) rescaling
and for bounded a.s. continuous profiles under diffusive rescaling. We prove
that, for attractive systems, the conservation of local equilibrium follows
from a law of large numbers for the density field.

Introduction. This paper is devoted to the study of conservation of local
equilibrium for attractive particle systems. To explain the meaning of conser-
vation of local equilibrium, consider a gas or particles evolving on a d-dimen-
sional volume V. Suppose that all the equilibrium states of the systems are
characterized by a macroscopic parameter p (the density, the temperature,
etc.) in some set P. If the system is not in equilibrium, in small neighorhoods
of each macroscopic point x of the volume V we expect the process to be near
equilibrium due to the great number of shocks between particles in small
amounts of time. This local equilibrium is characterized by a parameter p(x),
possibly different at each point x. Observing the evolution of the systems, the
local situation changes and at time # the equilibrium around x is characterized
by p(¢, x) € P. We expect the parameter p(¢, x) to change in a smooth way in
time and space according to a differential equation, called the hydrodynamic
equation.

To give a precise formulation of this phenomenon, in this article we
consider interacting particle processes where the equilibrium states are charac-
terized by one parameter, the density of particles. To fix ideas and to keep
notation simple, we state all results for the zero range process. This Markov
process can be informally described as follows. Consider indistinguishable
particles moving on the d-dimensional integers Z?. Let g: N>R be a
nonnegative function with g(0) = 0 and P(k, j) transition probabilities on Z%.
Suppose that there are n particles on a site k£ of Z?. These particles, indepen-
dently of particles on other sites, wait a mean 1/g(n)-exponential time at the
end of which one of them jumps to j with probability P(k, j). This process has
an infinite family of extremal invariant measures v, characterized by the
density p e P=R,.

In the sequel, for £ € Z9, we denote by 7, the translation by % in the space
of configurations X, = NZ’ and extend them to the functions and to the
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HYDRODYNAMICS OF PARTICLE SYSTEMS 1783

measures in the natural way. Hence, for n € X, [n(i) represents the number
of particles at site i € Z? for the configuration 1], (r,7)(j) = n(k + j), j € Z°.
In the same way, for f: X; » R, (7, f)Xn) = f(r,n) and for a probability
measure p on X, [fd(r,u) = [(1,f)du.

Let {, N = 1} be a sequence of probability measures on X,;. We shall say
that the sequence (u ) satisfies the local equilibrium property for a profile
u:R? > P if

Al,im TeNJAN = Vuexy fOT every continuity point x of u,

where [r] denotes the integer part of r and the limit, as all measure limits in
this paper, is taken in the weak™® sense.

Let S, be the semigroup of the Markov process. We shall say that there is
conservation of local equilibrium if there exists a time renormalization T'(N)
and a function z: R, X R? > P such that for all ¢ > 0,

AIIianT[xN]ST( Nyl N = Vyi,x fOr every continuity point x of u(t,-).

We expect u(t, x) to be the solution of some P.D.E. with initial condition
given by u(x). This partial differential equation is called the hydrodynamic
equation of the process. The time renormalization T(N) is N? in the case
where the mean drift of each particle is equal to 0 and N otherwise.

This problem has been considered before by several authors. Rost [20] and
Galves, Kipnis, Marchioro, and Presutti [7] gave in 1981 the first contribution
to the field. In [6] and [21] one can find a list of references.

In this paper, we prove conservation of local equilibrium for a large class of
initial profiles for both asymmetric and symmetric cases from results obtained
by Yau in [23], by Rezakhanlou in [19] and by the author in [12].

The conservation of local equilibrium is a corollary of the main theorem in
this paper which states that it is possible to prove conservation of local
equilibrium for attractive processes once we have a law of large numbers for
the density field and if the solution of the hydrodynamic equation has some
regularity properties (cf. Theorem 1). A law of large numbers for the density
field can be proved by entropy arguments ([8], [22]), superexponential esti-
mates ([9], [13]) or with Young measures and Rezakhanlou’s method ([22],
[19]). In this way, we can prove conservation of local equilibrium for a wide
class of particle systems.

1. Notation and results. In this section we establish the notation and
state the main results of the article.

This article is devoted to the study of conservation of local equilibrium for
attractive particle systems. To fix ideas, we consider throughout the paper the
zero range process. The reader will see below that the unique important
assumptions are the attractiveness and some regularity of the hydrodynamic
equations. In the diffusive rescaling, we also need the process to be gradient.
Therefore the method presented applies to a wide class of particle systems.
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Before defining the process, we introduce some notation. Throughout this
paper, we consider R? with the norm

lx| = max{|x,], 1 <i < d}.
For a in R and x = (x,,..., x,) in R% we define x + @ and [x] as

x+a=(x,+a,..,x;+a), [x]=([x],...,[x4]),

where for r € R, [r] denotes the integer part of r. For x, y in R%, we write
x <y when x;, <y, forl <i<d.

The state space of the process NZ* is denoted by X, and the configurations
by Greek letters 7, £ and y. In this way, for k& € Z¢, n(k) € N represents the
number of particles in site & for the configuration 7.

The zero-range process (n,), . o, informally described in the introduction, is
the Markov process on X,; whose generator acts on functions that depend only
on a finite number of coordinates as follows:

(1.1) (Lyf)(m)=6(N) X g(n(k)P(k, )] f(n*7) = F(m)],

k,jeZ?
where, for configurations n such that n(k) > 1,
n(1), if i + &, J,
(1.2) n®I(i) = {n(k) -1, ifi==k,
n(j)+1, ifi=j.

The functions which depend only on a finite number of coordinates are
called cylinder functions. We now state the main hypotheses on the process.
Throughout this paper we assume the following:

AssuMPTION 1. P is an irreducible translation invariant transition proba-
bility on Z¢ with finite range,

P(k,j)=P(0,j — k) =p(Jj— k),
and there exists

A €N suchthat p(k) =0if |k > A.
ASsUMPTION 2. g is nondecreasing, 0 = g(0) < g(1),
G = sup{g(n + 1) — g(n)} <.

Let y denote the mean drift of the particles:

(1.3) y= Y. kp(k) € R%,
keZ?
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In the case where y = 0 let 0;,, 1 < i, j < d, be the diffusion coefficient,

J?
(1.4) g;= X kikp(k) €R if k= (ky,... k).

keZ?

It is easy to see that o = (o;;) is a symmetric nonnegative definite matrix. To
avoid degeneracy of the hydrodynamic equation, we assume (g;;) to be positive

definite:

AssuMPTION 3. There exist k > 0 such that,

Yo,x;x; > ky,x? forevery x € R%.
i, i

Let 6(N) be a renormalizing factor equal to N when y # 0 and N2
otherwise:

2 e _
(15) oy - (N5 17 =0
N, otherwise.

