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THE TRANSPORTATION COST FROM THE UNIFORM MEASURE TO
THE EMPIRICAL MEASURE IN DIMENSION > 3
BY M. TALAGRAND!
Université Paris VI and Ohio State University
Consider two independent sequences (X;); < » and (X)); <, that are in-

dependent and uniformly distributed over [0, 1]¢, d > 3. Under mild regu-
larity conditions, we describe the convex functions ¢ such that, with large

probability, there exists a one-to-one map = from {1,...,n} to {1,...,n}
for which
1 [Xi—-X!
Z = ( —l/dﬂ'(l)) <1,
i<n? K,

where K, depends on ¢ only.

1. Introduction. Consider an integer d > 1. Consider m points (X;)i>m
that are independent and uniformly distributed over the set [0,1]¢. How far
is the set {X,...,X;n} from being uniformly spread over [0, 1]%? The way this
will be measured is by considering the transportation cost from the empirical
measure m~!Y}; < ,0x, to the uniform measure )\; on [0, 1]¢ when the cost of
transporting a unit mass from x to y is given by ¢(x — y), where ¢ is a function
on R¢. The notion of transportation cost will be explained formally in Section 2.
For the purpose of this introduction we will chose an essentially equivalent for-
mulation that avoids all technicalities. Consider another independent uniform
sample (X); < » independent of (X;); < ,. How close are the sets {Xi1,...,Xn}

and {X],...,X;,}? Here closeness will be measured as
(1.1) lnf Z (l)
1 <m
where the infimum is computed over all one-to-one maps = from {1,...,m} to

1tself [As it turns out, (1.1) is exactly the transportation cost of the measure
m~1%; < mOx, to the measure m~ 2,<m6X/]

The depth of the topic was discovered by Ajtai, Komlés and Tusnady [1],
who prove that when d = 2 and ¢(x) = ||x||, then (1.1), with high probability,
is of order m~1/2(log m)'/2. Another landmark result is due to Leighton and
Shor [2]. They show that if d = 2 and ¢(x) = 0 for ||x|| < Km~'/2(log m)3/4,
then (1.1) is zero with high probability (there, as in the rest of this paper, K
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denotes a universal constant, not necessarily the same at each occurrence).
Further equally remarkable results were obtained by Shor [4]. The case d = 2
is certainly the deepest, and, despite considerable efforts, it is still far from
being completely understood [7].

When d = 3 (or more), the situation is simpler. The method of [1] shows that
if p(x) = ||x||, then with high probability (1.1)is of order m /2. This method was
adapted by Shor and Yukich [6] to show that (1.1) is zero with high probability
when ¢(x) = 0 for ||x|| < K(d)(log m/m)'/?, where K(d) depends on d only.

There is no reason why the function ¢ should depend only on the distance
to the origin. Actually, in certain natural situations, one must give a different
weight to the different coordinates; for example, consider the function ¢ given
by

+00, if |x;| > Km~1/3,

¢((x1ax29x3)) =
Va2 +x2, if jxy| < Km™1/3,

Then a special case of a result of [3] shows that, with high probability, (1.1) is
of order m~—1/3 (for a suitable K). (A similar situation has also been considered
in dimension 2 in [4], [5] and [7].)

The purpose of the present paper is to present a result that, in dimension
d > 3, will contain the three results mentioned above, and many others. This
result is essentially the final word on the question, as it provides (under a mild
regularity condition) an essentially complete description of the functions ¢ for
which, with high probability, the transportation cost (1.1) is less than 1. (It is
a proof when d > 3 of the “ultimate matching conjecture” of [7].) For the sake
of simplicity, we state and prove the result only when d = 3; no extra ideas
are required when d > 3. For a Borel subset A of R3, we denote by |4| its
Lebesgue measure.

THEOREM 1.1. There exists a universal constant K with the following prop-
erty. Consider a convex function ¢ on R® (which possibly takes some infinite
values) with ¢(0) = 0. We assume that the following hold:

(1.2) ift >0, then |{¢ > t}| > log t.
(1.3) @(Fx1, 22, £x3) = p(x1, X2, %3)-
(1.4) if p(x) > 240, then (p(g) <low.
=% 5/~ 4
(1.5) ¢(25,0,0),(0,25,0),4(0,0,2°) < 2%.

Then, with probability greater than or equal to 1 — Km~2, the following occur.

(a) The transportation cost of the empirical measure m=1y; <m0x, to Az isless
than or equal to 1 when the cost of moving a unit mass from x to y is measured
by o((x —y)/Km~1/3),
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(b) We have

o1 Xi - X6

CoMMENTS (a) In the condition “with probability greater than or equal to
1 — Km~2,” the exponent —2 can be replaced by any other (with a different
constant K ).

(b) Certainly (1.5) is very mild. If ¢ is finite in a neighborhood of the origin,
the function ¢(x/K,) satisfies (1.5) for some K, large enough. Condition (1.3)
is satisfied in the most natural examples. While we have not checked all the
details, we feel that no essential new ideas are needed to remove the condition.
However, this would create technical complications. These would obscure the
otherwise rather natural line of approach and we have decided not to pursue
this direction. Condition (1.4) fails for the most natural example, p(x) = |x|.
However, it does hold on the natural examples where (1.2) is tight (from which
the case ¢(x) = ||x|| can be recovered). Apparently this condition is purely tech-
nical, and there is not much motivation to try to supress it.

(c) Condition (1.2) is the essential point. If one replaces this condition by
[{¢ < t}| > L~'logt, for some constant L > 0, only trivial modifications to
the proof we present are needed to show that the conclusion still holds (with
different constants). It must be pointed out that this condition is necessary.
(The remarkable feature of Theorem 1.1 is that the condition is also sufficient.)
More precisely, if (1.6) holds, with constant K; in the denominator, for ¢ large
enough, we must have

logt
I{e <t} K3
where K is universal. To show (1.7), let us consider ¢, and the largest m such that
logm is less than L|{y < t}|, where L is a parameter that will be adjusted later.
Then (for ¢ large enough) |{¢ < t}|is at least D(¢)/K, where D(¢) is the diameter
of {¢ < t}. Thus (for ¢ large enough) D(¢) < (K/L)logm is much smaller than
m1/3, It then follows that one can find a subset F of [0, 1]3, such that the sets
x +2Kym~13{p < t}, for x € F, are all disjoint and contained in [0, 1] where
cardF > m/K; logm. If we choose L = KK3, where K is large enough, it is easy
to see that, with probability greater than or equal to -21- we will find some x € F
such that

card{i <m; X; € x + Kim~3{p < t}}
> card{i <m; X] € x + 2Kym~3{p < t}}.