The reader should notice that in the diffusive rescaling we do not assume
the transition probabilities to be symmetric.

The existence of this Markov process is proved in [1]. Before proceeding, we
introduce some notation. Let SV denote the semigroup of the Markov process
with generator (1.1) and let .# be the set of probability measures invariant
under (SN). Let {r,, k € Z% be the group of shifts on X,;: 7,n is the
configuration of X, such that (7,7)(j) = n(k + j) for every j € Z?. We extend
the shift to the functions and to the measures in the natural way: 7, f(n) =
f(r,m) and [fd(r,u) = [(7, f)dun. Let - denote the set of shift-invariant
probability measures on X,. It follows from Assumption 1 that S;¥ and 7,
commute.

We introduce in X, the partial order defined by n < x if n(k) < x(k) for all
k € Z°. A continuous function f is said to be monotone if f(n) < f(x)
whenever n < y. We denote by .# the set of monotone functions and we
extend the partial order to the measures on X, in the natural way: u < v if
Jfdu < [fdv for every monotone function f. A Feller process is said to be
attractive if its semigroup S, preserves the partial order: u < v = uS, <vS,
for every t > 0. It is proved in [1] that the monotonocity of g assumed in
Assumption 2 implies the attractiveness of the zero-range process.

We now describe the invariant state of the process.

For 0 < ¢ < sup, g(k), let v, be the product measure on X, with marginals
given by

1 o’
Z(e) g(1) - 8(J)’
1

if j =1,
vdn; n(k) =j} =

— if j=0,
Z(e) /
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where Z(¢) is a normalizing constant. It is easy to see that this family of
measures is continuous and increasing with ¢:

P1= P 2V, SV,

lim = = limv, =v
n_m('on %o oo Pn 0’

where all limits of measure in this article are to be understood in the weak*
sense. Andjel [1] proved that this family is the extremal set of (£ N A).
Let p(¢) be the density of particles of the measure Y

p(¢) = v,[n(0)].

It is easy to see that p: [0, sup, g(k)) — [0, ) is a smooth strictly increasing
bijection. Since p(¢) has a physical meaning as the density of particles, instead
of parametrizing this family of measures by ¢, we use the density p as the
parameter and we write,

(1.6) v, =V, P =0.
With this convention, it is easy to see that
(1.7) e(p) =v,[g(n(0))], p=0.

Moreover, ¢(p) < Gp, ¢ is in C*(R,) and ¢’ is bounded below by a positive
constant on each compact subset of R, . 3
For every cylinder function ¥ on X,, we define ¥: R, — R by

(1.8) Y(p) = v,[¥(0)],

where v, is the product measure defined in (1.6).
Finally, we introduce the differential operator which describes the macro-
scopic evolution of the system.
Throughout this paper, .2 denotes a differential operator. Under Euler

rescaling, . is a quasilinear first-order partial differential operator,

dp

(1.9) Lo =~

a4
+ Y vi—e(p)
jo1 " ox;

and in the case where y = 0 so that the process is rescaled by N2, it is a
quasilinear second-order partial differential operator,

1.10 7 % f‘, o
(1.10) p= i’j=10'ijaxiaxj¢(p)7

where y and o were defined in (1.3) and (1.4). In both cases ¢ is smooth and
increasing. Associated with the operators .#, we have differential equations

ZLp =0,
p(0, ) =po(*),

with .2 as in (1.9) or (1.10). In the Appendix we fix the terminology of weak
solutions to (1.9), (1.11) and (1.10), (1.11).

(1.11)
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We now define approximating sequences for an initial profile p,. For each
€ L*(R?), let (py)y =1 be a sequence in L*(R?) such that:

(S1) py is nonnegative and constant in [k /N, (k + 1)/N)) for every k € Z%;
(82) lim supy _,.llpylle < =;

(83) @ py = po in Lloc(Rd) or (i) pn(x) = fruny/ N, =N+ 18N po(2) dz,
x € R? where for x <y € R,

(1.12) [x,y] ={z€R%x; <2, <y;,1<i=<d}

In Section 3, we replace hypothesis (S3) by weaker ones. Sequences (py)y s 1
satisfying assumptions (S1), (S2) and converging to p, in some topology are
called approximating sequences of p,.

Given an approximating sequence (py)y.; of py, we define a sequence
(un)y 1 Of product probability measures on X, corresponding to the initial
profile p,. We let u, be the product measure on X, with marginals given by

(1.13) un{n;n(k) =j} = v, o wfn;n(0) =j},  j=20,keZ

where, for p > 0, v, is the product measure defined in (1.6).

Throughout this paper Cx(R?) denotes the real continuous functions on R?
with compact support and C,(R¢) the bounded real continuous functions on
R<. We are now ready to state the theorems.

Theorem 1, the main theorem in this paper, states that conservation of local
equilibrium follows from a law of large numbers for the density field and
regularity assumptions on the hydrodynamic equation. In Theorems 2-5, from
this result, we prove conservation of local equilibrium for some attractive
interacting particle systems.

To state Theorem 1, we introduce a general setup.

For a profile p, in L*(R?) and for € > 0, define p§ * and p§ ~ as

Py T(x) = sup  po(2),
xE[x—e,x+e€]
(1.14) ) .
(x)= inf  po(2),

z€[x—e,x+e€]

where, for x, y inR¢, [x, y]is defined in (1.12). In what follows, we sometimes
denote p, by pd* or by pJ ~.

For a fixed attractive interacting particle system (n,) with generator L, and
for a partial differential operator .#, we consider functional spaces %=
F((Ly),-£). In Theorem 1, we prove that if & satisfies the assumptions
listed below then there is conservation of local equilibrium for every profile p,
in . To fix ideas, the reader may think of L, and .# as defined by (1.1) and
(1.9) and ¥ as the space of continuous functions with compact support.
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For a subset P of R, let {m ; p € P} be an ordered (p; <p, = m, <m,)
and continuous family of invariant measures for the process with generator
Ly. For a cylinder function V¥, denote m (V) by ¥(p).

The assumptions are the following:

HypoTHESIS 1. For every p, in % and every 0 < € < 1, there is a unique
weak solution of £p = 0 with initial data p§™* and p§ .

The concept of weak solution will change from case to case. For instance, in
the context of first order quasilinear hyperbolic equations it will mean entropic
weak solution.

HypOTHESIS 2. For every p, in %, let p (p* ) be the unique weak solution
of £p = 0 with initial data p, (p§ ™). There exists a version p** of p™*

(p© *=p" a.s.) such that for every t > 0 and every continuity point x of
p(t, - ),

lim sup [p®*(¢,2) - p(t,x)[=0.

€20, yl<e

The same property is required for p©~ the unique weak solution of £p =0
with initial data pf ~.

HypoTHESIS 3. For every 0 <e <1 and every approximating sequence
(pn)n =1 Of po satisfying (S1), (S82) and (S3), there exists an approximating
sequence p3 " (py7) of p§ ™ (p§ 7) such that:

(i) For every bounded cylinder function ¥, x, yin R%, x <yand ¢t > 0,

1 k -

where ¥(p) = m [¥], p©* (p*7) is the unique weak solution of (1.11) with
initial data p§* (p§ ™), and E5* (E§ ™) is the expectation on the path space
D([0, ), X;) for the Markov process with generator L, and with initial state
distributed according to the product measure pS," (u$~) defined from the
approximating sequence py "t (p%~) by (1.13).

(ii) There exists 8(e) > 0 such that

Py (%) <py(x+a) <pi*(x) foreverylal<éd, N>1.
THEOREM 1. Let (n,) be an attractive particle process for which there exists

a functional subspace F of L*(R?) satisfying Hypotheses 1-3. Then for every
po in & and every approximating sequence py of p, with properties (S1), (S2)
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and (S3),

lim SNy =m
N_mliN t TixN] p(t, x)

for every t > 0 and every continuity point x of p(t, *),

where wy is the product measure defined by (1.13) and p the solution of
(1.11).

We now state the results concerning conservation of local equilibrium.

THEOREM 2. Assume that y =0 and Assumptions 1-3 hold. Let p,:
R? > R, be an almost surely continuous function for which there exist
constants ¢ < © and a > d such that

po(¥) < o=, xR

Let (py)y »1 be an approximating sequence satisfying (S1), (S2) and (S3). Let
wy be the product measure defined in (1.13). Then

j\lriinooMNStNT[xN] =V, foreveryt>0,x€R?

where p(t,x) is the unique weak solution of (1.10), (1.11) such that
lp(t, Illi < llpglly for every t > 0.

THEOREM 3. Assume that O(N) = N and Assumptions 1 and 2 hold. Let
po € C,(RY), (py)y »1 be an approximating sequence satisfying (S1), (S2) and
(S3) and wy be the product measure defined in (1.13). Suppose that ¢ is
strictly concave or convex in the range of p,. Then

lim wySN7 vy = v
N_m,U«N t T[xN) (¢, x)

for every t > 0 and every continuity point x of p(t, ), where p(t,x) is the
unique entropic weak solution of (1.9) and (1.11).

In dimension 1, we can prove an even stronger result for the Euler
rescaling.

REMARK 1.1. In Theorem 3, in dimension 1, we may assume that the initial
profile p, is bounded and almost surely continuous.

From Theorem 3 we consider the cases not covered by Theorem 1 of [12].

Define a cone &# by

#={xcR%x,20,1<i=<d}

CoroLLARY. For @, B > 0, define the product measure p, g on X, by

veln;n(k) =n), ifke X,

. k) = =
Mo, g{n; n(k) = n} v{n;n(k) =n}, otherwise.
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Suppose that the mean drift vy defined in (1.3) does not belong to # U (— #).
Then

Z\I,I?m“a BSE TN = Voit, )

for every t > 0 and every continuity point x of p(t, ), where p(t,x) is the
unique entropic weak solution of (1.9) and (1.11) with initial data p, defined
by
_|B, ifxe
po(%) {a, otherwise.

The easier case where y belongs to # U (— #°) is studied in [12].

REMARK 1.2. Theorem 3 extends to ‘“misanthrope’ processes [4]. On the
other hand, to prove Theorem 2, we need the process to be gradient. Therefore
our proof of Theorem 2 applies only to gradient ‘“misanthrope” processes. We
consider, for instance, the symmetric simple exclusion process in Theorem 5.

In the next theorem we present a partial answer to an open problem stated
in ([15], Problem VIII.7.10) for the asymmetric zero-range process with mean
drift y =0

In dimension 1, let m,, z be the product measure whose marginals are given
by

v{n;n(k) =n}, ifk<0,
Ma,p{m; (k) = n} = ve{n;n(k) =n}, ifk=0.

THEOREM 4. Assume that y = 0 and Assumptions 1 and 2 hold. Then

1\1,1_‘}100 M, S =V,

where p(¢) = p(¢,0) and p(t,x) is the unique weak solution of (1.10) and
(1.11) with initial data p, defined by

po(*) = al{(—x=,0)}(-) + B1{[0,)}(")
such that

(@ p(t, ) — po() € L"R?) for every t > 0,
(b) lim, _, ollp(t, - ) — po(Illy = 0.

Finally, we consider the symmetric s.lmple exclusion process. This is the
Markov process on the state space {0, 1)%" whose generator acts on cylinder
functions as

(L15) (Lyf)(n) =N* ¥ (&)1 -n()]p(i - &) F(n*7) - f(m)],

k,jeZ?

where 1%/ is defined in (1.2).
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In addition to Assumptions 1 and 3, we assume that the transition probabil-
ities are symmetric. In this way the process is gradient.

AssumPTION 4. p(k) = p(—E) for every k € Z°.

To state the next theorem, we introduce some notation. Ifi‘or 0<p=<l,let
v, be the translation invariant product measure on {0, 1}%° with marginals
given by

(1.16) v{n;n(k) =1} =p.

The macroscopic behavior of the symmetric simple exclusion is described by
a linear partial differential operator .2,

F] d 92
(1.17) L=——- Y o, )
ot ;52 Vox;ox;

In the next theorem, we apply Theorem 1 to symmetric simple exclusion
processes. In this way, we obtain another proof of the hydrodynamical be-
haviour of this process (cf. [7], [5].

THEOREM 5. Consider the symmetric simple exclusion process. Assume
Assumptions 1, 3 and 4. Let p,: R? — [0, 1] be an almost surely continuous
function and let (py)y -, be an approximating sequence satisfying (S1), (S2)
and (S3). Let wy be the product measure defined in (1.13). Then

Al,im unSNT Ny = Vpsxy fOreveryt>0,x € RY,
where p(t, x) is the unique weak solution of (1.17) and (1.11).

The paper is divided as follows. In Section 2, we prove Theorem 1. In
Section 3, we prove a law of large numbers for the density field in the diffusive
regime. This result is based on a recent work of Yau and was obtained by
Rezakhanlou for processes in the Euler regime. In Section 4 we prove Theo-
rems 2-5.

2. Proof of Theorem 1. Fix p, in % and p, an approximating sequence
of p, with properties (S1), (S2) and (S3). Let wu, be the product measure
defined by (1.13).