It then follows that whatever the choice of = there exists i such that X0
¢ X; + Kym~Y3{p < t}, that is,

i 10
(Tt ) 2t
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Now, if (1.6) occurs, we have ¢t < m so that

logm _ logt
< > > —.
o<tz =27

(d) The strange constants that appear in this statement arise from the fact
that no effort has been made to optimize these constants, and that we have
rather tried to give the simplest possible proof.

Let us now give a few examples.

ExaMmpLE 1.2. Consider the function ¢(x) = —1 + exp||x||>. Then, for some
constant K, the function ¢(x/K) satisfies (1.2)-(1.5). Thus, with probability
greater than or equal to 1 — m~2, we can find a one-to-one map 7 such that

(1.8) ign—’i—expmw <2
In particular, we have
max ||X; — X[l < Km™Y3(logm)*/?
(the result of Shor and Yukich [6]). We also have (since expx® — 1 > x for x > 1)

31X - Xl < Km??,
i<m

so that (1.8) also improves upon the result of Ajtai, Komlés and Tusnéady [1].

ExaMmpPLE 1.3. Consider the function ¢ given by

+00, if |x1| > 1,

o(xq,%2,%3) = {_1+exp (% +x2), if|xy| < 1.

Then, for some constant K, the function ¢(x/K) satisfies (1.2) to (1.5).

ExaMPLE 1.4. Consider the function ¢ given by

+00, if x2 +x2 > 1,
£ .2
—l+explrs], ifx2+x2<1.

Qo(xlaxZ)xS) = {

Then, for some constant K, the function ¢(x/K) satisfies (1.2)~(1.5).

While Theorem 1.1 gives, for d = 3 (or any d > 3), a rather complete solu-
tion to the problem of the transportation cost of the empirical measure to the
uniform measure, the constant K involved in (1.6) grows rather fast with d.
The problem of understanding the correct order of growth of this constant in
function of d is not solved (and the methods of the present paper would need
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major improvements to attack this question). So far, progress has been made
only when ¢(x) = ||x||; see [8].

Let us now discuss the methods of this paper. There exist essentially two
approaches to this type of problem. The first originates in [1] where an explicit
transportation scheme (of considerable interest in itself) is developed. This is
the method pursued in [6]. The second method is more indirect; it uses “dual-
ity” and, in the end, reduces the problem to the evaluation of the supremum
of the empirical process over a certain class of functions. This method was ap-
parently introduced in [2] and is developed in [7]. As of today it seems that the
duality method, while less direct and more complicated, is also more powerful.
For example, while Yukich has recently succeeded in proving (1.8) using the
Ajtai-Komlés—Tusnady scheme, this scheme seems powerless to prove results
where one requires a tight control on one component, such as in Examples 1.3
and 1.4. The present paper is, of course, based on the duality method. For the
convenience of the reader, everything that is needed about the transportation
cost and the use of duality is proved in Section 2. The duality method involves
certain classes of functions. It is rather difficult to work with these classes,
since their definition is complicated. The purpose of Section 3 is to prove that
these classes do satisfy some more manageable properties that will be suffi-
cient for our purposes. In Section 4, we learn how to decompose a function in
these classes into simpler pieces, and the final computations are performed in
Section 5. The scheme of proof is somehow similar to that of [3], but the proof
is made harder by the fact that the present result is much more tight.

It might be useful to provide some help to the reader. The level of technicality
is low in Section 2 and increases to reach its peak in Section 5. We hope that the
reader will have no difficulty in grasping the overall scheme of the proof. Un-
fortunately the relative simplicity of the approach is spoiled by the apparently
unavoidable fact that in the main computation, much energy must be devoted
to controlling lower-order terms. This is a great pity, because the possibility
of controlling the main terms is a rather beautiful phenomenon that is buried
deep in the proof of Theorem 5.1. This phenomenon is the heart of this paper,
since, once it is understood, completing the proof is simply a matter of hard
work. This phenomenon (under a slightly different form) appears again in the
proof of Proposition 5.8. The reader unwilling to penetrate the entire paper, but
wishing to understand why Theorem 1.1 does not reduce to a mere technicality
(however complicated), should try to read the proof of this proposition.

2. Transportation cost. Consider a compact space K and a continuous
function ¢ on K x K. The number ¢(x,y) represents the “cost” of transporting
one unit of mass from x to y. Consider two probability measures i and v on K.
The transportation cost of u to v is defined as the infimum (which is also the
minimum) of the integral [ ¢(x,y)d6(x,y), where 6 belongs to the class of prob-
ability measures on K x K with first and second marginals equal, respectively,
to u and v. The reason for this is better understood in the case where p (resp. v)
is supported by a finite set F' (resp. G). In that case, an integral [ ¥(x,y) d6(x,y)
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represents the cost incurred when, for all x € Fandy € G, one transports
mass 6({x,y}) from x to y, and the transportation cost is the minimum cost
one can achieve by choosing 6 optimally. A case of special interest is when
card F' = card G = n, and when

,u=%26x and v=%26y.

x€F yEG

In that case, if 6 is a probability on K x K with marginals y and v the matrix
(0({x, ¥ cF, yec G is bistochastic. A celebrated theorem of Birkoff states that
the extreme points of the set of bistochastic matrices are permutation matrices;
thus, the transportation cost is obtained at one permutation matrix and is thus
the minimum of (1/n)3, ¢ r ¥(x, 7(x)) over one-to-one maps 7 from F to G.

How to compute the transportation cost? Depending on one’s taste or back-
ground, one could appeal to the duality theorem of linear programming or to
results of Strassen on measures with given marginal. As, however, the proof
requires only a few lines, we will give it. The basic observation is as follows.