Let p&* be the approximating sequence of p§ * given by Hypothesis 3 and
let u%™ be the product measure defined from p$ ™ by (1.13). From Hypothesis
3(i),

unTy < pxt  for every |k| < 8N.
Since the process is attractive,

unSHT, < uytSN for every |k| <8N, t > 0.
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Therefore, for ¥ a monotone bounded cylinder function and x R¢,

limsupp.NS,NT[xN][‘P] < lim ——— M ug SN [¥]
Noo Noo (2[8N] + 1)° h—any<(on]

1

[ (et 2)) de,
(25)d lz—x|<8 (P ( Z)) ‘

by Hypothesis 3(i).
Taking 8(e) <€ and x a continuity point of p(¢, - ), by Hypothesis 2 it
follows that

1

eh—I»I(l) _(ZST))E'II‘z—xIsS(e)\P(pE’ +(t, 2)) de = W(P(t, x))

In conclusion, we proved that for every bounded monotone cylinder function
W, every ¢ > 0 and every continuity point x of p(¢, - ),

11? sup un SNt M [ Y] < ¥(p(2, %))

= mp(t,x)[lp]'

Considering p* ~ and pj§ ~ instead of p** and p%*, in the same way we prove
the converse inequality, and this concludes the proof since every bounded
cylinder: function is the difference of two bounded monotone cylinder func-
tions. O

3. A law of large numbers for the density field. Throughout this
section we assume for the zero range process with generator (1.1) that y = 0
and Assumptions 1-3 hold.

To state the main result of this section, we have to introduce some notation.
We start by replacing assumption (S3) for approximating sequences (pn)N =1
by weaker hypotheses:

(S4) PN 7 Po in L%oc(Rd)‘
In some cases we need a slightly stronger'hypothesis on (py):
(85) py — po in LYRY).

For a probability measure u, on X, denote by Py the probability measure
on the path space D([0,), X,;) corresponding to the Markov process with
generator given by (1.1) and initial measure u, and by E, the expectation
with respect to Py .

In this section, we prove the following theorem.

THEOREM 3.1. Let p, € L'R?) N L*R?), let (py)y ., be an approximat-
ing sequence satisfying (S1), (S2) and (S4) and let w, be the product measure
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defined in (1.13). For every J € Cr(R?), every bounded cylinder function ¥
and every t > 0,

1 k -
lim EN[ = kzzd"( N)fk«v(no] = [ J@¥(p(t,2)) d,

where V is defined in (1.8) and p(t, x) is the unique weak solution of (1.10)
and (1.11) such that |lp(t, - 1 < llpglly for every t > 0.

The proof of Theorem 3.1. is based on recent work of Yau on relative
entropy and on Rezakhanlou’s method of replacing local quantities by func-
tions of the microscopic density field. To state Yau’s result we have to
introduce some notation.

For a fixed K € N, let (S£)? be the d-dimensional torus with 2NK points,

(SK)! = (-NK, ..., NK — 1)°

and let (S%)? be the d-dimensional torus [— K, K)?. To keep notation simple,
since K and d are fixed, we omit them when no confusion arises.

Let (£,) be the zero-range process with state space Yy = NV, that is, the
Markov process on Yy whose generator acts on functions f: Yy — R as

(81) (Lyf)(&) =N% ¥ g(&k))p(j— k) F(£*7) - F(£)],

k,jeSy

where ¢%7 is defined in (1.2) and the sums are taken modulo 2KN. Denote by
(SN ); > o the semigroup of this Markov process on Y.
Let p, € C3(S) such that

(3.2) e = inf po(x) >0,

xeS?

and let p(¢, x) be the unique solution of the differential equation on the torus

tp = Z lj xl Jqo(p)
P(O’ )—Po( )

From the maximum principle,

(3.3)

€ <p(t,x) <llpolle, t>0,xe8.

On the other hand, from Theorem 14 of [17], p(¢, - ) € C3(S?).
For each ¢ > 0, define v as the product probability measure on Y, with
marginals defined by

(3.4) VtN{n; n(k) =n} = Ve, k/N){"’I; n(0) = n}, keSy,n>0,

where p(¢, x) is the solution of (3.3) and for p > 0, », represents the product
measure introduced in (1.6).
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Let u and » be two probability measures on Y,,. Define the relative entropy
of u with respect to v by

H(ub) = sup | fu(mu(dn) - log feu(an)|.
ueCy(Yy)
It is well known that the entropy of u with respect to v is given by

du
H(ulv) = [—log dv,

if u is absolutely continuous with respect to v, and H(u|v) = o otherwise. In
the above formula, du /dv denotes the Radon-Nikodym derivative of u with
respect to v. Moreover, for every subset A of Y, from the definition of the
entropy, we obtain that

log2 + H(ulv)
log{1 +»(A)~'}

(3.5) u(A) <

With these notations established, we may state the theorem.

THEOREM 3.2 (Yau). Let p(t, x) be the unique solution of (3.3) with initial
data p, in C3(S) satisfying (3.2). For t > 0, define the probability measure vy
by (3.4) and let .y be a probability measure on Yy. Suppose that H(u ylvd) =
o(N?). Then H(u SN Iv}Y) = o(N9).

We omit the proof since it is not difficult to adapt the one of [23] to the
zero-range context. Nevertheless, we point out that this proof requires the

process to be gradient.
For l €N, k € Z% and 7 € Yy, or X, define '(k) by

1
3.6 k)= ——
(3.6) n'(k) @1, %477(1)

From Theorem 3.2, we prove the following corollary.

COROLLARY 3.3. Let p, be in C*(S) with property (3.2), and let (py)y - 1 be
an approximating sequence of p, satisfying assumptions (S1), (S2) and (S5)
with S replacing R? and for which there exists & > 0,

8 < 11vn£ pn(x).
Let uy be the product measure defined in (1.13). Then, for every J € C(S),
every ¥ € CX(R,) and every t > 0,

lim lim E,

>0 N>w

k. -
Nd T J( )\p(ng(k))] =[SJ(x)qr(p(t,x))dx,

keSy

where p is the unique solution of (3.3).
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Proor. Fix J e C(8), ¥ e CiR,) and ¢ > 0. For each & > 0, define

As;C Yy by
o 2o =+ ) -]

As; = {n;
lim ZJ( Jo(s (,%))=/SJ(x)@(p(t,x))dx,

Since J and ¥ are bounded and

to prove the corollary it is enough to show that for every 6 > 0,
(3.7 lim sup llmsup/.LN(t)[A ]=0,
N-

l >

where

,U«N(t) = ,U«NStN-

Since py — p, in L(S) and p,, is bounded below by a positive constant and
above by a finite constant, a simple computation shows that

H(uylvd) = o(N%)

for v}’ defined by (8.4). Therefore, from Theorem 3.2, H(un(#)Iv}Y) = o(N9).
From the entropy inequality (3.5), we obtain

log2 + o(N%)
1 g(l +vN(A;)"” )

Therefore to conclude the proof of (3.7), we have to show that for every § > 0,
there exists a positive constant C(8) such that

,U«N(t)[ ]

1
(3.8) lim sup limsupmlog vN[As] < —C(8).

> o N-ox

By Chebycheff’s exponential inequality, vN[ A,] is bounded above by
exp| —60Nd}Evgv[exp{oZG(k/N)I%’(k)) - W(p(2, k/N))I}],
k
for every 6 > 0, where G(x) = |J(x)|. Since 7’(j) and n’(k) are independent

for the measure v} if |j — k| > 21 + 1, by Holder’s inequality, the logarithm
of the expectation in the last expression is bounded above by

F(n'(k)) - *Tf(p(t’ %))M}

k
(2[-}——1)‘1 Z log{E N[exp{f)(Zl + 1) G(N)

+0(1%).
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Therefore,

1
lim sup — log V,N[Aa]
N> N

logE, , F(p(t,x)) )],

where v, . is the product measure defined in (1.6). From the large deviation
principle for i.i.d. random variables, it is easy to see that for every 8 > 0, there
exists a positive 6(8) such that the limit of this last expression when [ 1 is

strictly negative. O

ProposITION 3.4. With the assumptions of Theorem 8.2, for every t > 0
and every bounded cylinder function v,

N‘le

lim sup lim sup E \

> N-ox

7, (n, - fk =0
(21+1) ’ %4 (n) — ¥(ni( ))H

The proof of this proposition is omitted since it is similar to the one of
Lemma 7.4 in [19].
Corollary 3.3 and Proposition 3.4 prove the following corollary.

CoroLLARY 3.5. With the assumptions of Corollary 3.3, for everyJ € C(S),
bounded cylinder function ¥ and t > 0,

1 k -
lim EN[ 2 §J(ﬁ)7k~v<m> = [J@)U(p(t,x)) d,

N-ow

where p(t, x) is the solution of (3.3).

To conclude the proof of Theorem 3.1, we extend the last corollary to more
general initial profiles and to a larger class of approximating sequences (py).
The main tool in this last step is coupling and attractiveness.

LEMmA 3.6. Let p, € C3(S) and (py)y s, be an approximating sequence
satisfying assumptions (S1), (S2) and (S5). The conclusions of Corollary 3.5
hold.

Proor. Let (X°),., be a sequence of functions in C3(S) such that
@) A, € C%S), e >0and A_| p, uniformly in S; (ii) there exists M < » such
that

e<A <M, supllo, A ll. < M, supllafi’xj}\elloo <M forl<i,j<d.
€ €

For a fixed ¢, define A%: S - R, by
i i [xN] [xN]
- 2], (2]
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A simple computation shows that A% — A€ in L'(S) and that (A%)y . ; satisfies
the assumptions of Corollary 3.3. Let uy and u$y be the product measures
defined in (1.13), respectively, associated to the approximating sequences (py)
and (A%).

We couple two copies (n,) and (&,) of the zero-range process in the following
way. First we place n-particles in S, according to u,. Then, we add {-par-
ticles so that n + { is distributed according to u,. This is possible since
Ay = py- Let € =n + ¢ and let wy(dn, d€) be the coupling measure on the
product space Yy X Y, obtained in this way (we omit the indices ¢ when no
confusion arises to keep notation as simple as possible). We let the n and
&-particles evolve according to the basic coupling which is the Markov process
whose generator acts on function f: Yy X Yy — R as

(Lnf)(n,€) = Nsz.[g(n(k)) A g(£(k)]p(J — k)

X[ f(n*,e89) = f(n, )]

+N2Y [g(n(k)) — g(£(k)] " p(j — k)
(3.9) koJ

X[ F(n*7, &) = f(m, )]
+ NPT [g(6(R)) ~ g(n(k))] " p(i ~ k)

X[f(n’fk’j) _f(n’f)]~

Let S} be the semigroup of this Markov process and let & (¢) = SN, Since
for the coupled process, the n- and ¢&-particles evolve as zero-range processes
with generator given by (1.1), the first marginal of 1, (#) is equal to up(¢) =
uySY and the second marginal is u5 () = u$yS2. Denote by E expectatlons
with respect to the coupled process with initial measure . With this
notation we have that

EN[$ §J(%)quf(nt)]
(3.10) = EMN[% %J(%)nﬁ’(é)]

+ E§

% ZJ(%){Tk\If(nt) - Tk‘lf(§;)}]~

Since (A% )y > satisfies the assumptions of Corollary 3.5, the first expression
in the r.h.s. of (3.10) converges to

fSJ(x)\if()\‘(t,x)) dx,

where A°(¢, x) is the unique solution of (3.3) with initial condition Ac.
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Let R € N such that supp ¥ c [—R, R]? and let {, = ¢, — 7,. Because
[W(&) = ¥(n)| < 20¥l. ¥ £()),

ljlI<R

the absolute value of the second expression in (3.10) is bounded above by

|1 - [1
C(J,‘I’)Efv[ﬁ Xk:s“t(k)] = C(J,‘I’)Efv[ﬁ §{§o(k) = (%)}

= (%) [ |Xy(%) = px(x) | dx.

This last expression converges to 0 when N — « and then € | 0. Therefore

llmeN[Nd ZJ( k )Tk‘lf(nt)] = leI(I)LJ(x){I}(/\e(t’x)) dx

fSJ(x)\Tf(p(t,x))dx. ‘

The last equality follows from assumptions (i) and (ii) on the sequence A and
Theorem 12 and 14 of [17]. O

LEMMA 3.7. Let p, € CZ(R?) and let (py)y-, be an approximating se-
quence of p, satisfying (S1), (S2) and (S5). Let upy be the product measure
defined in (1.13). Then the conclusions of Theorem 3.1 hold.

Proor. We first consider the case where

(3.11) pn(x) =0 if po(x)dx =0
[[xN1/N,(xN]1+1)/N]
where, for x,y in R? [x,y] was defined in (1.12). Fix K € N such that
supp J U supp p, € (—K, K)¢. We couple a zero- range process (n,) evolving on
X, with 2 zero-range process (&,) evolving on (S£)e.
Let u% be a product probability measure on Y, with marginals given by

w5 {& E(k) =n} = V,,N(k/N){n; n(0) =n} forn=>0,k€Sy.