LEMMA 2.1. Consider a compact K, and denote by 1 the function identically
equal to 1. Consider a linear subspace X of C(K) containing 1g. Consider a linear
functional € on X. Assume that £(1g) = 1 and that, whenever f € X, f > 0, we
have £(f) > 0. Then

2.1 VieX, [EAI<IfI.
Proor. Suppose thatf € X, f(¢) < 1forallt € K. Then 1x — f > 0 and
1x — f € X, so that
1-&(f)=€&(1g) - &) =g — ) > 0,

and thus £(f) < 1. If f(¢) > —1 for all ¢ in K, using the above for —f gives &(f) >
—1.In particular, |{(f)| < 1Lif || f|| < 1, and the result follows by homogeneity. O

The use of Lemma 2.1 is that condition (2.1) allows us, by the Hahn—Banach
theorem, to extend £ to a norm 1 linear functional on C(K). Since £(1g) = 1,
by Riesz’s representation theorem, there exists a probability measure 6 on K
such that

VieX, /)= /fdo.

Consider now a continuous function ¢ on K x K, and a real a. When is it pos-
sible to find a probability § on K x K, with given marginal x and v, respectively,
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such that a = [4d6? First we observe a necessary condition. If 5 € R and
f,g € C(K), by integrating with respect to 4, we see that

(2.2) (Vx,y €K, bylx,y) +f(x) +g(y) > 0) =>ab+/fdu+/gd1/2 0.

The remarkable fact is that this condition is sufficient. To see it, we consider
the linear subspace X of C(K x K) that consists of the functions by(x,y) + f(x) +
g(y), for b € R, and f,g € C(K), and the linear functional £ on X given by

£(byx,y) +Fx) +8(y)) = ab+ / fdu+gdy.

We observe that (2.2) is the hypothesis of Lemma 2.1; we then apply this lemma
as in its discussion.
By homogeneity, (2.2) is equivalent to the following conditions together:

2.3) (Vx,y €K, ¢,y +fx)+g(y)>0) = a+/fdu+/gdv20

(24) (Vx,y €K, —p(x,y) +f(x) +g(y) > 0) = —a+/fdu+/gd1/20.

For simplicity, let us assume that K is finite. (In the case where y and v are
supported by finite sets, this is not a loss of generality). Then (2.3) is equivalent
to saying that a + [ fdu + [ gdv > 0 when f is the smallest possible, that is,

f@) = sup (- ¥(x.y) - g(»)) = —inf (¥(x,y) +8(¥)),
y

so that (2.3) means

(2.5) a > sup (/inf(z/f(x,y)-u-g(y)) du(x) — /gdu).
geCK) J

In a similar fashion, (2.4) means

2.6) a< inf ( / sup (1(x,) — £(9) du)+ / gdu).

In particular, the smallest possible value of a is given by the right-hand side
of (2.5).

We now reformulate this result in the case where u and v give equal weight
to a finite number of points.

ProrosITION 2.2. Consider points x1,...,%m, ¥1,- .-, Ym' and the measures
p=1/m)Ti<mby and v=(1/m')5;<m by, Then thetransportation cost from
ptovis

1 . 1
sup<n—, Y inf (beup+a) - o 3 ) ’
i<m™~

j<m!
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where the supremum is taken over all m'-tuples ay,...,am'.

We want to study the transportation cost from the empirical measure (1/m)
x i < m0x, to the uniform measure A3 on [0, 1]. For that purpose, it will be con-
venient to break the transportation process into several steps. We denote by
Ty (u,v) the transportation cost from y to v with cost function .

LEMMA 2.3. Consider three probabilities u, v and 1. Then
Ty, (s ) < Ty(p,v) + Ty (v, m),
where

P1(x,y) = inf (y(x,2) + ¥z, 7).

ProOF. We give the proof only in the case we need, that is, where ; and v
are supported by a finite set F. Then we can find a measure § on F x F with
marginals p and v such that

> v y8({@}) = Tylu,v).
z,y€EF
Consider a measure ¢’ on F x K with marginal v and 1. We can write
o' = Z V({x})éx ® Ox,
x€EF

where 6, is a probability on K, and where ¥, ¢ r v({x})8; = 1. We choose ¢’ such
that [ g ¥df' = Tylv,n).
Consider the probability 8 on F' x K given by

=Y 6® ( 3 0({(x,y)})ey>.

xEF y€EF

It is elementary to see that it has marginals u and 7, respectively.
We have

by db” = Z Z /K0({(x,y)})¢1(x,z)d0y(z).

FxK x€F yeF

Since 1 (x, z) < ¥(x,y) + ¢¥(y,2) we have

/¢1d9” <> > w(x,y)e({(x,y)})

x€EF yeF

DI / 95,28 ({(x,)} )d6y(@)

x€EF y€eF

< Tylp,v) + / ¥d8' = Ty(u,v)+ Ty(v,n). O



FROM UNIFORM TO EMPIRICAL MEASURE 927

In this paper, K will be a subset of R%, and the transportation cost 1 (x, y) will
be p(x —y), where ¢ is a convex function. (In that case, the transportation cost
Ty will be simply denoted by T',). We observe that, by convexity of ¢, we have

2<p(3%> < plx —2)+pz —y),

so that the function ¢; of Lemma 2.3 satisfies 11 (x,y) > 2¢((x — y)/2).

To study the transportation cost from the empirical measure (1/m)E; < »6x,
to the uniform measure A3 on [0, 1]3, we proceed in three steps. We consider a
parameter Kj; this parameter will be adjusted later. It is a universal constant.
We consider the largest n such that K23 < m, and the grid G, defined as

G:L = {(sz"”)jss; uj € N, 0< u; <on_ 1}

For i < m, we consider the largest point Z; on G, that is smaller than X;
(when R? is ordered by the cone R*3). The points Z; are i.i.d. uniform on G,.
Consider the uniform measure v’ on G),

Consider a convex function ¢ on R3. Assume that

2.7 [|lx|| < g = &) <

Cof =

Then it should be clear that

1 1 1
TE <; Z 6X,~)E Z 6Z,~> < §a TE(V/a)‘S) <

i<m i<m

Cof =

Thus, if we have
1 , 1
(2.8) T, (E Z 6zi,1/) <3
i<m
it follows from Lemma 2.3 that
T [ 2 > bz, | <1
& Z ' ZyN3 | = 4,
i<m

where &'(x) = 4¢(x/4).
The point is thus to prove (2.8). To simplify the notation, it is more convenient
to rescale. We consider the grid

Gn={(u)j<3 N3 0<uy; <2" -1}

We consider the uniform measure v on G,. From Proposition 2.2, we see that
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for points (Z;); < m of G, we have

T, (n_l—z Z 0z, 1/)

i<m

(2.9

u€G
a i<m " u€G,

= sup (% Z inf (p(Z; —u)+aw)) — 23 E a(u)),

where the supremum is taken over all choices of @ = (a(u)),eq,. For such a
family @, we define the function Az on G, by

hy{w) = uiélgn (pw —u) + a()).
Thus hz(u) < a(u). We set
Ehz=2"" " hgw), Ea=2"" > a).

u€qG, u€G,

Observe that Ehz < Ew.
We can now rewrite (2.9) as

T(P (% E 5zi,1/> = SEp (% Z (ha(zi) —Eha-) +Eh5—E&> .

i<m @ i<m

To prove Theorem 1.1, it will suffice, by the preceding analysis, to prove the
following statement.