Let (¢,) be a Markov process evolving on Y, with generator defined in (3.1)
and initial state distributed according to u% and let (n,) be a Markov process
evolving on X, with generator defined by (1.1) and initial state distributed
according to p. Define uX as the probability measure on the product space
X, X Yy with first marginal equal to uy, second marginal equal to u% and
such that

aN{(n,€); (k) = &(k), k € AY) =1,
where

AX = (-KN,..., KN - 1}*.
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We label the n and ¢ particles in such a way that at time zero particles with
the same label are at the same site. We let the - and &-particles with same
label evolve together before reaching dA%,, the border of AX;. From this time
on, they behave independently of one another and as second class particles
with respect to those particles that have not reached aAIf\, (see [2], Section 2 or
Lemma 2.2 in [11] for the terminology of second class particles). Denote by 7'
and ¢! the particles that have not reached dA% and by n? and &2 the others.
From our coupling,

ni =& and |n?l = |2 fort>0,

since by hypothesis (3.11), py(x) = 0 if |x| > K. Denote by EX the expectation
with respect to this coupling. :

Since ¢, evolves as a zero-range process on the torus and the approximating
sequence p, satisfies the hypotheses of Lemma 3.6,

_ 1 k -
(3.12) Al’iglmEl{,{[W%J(ﬁ)fk\P(ft)] = fSJ(x)\Ir(pK(t,x))dx,

where pX(¢, x) is the solution of (8.3) on the torus (S%)¢ with initial data p,,.
For x € R, t > 0, let

x+ K K
2K ’

where [r] denotes the integer part of » € R%. Then pX(t, x) is the solution of
(1.10) and (1.11) with initial data pX € C3(R?) defined by

x+ K
p&(x) =polx — 2| —=—|K| forx € R.

pE(t,x) = pK(t,x -2

2K

By the maximum principle, p2"%(¢,x) decreases in n and therefore the se-

quence converges to some function p(¢, x). It is not difficult to show that p is a

weak solution of (1.10) and (1.11), and that [|p(¢, - )ll; < llp,ll; for every ¢ > 0.

By the uniqueness theorem (Proposition 1 in [3]) and the existence theorem,

Theorem 14, in [17], p(¢, x) is the unique classical solution of (1.10) and (1.11).
On the other hand,

EI{,‘[% %J(%)m‘l’(m)]
(3.13) = E{,‘[% ZJ(%)fk‘I’(ft)]

+Ef

1 k
37 2o 3l nd = ravcnl]
Nd B N k t k t
Let R € N such that supp ¥ c [-R, R]®. Since 5} = &,

|W(n,) — V(&) <20¥l. ¥ n2(5) + £2(J).
lj/l<R
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Therefore, the absolute value of the second expression in the r.h.s. of (3.13) is
bounded above by

- 1
1) B 73 St

for |¢7| = |n?2|. This last expression represents the number of n-particles that
reached dA%, before time ¢.

Let (X,) be a random walk with mean 1/G exponential holding times and
transition probabilities p(%) defined in (A1) and (A2). Let B € R such that
supp p, C [—B, B]?. It is easy to see that this last expression is bounded above
by

c(J, v, ||pN||w)P[sup|XsN2| > (K - B)N]

s<t

and this probability converges to 0 when N to and after K 1. Therefore,
from (3.12) and (3.13),

1 k -
IggnwEN[WgJ(ﬁ)Tﬁf(n»] ~ [ I (ot ) ds,
where p(t, x) is the solution of (1.10) and (1.11) with initial data p,. This
concludes the proof of the lemma in the case where p, satisfies (3.11). For the
general case, let

() = pN<x>1{ po(x) dx > o}.

'/[.[xN]/N,([xN]+ 1)/N]

It is easy to see that g, has all the properties required by Lemma 3.7 and
satisfies (3.11). Let u, and i, be the product measures associated with the
approximating sequences py and gy, respectively. Repeating the coupling
arguments presented in Lemma 3.6, we conclude the proof of the lemma. O

We are now ready to prove Theorem 3.1.

ProoF oF THEOREM 3.1. Let (p§). ., be a sequence in CZ(R?) converging
to p, in L'(R?) and uniformly bounded. For each positive ¢, let (pS) be an
approximating sequence of p§ satisfying (S1), (S2) and (S5), and let u5, be the
product measure defined in (1.13) associated with the approximating sequence
(p5y)- ‘

For € >0 and N > 1, define u$% as a measure on the product space
X, X X, with first marginal equal to u,, second marginal equal to xS and
such that

(3.14) E{(m,€)im(k) <£(k)) =1 ifandonlyif py(k/N) < piy(k/N).
Let (n,, &) be the Markov process with generator given by (3.9) and initial
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state (n,, &,) distributed according to % . With this notation,
1 k
EN[W %J(ﬁ)’fﬂ’(m)]
1 k

+ E§,

1 k
— Y J| = {m¥(n,) — ¥ (&) )
o] [ [ERTER (f;)}]

From Lemma 3.7, the first term on the r.h.s. of (3.15) converges to
[sJ(x)#(p<(t, x)) dx, where p¢ is the solution of (1.10) and (1.11) with initial
data p§. Since ¢(p) is smooth, ¢'(p) is bounded below by a positive constant on
each compact set of R,, o is by Assumption 3 a positive definite matrix, and
the sequence p§ is uniformly bounded, by Nash’s theorem [16] on linear
parabolic differential equations, the sequence p¢ is uniformly (in €) Holder
continuous on each compact set of (0,) X R?. Since p§ converges in LY(R%)
to p,, every limit point of the sequence (p¢) is a weak solution of (1.10) and
(1.11) with initial data p,. On the other hand, it is not difficult to see that
llp(t, Iy < llpglly for every ¢ > 0. Therefore, from the uniqueness of weak
solutions of partial differential equation (1.10) and (1.11) (Proposition 1 of [3]),
p¢ converges uniformly on each compact set of (0, ) X R? to p, the weak
solution of (1.10) and (1.11) with initial data p,. Therefore,

e>0 N>

1 k .
lim lim EN[W %J(ﬁ)n\v(g)] - fSJ(x)\If(p(t,x))dx,

where p(t, x) is the weak solution of (1.10) and (1.11) with initial data p, such
that [lp(¢, - )lly <llpylls for every ¢ > 0.

To conclude the proof of Theorem 3.1, we first have to show that the second
term of the r.h.s. of (3.15) converges to 0. This is done with arguments similar
to the ones used in the proof of Lemmas 3.6 and 3.7. In the same way, we
prove that the assumption (S5) may be replaced by (S4). O

REMARK 3.8. Theorem 3.1 holds if assumptions (S2) and (S4) on the
approximating sequence (py ) are replaced by (S5).

4. Proof of Theorems 2-5. In this section, we prove the theorems
stated in section 1. We begin by recalling a law of large numbers for the
density field under Euler rescaling proved by Rezakhanlou [19].

THEOREM 4.1 (Rezakhanlou). Denote by (m,) the Markov process with
generator (1.1), where (N) = N. Let p, € L"(R?), let (py)y -, be an approxi-
mating sequence satisfying (S1), (52) and (S4) and let uy be the product
measure defined in (1.13). For every J € Cx(R?), bounded cylinder function ¥
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and t > 0,

lim E| — Y J R
Nlinoo N Ndkezd (N)Tk (nt)

= fRdJ(x)‘if(p(t, x)) dx,

where V¥ is defined in (1.8) and p(¢, x) is the unique entropic weak solution of
(1.9) and (1.11).

The proofs of Theorems 2, 3 and 5 will consist of proving that the processes
considered satisfy Hypotheses 1-3 of Theorem 1. In Theorem 2 and 3, P = R,
and the family of measures m, is defined by (1.6) and denoted by »,. In
Theorem 5, P = [0, 1] and the family of measures m, is defined by (1.16) and
denoted by 7,.

Proor oF THEOREM 2. In Hypotheses 1-3 let L, be the generator defined
in (1.1) with Assumptions 1-3, let . be the differential operator defined in
(1.10) and let F be the space of bounded a.s. continuous functions p, for
which there exist constants ¢ < « and « > d such that

(4.1) po(x) <

c
1+ |x|*°

Since p, is bounded, from (4.1), it is easy to see that p§ * and p§ ~ defined
by (1.14) are in L*(R%) N L*(R%). Therefore, from Proposition 1 of [3], there
exists a unique weak solution of (1.10) and (1.11) with initial conditions p§ *
and pgy ~ such that [lp= " (¢, Il < llpg "Iy [llp® ~(&, 1 < llp§ ~IIl1] for every
¢t > 0. Thus Hypothesis 1 is satisfied.

Since ¢ is smooth, since ¢'(p) is bounded below by a strictly positive
constant on every compact subset of R, since o is a positive definite matrix
and since p,, p§ * and p§ ~ are uniformly bounded, by Nash’s theorem [16] on
linear strictly parabolic differential equations, the solutions p©* and p® ~ of
(1.10) and (1.11) are equicontinuous on every compact set of (0, ©) X R?. Since
po is a.s. continuous, p§ * and p§ ~ converge in L} (R?) to p,. It is therefore
not difficult to see that every limit point A(¢, x) of the sequence p* and p< ~
is a weak solution of (1.10) and (1.11) with initial data p, such that [|A(¢, - )Il;
< llpolly for every ¢ > 0. By the uniqueness theorem of weak solutions (Pro-
position 1 of [3]), p=* (p©~) converges uniformly on every compact set of
(0,%) X R? to p, the weak solution of (1.10) and (1.11) with initial data p,
such that ||p(¢, - )ll; < llp,ll; for every ¢ > 0. This proves Hypothesis 2.

Let (px)y > be an approximating sequence of p, with properties (S1), (S2)
and (S3). Define p§™* as

Py (x) = maX{ sup pn(2),
2€l(xN1-[sND/N, (xN1+[sN/N]

| Néps *(z2) dz},
[[xN]/N,(xN]+1)/N]
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where, for x and y in R?, [x, y]is defined in (1.12) and 8(e) = € /2. Define p% ~
in an analogous way. Obviously p&* (p% ) have properties (S1) and (S2) and
it is not difficult to see that these sequences converge to p§ * (p§ =) in Li,..
Therefore, by Theorem 3.1, Hypothesis 3(i) is satisfied. On the other hand, by
construction the sequences p%* and p§~ satisfy Hypothesis 3(ii) with
d=¢€/2. 0

Proor oF THEOREM 3. The proof is almost the same as the one of Theorem
2. We just point out the needed modifications. In Hypotheses 1-3, let L, be
the generator defined in (1.1) with Assumptions 1 and 2, let - be the
differential operator defined in (1.9) and, in dimension 1, let # be the space of
bounded a.s. continuous functions p, and in higher dimensions let & be the
space of bounded continuous functions.

Since p, is bounded, p§ ™ and p§~ defined in (1.14) are in L™(R%).
Therefore, from Theorem 2 of [10], there exists a unique entropic weak
solution of (1.11) with initial condition p§ * and p{§ ~. Thus Hypothesis 1 is
satisfied.

In dimension 1, since p, is a.s. continuous, p§ * and p§ ~ converge in
L1 (R?) to p,. Lax obtained ([14], Section 2) an explicit formula for the weak
solution of (1.9) and (1.11) when ¢ is strictly concave or convex. Repeating the
arguments of the proof of Theorem 2.2 in [14], we can show that Hypothesis 2
is satisfied.

In dimension d > 1 with a change of variables the differential operator (1.9)
can be rewritten as

ap a
Z(p) = Fri C(Y)EGD(P)

for some C(y) € R. Therefore, the differential equation is one-dimensional
and the same arguments prove that Hypothesis 2 is satisfied since we assumed
that the initial profile is bounded and continuous.

Let (pn)y -1 be an approximating sequence of p, with properties (S1), (S2)
and (S3). Define p%;* and p% ~ as in the proof of Theorem 2. p§* (p§ ™) have
properties (S1) and (S2) and it is not difficult to see that these sequences
converge to p§ * (p§ 7) in L},.. Therefore, by Theorem 4.1, Hypothesis 3@) is
satisfied. On the other hand, by construction the sequences p%* and p§~
have Hypothesis 3(ii) with § = ¢/2. O

PROOF OF THE COROLLARY OF THEOREM 3. Let y € R be the mean drift
defined in (1.3) and for x € R?, let I(x) = {x + ry; r € R}. In the proof of
Theorem 3, to apply Lax’s result [14] to show that Hypothesis 2 is satisfied, we
only have to suppose that for every x € R¢, almost all points of I(x) are
continuity points of the initial data p,. Since this is the case if y & HU (= H#),
the proof of Theorem 3 easily extends to its corollary. O

The proof of Theorem 4 needs two preliminary lemmas. To fix ideas, we
suppose that
a <fB.
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To state the first lemma, for positive integers %, define p* as the unique weak
solution of (1.10) and (1.11) with initial data p* given by

ps(x) = al{[~&,0)}(x) + B1{[0, k]} ().

LEMMA 4.2. The sequence p* converges uniformly on the compact sets of
(0, ) X R to the unique weak solution p of (1.10) and (1.11) with initial data

(4.2) po(x) = al{[—=,0)}(x) + BL{[0,=)}(x)
such that (a) p(t, - ) — po(+) € L'(R) for every t > 0, and (b) lim,_, ollp(¢, - ) —
Po()”l = 0.

Proor. From Theorem 1 of [3], there is a unique weak solution of (1.10)
and (1.11) with initial data p, defined by (4.2) and satisfying (a) and (b).
Therefore, to prove the lemma it is enough to show that the sequence (p*) is
equicontinuous and that every limit point of it is a weak solution of (1.10) and
(1.11) satisfying the properties (a) and (b).

From Nash’s theorem on weak solutions of linear partial differential equa-
tions [16], the sequence p* is equicontinuous on each compact subset of
(0, ) x Re.