THEOREM 2.4. There exists a universal constant Ko with the following prop-
erty. If m > K(2%", and if the sequence (Z;); < m is i.i.d. uniform on G, then, with
probability greater than or equal to 1 — K276, the following occurs. Given any
@ = (aw)),eq,, we have

1 > (ha(Z) — Ehg) < max(l,Ea - Eha).
m 3

i<m
(Indeed, one then chooses n as the largest for which 28" < Kym, so that
ml/3 < K2"))

3. Geometry. Consider a number A > 0. In this section we study the class
S(A) of functions on G, given by

S(A) = {hz; EG — Ehz < A}.

The problem is that it is not clear a priori what functions of S(A) look like;
the purpose of this section is to describe a property of this class which we
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can manipulate more easily than the definition. This property is related to a
sequence (P;) of partitions of G,,. This sequence is closely related to the geometry
of , and our first task is to construct it.

For a subset A of R3, we recall that we denote by |A| the Lebesgue measure
of A. For k£ > 0, we define a number b, by

3.1 [{p < ba}| = 2k+%.
It follows from (1.2) that
(3.2) log by, < 2%+3%9,

For K > 1and; < 3, we consider the smallest integers nj(k) € Z such that

{QO < bk} C H [_ 2nj(k)+6,2nj(k)+6].
J<38
This implies that
p(2M®*6,0,0) > by, ¢(0,2%%16 0) > by, £(0,0,2570) > b

By condition (1.5), this implies that n;j(k) > 0 for 2 > 0 and j < 3.
Also, by condition (1.3) and the definition of n;(k) we have

QO(2n1(k)+5,0, 0) < by, QO(O, 2nz(k)+5’0) < by, (p(o’ 0, 2ns('k)+5) < b,.

If we set

Zy = H [ _ 2nj(k)’ 2nj(k)]’
J<3
by convexity of ¢, we have
25
(3.3) 237, c =

3 Zr c{p<bp} C 26Zk.

Let us observe that
28430 _ |15 < by} < 218|Z,| = 23995 <om®)
so that
(3.4) > njk) > k.

Jj<3
Another useful property is that
(3.5) Zy.1C 2727,
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Indeed, by (3.3) we have

25
( ) Zaril < Hoo < bpas}] = 25440,

so that
|Zk+1| <27. 2k+25 < 2k+30‘

By (8.4), we have |Z,, 1| < 212|Z;|, and this implies the result since Z; C Z;, ;.
We set m;(0) = 0 for j < 3. Forj < 3 and k& > 1, we set m;(k) = min(n, n;(k)).
We consider the following subset of G,:

R, = H {0 2m,(k) }‘

j<3

Thus, Ry = {(0,0,0)}.
For £ > 0, we consider the partition P, of G, by sets u + R, where

u= (u12”‘l(k), ug2m2®) u32"‘3(k)), 0<u; <2 ™®for0<;j<3.

We will say that two such sets u + R;, and v’ + R, are g-adjacent if they satisfy
lu; — uj| < q for each j < 3. We will say adjacent instead of 1-adjacent.

We note that the sequence (P;,) of partitions of G,, decreases. Let us now state
a crucial property.

LEMMA 3.1. Consider k > 1. Consider x € [0,2" — 1]3. Then we can find
A € Py such that A C x + Zy,.

Proor. IfAisthe element of P, such thatx € convA, then A C Z,, +x, since
convA is a translate of Z, /2. O

We now turn to the basic result. For & > 0, we set s(k) = ¥ < sm;(k).
THEOREM 3.2. Consider a function f € S(A). Then we can find a partition

(Br)e >0 of Gn, such that By, is a union of sets of Pr, and for each C € Py, C C By,
we can find a number z(C) such that the following properties hold:

(3.6) YooY 2®xc) <K2*rA.
k>0 CeP,,CCBy
3.7 k>0,C €P;,C CBy= b <2(C) < by, 1.

If C and C' belong to Py, k > 0, and are adjacent, and if C C By, then
(3.8) ueCu' eC = |fw-fu) <20).

(Observe that this condition holds in particular when C' = C.)
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PROOF.
Step 1. By definition of S(A), we can find a family @ = (a()), ¢ g, such that

(3.9) YueGy,, f@) = min{aw) + p(u — w); w € G},
(3.10) > (aw) - fw) < 2%A.
u€eG,

In particular, for each w in G,, we have
f@) < aw) + pu —w).
This shows that if we define
(3.11) f(w) = max { f(u) — pw — u), u € G, },

we have ?(w) < a(w). By (3.10) we have

(3.12) S (fw)—f@)) < 3 (aw) - faw) < 2.

w € Gy weG,

Step 2. Consider C in P;,. We define
¥(C) = min fw) - max fw).
We consider a universal constant g, to be determined later. We set
x(C) = max(O,max{y(C' ); C' € Py, C' is g-adjacent to C})

For £ > 1, we define D;, as the union of all the sets C € P, for which x(C) >
by/2. We observe that D; = @ for [ large enough; we set

By=D;\ | J D
I>k
We set Bg = Gn\ Ur>1 D,.
Step 3. We prove that
(3.13) oo Y 2k <K2*A.

k>1 CCB;,CeP,

If C € P, C C B, and x(C) > 0, by definition of x(C), we can choose 6(C) € P,
that is g-adjacent to C, and such that x(C) = y(6(C)). Since C is g-adjacent to
6(C), there can be at most (2q + 1)3 sets C’ € P, for which 8(C’) = 6(C). We define

L, = J{6(C); Ce P, C C By},

and we observe that y(C) > b, /2 whenever C € Pg and C C L.