Let Az, x) be a limit point. It is easy to see that A is a weak solution of
(1.10) and (1.11) with initial data p,. To conclude the proof of the lemma, we
have to show that A has properties (a) and (b).

Since p* is bounded below by « and above by B, for every ¢ > 0,

fR|)\(t,x) — po(x)| dx = f_ow[)t(t,x) —a]dx + f:[/s' — A(t, x)] dx.

To keep notation simple, we suppose that p* converges uniformly to A on the
compact sets of (0, ) X R. In the sequel, we prove that the second integral in
the right-hand side of the last expression is bounded by a finite function C(z)
which converges to 0 when ¢ /0. The same argument applies to the first
integral.

Since p* converges uniformly to A on the compact sets of (0,©) X R,

(4.3) [18 = At )] dx = Jim Jim [*[p - (2, )] da.
Define u%, as the product measure on X ¢ With marginals given by
vo{n;m(j) =n}, if kN <j <0,
winin(j) = n} = {veln;n(j) =n}, if0<j<kN,
vo{n; n(j) = n}, otherwise,

for every n € N. We define a product measure i% on the space X, X X,
which has the first marginal equal to u%, second marginal equal to vg and
such that % {(n, £); n < ¢} = 1. This measure is constructed in the following
way. First, we place n-particles distributed according to w%. Then, we add
{-particles for { = n + { being distributed according to v,. Let (7, £) evolve
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according to the Markov process with generator given by (3.9). From Theorem
3.1,

b .
fo [B — p*(t,x)] dx = ]\lllinwE{f,

1 [6N] ‘
Nj;o(ﬁ - ”h(J))]

44 = 1l
(44) Aim,

7 1 [%V] )
Mw k(P ft(]))]

1 N
N j§0 Q(])]} .

+E%

Since v, is an invariant measure,
[ 1 N5

Eyl< X (B-&())|=0.
Nj=O

For each j € Z, let Z(j) be the number of {-particles on site j at time 0.
We label the ¢-particles on j with superscripts: {/), 1 < i < Z(j), j € Z. With
this notation, we have

(4.5)
k

i 1N
N Njgogt(.])] = ﬁ Z

Z(j) o
sl L 1y e [o,bN]}l.
i=1

Let (X,) be a random walk with mean 1/G exponential holding times and
transition probabilities p(%) defined in Assumptions 1 and 2. Since for every
je,

Pt/ e0,6N]] < P[sup|XsNz| SUlAL - bNI],

s<t

the left-hand side of (4.5) is bounded above by

L Y P|suplX, y2l =j + (k — b)N] + — Y P|suplX, el >Jl

NjZO s<t JZO s<t
X, el ' X, el
=,BE(sup — (k-0 + E| sup .
s<t N ( ) s<t N

Therefore, from (4.4),
hmsupf [B pk(¢, x)] dx < BE[sup|1/_—BsG|]
s<t

where (B,) is a Brownian motion and G and o are defined in Assumptions 1
and 3. We define the right-hand side as C(¢). It is easy to see that C(¢) is finite
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and converges to 0 as ¢ | 0. Since from (4.3),

[ 718 = A(t,0)] dx < C(2),
0
the proof is complete. O

LemMmA 4.3. With the assumptions of Theorem 4, for every J € C(R9),
bounded cylinder function ¥ and t > 0,

1 -
lim m, SN[ ZJ(k/N)Tk\If(n)] = [J(x)¥(p(t, %)) dx.

- k

ProOF. For k € N, let /.L’f\, be as defined in Lemma 4.3. Distribute n-par-
ticles on X, according to u%. Add {-particles for ¢ = n + { being distributed
according to m, ;. Denote by & @%(n, &) the product measure on X; X X,
obtained in this way. Let (7,, £,) evolve according to the Markov process w1th
generator defined in (3.9). From Theorem 3.1, Lemma 4.3 and coupling
arguments similar to the ones used in the proof of Lemmas 3.6 and 3.7, we
conclude the proof of the lemma. O

Proor oF THEOREM 4. Let ¥ be a monotone bounded cylinder function.
Since m, g < 7,m, g, and the process is attractive, for every € > 0,

[eN]

Z Tj‘l’( m) .

mg SN [W(M)] <mg g eNT+1 X,
i

Therefore, from Lemma 4.3 and since p(¢, - ) is continuous for every ¢ > 0,
1 e
li SN[¥ < lim — | ¥(p(¢, d.
Jim e, g SN[W(m)] < lim — [ F(p(t,x)) d

= \i’(P(t’O)) = Vp(t,O)[q,]'

In the same way we prove the reverse inequality. Since every bounded cylinder
function is the difference of two monotone bounded cylinder functions, the
theorem is proved. O

Proor or THEOREM 5. The proof is similar to that of Theorem 2. We
therefore point out only the needed modifications. In the present context L,
is the generator defined by (1.15) and the differential operator .2 defined by
(1.17). Therefore Hypotheses 1 and 2 of Theorem 1 are satisfied, since p, is
almost surely continuous and o is a positive definite matrix by Assumption 3
(see [18] for an uniqueness theorem).

On the other hand, we can prove Theorem 3.1 for the symmetric simple
exclusion process since it is gradient. With one step further, using coupling
similar to the ones used in the proof of Theorem 3.1, we can extend the
statement of Theorem 3.1 to initial profiles p, in L*(R%). Therefore, defining

€, +

p% " and p%~ as in the proof of Theorem 2, Hypothesis 3 is satisfied. O



HYDRODYNAMICS OF PARTICLE SYSTEMS 1807

APPENDIX

In this Appendix, we fix the terminology of weak solutions of quasilinear
partial differential equations.

A bounded function p is an entropic weak solution of (1.9) and (1.11) if for
every ¢ € R,

o —cl + X 9. 16(p) —d(c) <0

l<j=<d

in the sense of distributions on (0, ©) X R?, and if for every compact subset K
of R9,

lim [ [p(2,2) = po(2)|d2 = 0.

Kruzkov [10] proved the existence of an unique entropic weak solution of (1.9)
and (1.11) for each p, € L"(R%).
A bounded function p(t, x) is a weak solution of (1.10) and (1.11) if

[(dt [ dx|pad +6(p) T 00 J |+ [ dxd(0,2)po(x) =0
0 R¢ 1<i<d v R¢
1<j=<d

for every J € Cg(R, X R%). Brezis and Crandall [3] [cf. Proposition 1 and
(1.22)] proved the uniqueness of weak solutions of (1.10) and (1.11) such that

T
follp(t,')llldt<oo

for every T < «. They also proved (cf. Theorem 1 in [3]) that there is a unique
weak solution of (1.10), (1.11) such that (a) llp(¢, - ) — po(*)lly < = for every
t > 0, and (b) lim, _, ,llp(z, - ) — po()lls = 0.
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