932 M. TALAGRAND

We see that
Z 2s(k)x(C) < (2q + 1)3 Z 2s(k)y(c)
CCB,,CePy CCL,,CEP
<@g+1* Y [fw) - fw,
u€l,

where the last inequality follows from the definition of y(C) and the fact that
each C € P, has cardinality 2°®. Thus, to prove (3.13), it suffices to show that
the sets (L), > 1 are disjoint.

Consider £ > 1,C € P, C C L;. If C' € P, is g-adjacent to C, we have
x2(C") > ¥(C) by definition of x(C’). Thus x(C’) > b;/2, and hence C' C D,.
Consider now k1 < k,C1,C] € Pp,, C; C C and denote by C’ the element of P,
that contains C}. If C; and C are g-adjacent, then C and C’ are g-adjacent, so
that, as shown, C’' C D,, and thus, by definition of By, C| ¢ B,. Thus C; cannot
be g-adjacent to any C| € Py,, C] C By,. In particular C; ¢ L;,. Thus L, and
Ly, are disjoint. .

Step 4. If C € P, and C C By, k > 1, we set 2(C) = min(2x(C), by,1) > b;. If
C € Py and C C By, we set z(C) = by. Thus (3.6) follows from (3.13), and (3.7)
holds by construction. It remains to prove (3.8). With the notation of (3.8), we
prove in this step that

f@) < fw)+2(0).
By (3.9), we can find w in Gy, such that
(3.14) f@) =a(w) + p(u — w).
We consider the number
b = max(f(u') — fw), p(u — w)).

Since we want to prove that f(u’) — f(u) < 2(C), we can assume that b > b,. We
set U = {¢ < b}. Since C and C’ are adjacent, we have, by (3.3),

u—u'€2ZkC%.

Since p(w —u) < b, we have w € u + U, so that w € u’ + 5U/4 (and v’ €
w + 5U /4). Thus we have

! !
(3.15) w;“ eu’+%, w;“ ew+%.
We set
V_w+u’ g
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Vc u’+g al w+g
4 4 )’

We now recall that by condition (1.4) we have ¢(x) < b/4 for x € 3U /4. Thus,
for v € u’ + 3U/4, we have, by definition of f

By (3.15) we have

Fo) 2 ) — ol ) > f) 2.
By (3.9), for v € w + 3U /4, we have
f) <aw) + pw —v) < alw) + g

Thus, for v € V and v € G,,, we have, by (3.14),

. P ’ b
inel{,lf(v)—lvnea%(f(v)Zf(u)—a(w)—5

>fWw) —fw+plu —w)— g

> max(f@) — fw), ou — w)) —
b

5"
We consider the largest integer [ > 0 such that b > b;. Since b > b;, we have
! >k.Also b < b;,1. By (8.3) and Lemma 3.1, V contains a set A of P;, and by
(8.16) we have y(A) > b/2.
Since b < b;,1, by definition of Z; we have U C 26Z;,, so that U c 233Z; by
(3.5). We recall that u’ — u € U/4, so that

(3.16)

No| o

VCu'+¥Cu+UCu+233ZI.

This shows thatif D € P, is the unique set of P; that contains C, then D and A are
233_adjacent. Thus, if we have taken g = 233, we have x(D) > y(A) > b/2 > b;/2.
If we had ! > k, we would then have D € Dy; but this is impossible since C € By;
thusl =k%. Then D = C and b < 2x(C). Also, b < b;,1, so that b < z(C).

Step 5. Now we have to prove that

fw) < fw)+2(C).

The argument is almost identical to that of Step 4, exchanging u and u’. The
one difference is that now we have

U 5
u—u'ez, weu’+UCu+T,
so that
u+w 5U
Cu+—Ccu+U. a

2 8
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4. Decomposing functions of S(A). Consider the class S'(A) of func-
tions on G, that satisfy conditions (3.6)—(3.8). The only property of the class
S(A) that we will use is that S(A) C §’(A). We now show that in the study of
S'(A) there is no loss of generality to assume that

4.1 > njk) =k

J<3
(This will simplify the notation.) For that purpose, we observe that for j < 3,
we can find nondecreasing sequences (n}(0)); such that ¥, < 3n;() =/, and that,
for each k& > 1 there exists [,/ > &, such that n;(k) = n(l) for j < 3. We can then
consider the sets

RZ - H {O, o ,2min(n,n;(l)) _ 1}
J<3

and the partition P;, of G, by translates of R;. Certainly P, is finer than 7, so
that the class S’'(A) increases if we replace the sequence (P) by the sequence
(P}). This concludes the argument, and from now on we assume that (4.1) holds.

Consider f € S'(A) and a partition (Bg), >0 of G, that satisfies conditions
(3.6)—(3.8). Consider the function f defined as follows: if C € P, and C C B,
then f" is constant on C and its value is the average value of f on C. Set /" = f —f".
Thus

4.2) CePy,CCByucC = |f'w)<zC)

We now study /. We denote by &, the largest integer such that max; < 3 n;(ko)
< n. We will decompose f’ as
f'= > fe

0<k<k

If A; denotes the algebra on G, generated by Py, we set

fro =E(f | As,)
and, for 0 < k < ko, we set

fi =E(f| Ax) —E(f | Aps1)

We now study the functions f;. A first simple observation is that if C € P, & <
ko, and if C C U; 5 By, then fj, is zero on C, since f’ is constant on the element
C'e Pk+lv C'>C.

We denote by (e;); < 3 the canonical basis of R3.

LEMMA 4.1. Consider C and C' in P;. Assume that C' =C +ej2”f(k), and that
neither C nor C' are contained in U; 3A;. Denote by c (resp. ¢') the average value
that f takes on C (resp. C'). Then

|C _ c/I < Zz—k+l+nj(k)—nj(l)z {Z(D); DeP,Dc(Cu (63 ﬂBl}.
i<k
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Proor. To simplify the notation, we assume j = 1. Consider the projection
W of C and C’ on R?, that is,

W={weR? Ju; €R, (u,w) e C}
={weR? Ju; €R, (u,w)eC'}.

For w € W, we set
cw) = 27PN " {f(uy, w); (uy,w) € C},

and we define ¢/(w) in a similar way. For w € W, we consider the collection Z(w)
of elements D such that, for somel < %k, D € P,and D C B;n(CU(C’), and such
that D contains at least a point of the type (uq, w). It should be clear from (3.8)
that if (u1,w) € C and (uq,w) € C’, we have

| flur,w) — flug,w)] <Y {2(D); D € Zw)}.

We average this inequality over the 2"1) possible values of u; and ug, and
we get

|ew) — ¢'@w)| <) {2(D); D € Zw)}.

We now sum these inequalities over the 2720 +7s() values of w. Thus we get

> cw) - Y dw)

weWw weW
<Y {2m0*mOD); 1<k, DeP,DC(CUC)NB}.

To obtain the result, we remember that ny(l) + n3(l) =1 — n1(l) and we divide
both sides by cardW = 2m2®)+nsk) = gk-m®) O

Since the function f; is constant on each element of 7, it is more natural to
see it as a function on the grid

Hy=]]{o,...,2»® —1}.

J<3
To simplify notations, we set, for [ > 0,
a(f) =20 " {2(C); Ce P, CCB}.
Thus by (3.6) we have X5 o oy(f) < K2%A,

LEMMA 4.2. Consider k < ko and the unique i < 3 such that n;(k + 1) =
n;(k) + 1. Then, for I < k and v € Hy, we can find numbers a; ; ,(v) with the
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following properties:
(4.3) Vv eH, |0 <Y ai,0)
1<k
(4.4) VI<Ek, Y ais) < 27F+m®-nbg ().

vEH,
4.5) VveHy, VI<Ek,  a; ) <2n®nlp < ok-lp ;.

Proor. To each v € H corresponds C, € P;. We denote by C!, the unique
element of P, ; that contains C,. Thus C,, = C, UC,,, where either v = v’ +¢; or
v=0v —e.

Since E(f; | Ar+1) = 0 we have f,(v) + f(v') = 0, so that

i)~ o) _ E(f | A)®@) —E(f | -Ak)(vl)‘

(4.6) filv) = 2 5

We set, for [ <k,

ik =3 {z(D); DeP,DcC,nB},

2—k +l+ ni(k)—ni(l)

a1 x(v) = ci 1, k().

Thus, by Lemma 4.1 and (4.6) we have

.7 @] < ai1,1).

1<k

To prove (4.4), we observe that one given number z(C) can contribute to at most
two different c; ; ,(v) and we note that a(l) = for I < ky. Condition (4.5) follows
from the fact that 2(D) < b;,, for D € P;, D C By, and that 2¢; ; ,(v) is the sum
of at most 2¢~/*! such terms. O

In the sequel, it will be useful to know that the numbers b; increase fast
enough. We prove that

(4.8) by > 4b;.
Indeed, by (1.4) we have

bl+1
o=}

For a function 4 on H;, and j < 3, we define

4\° 1
Z (g) [{o < bra}| > §2(z+1>+39

= 2l+39 = |{‘P < bl}l'

Ajh(v) = |h(v +¢)) — h(v)],
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when v,v +e; € H,. When v € Hy and v +¢; ¢ Hy, we define Ajh(v) =0
LEMMA 4.3. Consider k < ko and j < 3, and assume that nj(k + 1) = n;(k).

Then, for I < k and v € Hy, we can find numbers a; ; ;(v) with the following
properties:

4.9) YveH,, Ajfyv) < Z aj 1, r();
1<k
(4.10) Vv e Hy, aj,1,,V) < 2VW —mO+1p, | < ok —l+lp, .
(4.11) VI<k, Y ajx) <27 k@ -n2q,(f)
vEH,
(4.12) Y aaa) <27EFE S T4 =Rg (f),
vEH, r>k

Proor. Consider v € Hy, such that v’ = v +e; € H. Consider the elements
C and C’ of P, that correspond to v and v/, respectively.

Case a. IfCis contained in U; By, then f,(v) = 0, so that

Aife@) = | ).

Case b. If C'is contained in U, ;Bj, the same conclusions holds.

Casec. Neither Cnor C'iscontainedinU;., ;B;. Werecallthatf, = g, —gr. 1,
where g; = E(f | A)).
We set

(4.13) aj,; () =27**® DN L2D)D € P, D c Bin(CUCH}.
By Lemma 4.1, we have

EAORY-ACOIES P AR}

1<k

We denote by E (resp. E’) the element of P;,; that contains C (resp. C’). We
set,for <k+1,

(4.14) af; ) = 2= ®+D+1anks DO N"Lo(D). D € P;; D c BN (EUE")}.

We observe that, since neither C nor C’ is contained in B;.;, we have
@y +1,,) = 0. Thus, it follows from Lemma 4.1 that

|8r+1(V) — gr+1(0)] < Z Y1 e ).
I<k
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Thus we have

(4.15) /@) — fr0")] < Z ajl;, 5 (V) +aj | ).
1<k

We now define a; ; ;(v) as follows. If neither C nor C' is contained in U, -, 3B,
orifl <k, we set a; 1 x(v) = a}, () +a/, (V).

If either C or C' is conta.med inU.s kB,, we set a; p, r (V) = 2bp 1 1.

Thus, (4.9) follows from (4.15), (3.7) and (3.8). To prove (4.10) it suffices to
note (as in the proof of Lemma 4.1) that [since n;(k + 1) = n;(k)]

a‘;‘ . k(v)’ a;: . k(v) < znj(k)—nj(l) +1bl ey
To prove (4.11), we observe (as in the proof of Lemma 4.1) that

Z ', k(v) < z—k +1+n;(k)— n,(l)al(f)
vEH,

S afy 40) < 27RO f),
ve Hk

[We note that a given D C P; and D C By can contribute to a 110 [resp
(v)] for up to two (resp. four) different values of v.]

We turn to the proof of (4.12). Let us denote by N the number of points v for
which either C or C’ is contained in U, . ;B,. We have

Z aj 1,1 ©) < 27%*204(f) + 2Nby . 1.
vEH,

For r > k, set
qr =card{D € P,, D C B,}.

For each D € P, there can be at most 2°™—*+1 sets C of P, for which either
C or C' belong to D. Thus we have N < 33,5, 2°7 ~*+1q, We recall that

20 3 D)< anlf).

DeP.,,DCB,

Since z(D) > b, for D C B,, we have 2°"q,b, < a,(f).
Thus we have, using (4.8),

Wzt y o 2df) o

—k+l

Z 4 —k- l)ar(f).

bk+1 r>k

This completes the proof. O

We now turn to the study of f3,. In that case, it will suffice to use considerably
less information than we had in Lemmas 4.2 and 4.3.
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LEMMA 4.4. For j < 3 we have

Z Ajfko(v) S K23n_k0 +nj(k0)A.
UEH),O

Proor. We can suppose nj(kg) < n, since otherwise the left-hand side is
zero. Consider v € Hy, such that v’ = v +¢; € H,. Consider the elements C and
C’ of P, that correspond to v and v’, respectively. If, for some [ > k(, we have
CcDePrand D C By, then

(4.16) | fro @) — fo, ()| < 2(D).

The same inequality occurs if instead D D> C’. If neither C nor C’ is contained
in Uy > 4,B; then, by Lemma 4.1, we have

(4.17) Ajfey®) = | fr@) — i, @) < S @ ),

I<ky
where

a) () = 2 R+ 14nkOn N " {2(D); D € P;; D c Byn(CUCH}.

By summation of (4.16) and (4.17) over all the values of v, we have

> Afeg@) 27| 3 25000 oy ()4 S el

veE HkO < k() 1>k
The result follows since n;(I) > 0, 3; >0 oy(f) < K2%"A. O

Unfortunately we will not be able to study the functions f; directly. To each
of these functions we will apply a series of “reductions.” We now describe the
general procedure. This procedure is based on the elementary equality

hy—

hl + h2 h2
5 (y1 —y2).

2

(4.18) h1yi+hoys = (y1+y2)+

Consider numbers q1,q2,q3 > 0 and the grid

H = H(q1,92,93) = H{O, 1,...,2% —1}.
Jj<3

Consider i < 3 such that g; > 1. Consider the grid H' = H(q},q3,q3), where
qu =gq;ifj # i and q] = q; — 1. Consider the map @ from H to H’ that sends
u = (u1,ug,u3) to Q) = (uj,uy, us) where uj’ =u; ifj #i and u = [u;/2]. For
v € H', we write @ 1(v) = {v—,v*}, where the i-th component of v~ is less than
the i-th component of v*.
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With a function ~ on H, we associate two functions A* and A~ on H' given by
R @) = $(AW*) + h(v7)), h=() = 3(h(*) — A(W7)).
It follows from (4.18) that, given numbers (Y,), ¢ g, we have
(4.19) PIRION FEIPRA ) SR P ) o
ueH veEH vEH'

where Y =Y,:+Y,- and Y, =Y,» - Y,-.
The consequence of (4.19) that we will use is that, for a class C of functions
on H, we have

(4.20) sup
hec

> h)Y;

vEH'

> h@)Y, |,

veH’

Z hu)Y,

ueH

< sup
hect

+ sup
hec

where
ct={n*; hecC}, C-={h™; heC}

To make good use of this formula, it is essential to be able to describe C* and
C~. This is the purpose of the next two lemmas.

LEMMA 4.5. Suppose that
VueH, Ah@)<) aw.

1<k
Then the following hold:
(a) VveH, |h@)|<) d),
1<k
where
(4.21) VI<k, Y diw) <) aw),
veH ueH
(4.22) VI<E, max d;(v) < § maxa;(w);
veH’ u€eH
(b) VoeH, AR@<) ),
1<k
where
(4.23) VI<k, Y a® < aw),
veEH' 1<k

(4.24) VI<E, néa}{zg c;(v) < 2maxa;(u).
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ProoOF. (a) This is obvious, since |h~(v)| = $A;h(v7).
(b) This follows from the inequality

b++b_ a+ +a_ b+—’b_ a+—’a_
_ < _ Zr =
5 D) < 5 + |b_ a.+ 3 ‘ 0
LEMMA 4.6. Suppose that for some j # i we have
VueH, Ahw) <) a)
I<k
Then
VoeH, AR'0),AR )<Y diw),
I<k
where
(4.25) Vi<k, ) A<} aw),
vEH' u€EH
(4.26) max d;(v) < maxa;(u).
veEH' uc€H
Proor. This is a consequence of the formula
| 3(R@") £ A7) — 3 (hw*) £ hw™)) |
< %|h(w+) - h(v+)| + %|h(w‘) - h(v‘)|. O

5. Probability. First, let us introduce a definition. Consider a finite set U.
We will say that a sequence (Y},), c y of r.v’s belongs to B(a) if it is generated
in the following manner. For m = acard U (which is assumed to be an integer)
there exists an i.i.d. sequence (Z;); <, of r.v’s that are uniformly distributed
over U and such that

(5.1 VueU, Y, = card{j <m;Zj=u} —a.

An obvious, but important observation is that, if we denote by V a partition
of U in sets of equal cardinality 2 and if for V € V we set Yy = 3, ¢ vYy, then
the sequence (Yy)vey belongs to B(ka).

In particular, if (Z;); <, is i.i.d. uniform over G, = {0,...,2" — 1}3, the se-
quence (Y,0), ¢ g, belongs to B(c), where ¢ = m273" and where

Y0 = card{i <m; Z; =u} —m27%",

To prove Theorem 2.4, it suffices to prove the following statement.
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THEOREM 5.1. There exists a universal constant Ky with the following prop-
erty. If m > Ky2%", then with probability greater than or equal to 1 — K2, for
each A > % and each f € S(A), we have

> @y

u€e G,

< mA.

Indeed, consider @ = (a(u))y,ec g, and the function f(u) = hg(u) — Ehg. Since
Yueag, fw) =0, we have

(5.2) Y @)=Y fwy.
i<m u€Gy

Set A’ = Ea — Eh;. By definition of S(A’), we have f € S(A’). Set A =
max(A’, %), so that A > % and f € S(A). By Theorem 5.1 and (5.2), we have

> @

i<m

1 <A,
m

so that
1 1
2 Y f(Z) < max (—,Ea - Eh;,—).
mi<m 3

To prove Theorem 5.1, we will use the decomposition

F=faf ="+ 3 A

0<k<ko

which is introduced at the beginning of Section 4. We will write

S rard<s | Ayt

u€Gp 0<k<kolueG,

In this formula the function f; is viewed as a function on G,. We prefer to
think of this function as a function on H}, so we write

Y AOY

vEH,

)

> A@Yy

u €Gp

where (Y¥), c i, € B(2kc). What we are going to show is the following fact. With
probability greater than or equal to 1-K276", foreach A > O and each f € S(A),
we have

(5.3) >

0<k<ky

< K2%"(A + 1)/c.

> Y,

vEH,
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The interesting fact that makes the theory nontrivial is that in this series
the term that contributes the most depends on f, and that it would not work to
take the supremum over f € S(A) before making the summation.

The proof of (5.3) will take most of this section. Once it is completed, we
will use (4.2) to prove a similar bound for the term |Zueaq, f'@)Y2|. This is
simpler, yet nontrivial. (The reader is certainly advised not to follow the logical
order of the proof and to start developing understanding of the situation in that
simpler setting.) Once these two bounds are obtained, the proof of Theorem 5.1
will follow. Indeed, since m = ¢273", we can choose K such that

A>1c>Ky, = EK2™A+1)/e<mA.

We now start the preparation of the proof of (5.3). The first task is to inves-
tigate some elementary properties of a sequence (|Y;|); c 7 in B(a).

Given numbers (Y, ), ¢ y, where card U = N, we denote by (Y}); <~ the non-
decreasing rearrangement of the sequence (Y,), < v, that is,

Y =sup {t > 0; card{u € U;|Y,| > ¢} > i}.

We observe that
ZY{‘ = sup{ Z [Yul; cardI=r}
(5.4) i<r uel
< 2sup{ Z Y.l; carngr}.
u€ed

LEMMA 5.2, Consider a sequence (Y;); <y € B(a). Considerr ¢ N,1<r <N
and s € R,s > 1. Then, if log(eN/r) < a, we have

8r S
P(Zyi* z%r,/alogg> 52(81%) < (%N) ,

i<r

Proor. Consider a subset J of {1,...,N}, with cardJ < r. Then, if the
sequence (Z;) is as in (5.1), we have

. cardJ
(5.5) > Y= card{j <N; ZeJ} -m N

ied

Rather than using the classical bounds on the tail of the binomial law, we will
provide a simple derivation of the weaker result we need. If a r.v. W satisfies
PW=1-b)=5b,P(W=-b)=1-bfor some 0 < b < 1, we have , for [\| < 1,

Eexp AW =bexp [AM(1 - b)] + (1 - b)exp(—Ab) < 1+ A2b < exp(\2b),
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since |e* — 1 —x| < x2 for |x| < 1. Thus, for b = cardJJ/N, by independence of the
sequence (Z;) and by (5.1), we have

Eexp)\ Z Y; < exp(mA?b) = exp(\2a card J) < exp(\2ar),

i€d
>

P(
i€d

If ¢ < 2ra, we take A\ = ¢/2ra, to get, if s > 1,

2
P( ZYi zst> §2exp(—i72>.

i€d

Iflog(eN/r) < a, we can then take ¢ = 2r/alog(eN/r), to get

N rs
P( ZYi 22sr\/aloge7) 52<6LN) .
[ X4
Thus,
P ZY*>2$r\/alo ﬂv— <2Z N L rs<2 L oy
i = e /= Jj/\eN/ —"\eN )

i<r J<r

so that

> st) < 2exp(—Xts + Nar).

Replacing s by s + 1 proves the result. O

LeEMMA 5.3. Consider a sequence (Y;); < v € B(a). Consider an integer T such
that 2" < a. We denote by I, the largest integer less than or equal to T such that
22 < N.For1<i< lo, we set r; = [2‘2IN], and we set ro = N. Then, for all
s > 1, the following occur with probability greater than or equal to 1 —(eN)~5+1:

(@) Ifly = 7,(i.e., 22 < N), then for each family of numbers (h(i)); <N we have
> |rG)| Y| < Ksva ( D 223" h*(i) +r,27/2 max |h(i)|).
i<N 1<l, i<n isN
(b) Ifly < 7, (i.e., 22" > N), then for each family (h(i)); <N of numbers we have
> |RG)| Y| < Ksva ( 22y h*(i)) .

i<N 1<l i<n

Proor. We define
10)= {i <N;|v;| < Y7}
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For 1 <1 <y, we define
I() = {i <N;Y: >1Y > Y,’;},

[ PO

and finally we define
I(y) = {i < N;|Y;| > Y,*lo}.

Since card I; < r; we have ;¢ 1) |h(0)| < Ei<,,h* ().
Thus we have

56 Y ROIYI= > > R@IYI< Y ¥ S ).

i € I(ly) 0<I<lyieIl) 0<I<ly i<rn

We also have

(5.7) Y. ROV <Y; S R*G)
i€ 1) i<ry,
and
(5.8) > 1rG) Y] < max k(D) >y
i€1do) ‘e i<n,

It follows from Lemma 5.2 that, for [ < [,, we have

(5.9) > Y; <Ksr;/a2!/?,
i<n
with probability greater than or equal to 1 — 2(1/eN)s.
We observe that (5.9) implies Y;; < Ks/a2'/2. Then (a) follows from (5.6), (5.8)
and (5.9), since 2/o(1/(eN))* < (1/(eN)y~1.
To prove (b), we note that by Lemma 5.2 again, with r = 1, we have

P(Y7 > 4sv/alogeN) < 2<$\7)

Since Iy < 7, the definition of /; shows that N < 22°*" so that logeN < K2,
Finally, this occurs with probability greater than or equal to 1—(l+1)(1/(eN))* >
1-2(1/(eN)r-1. O

L

We will apply these results to the study of the function f;,. The basic method is
to use (4.20) to reduce the dimension of the grid. When one dimension has been
reduced enough that it disappears, the grid becomes two-dimensional. After
some more reductions, the grid becomes one-dimensional. Thus, the first task
is to study a one-dimensional grid.

Consider the class C(q,D) of functions defined on H(g) = {0,...,29 — 1}
that satisfy

(5.10) Y. h@)=0, Y. ARG <D,

0<i<29 0<i<29-2
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where AR(D) = |h(i + 1) — k()|

LEMMA 5.4. Consider a sequence (Y;);<2. € B(a), where a > 2q. Consider
r > 0. With probability greater than or equal to 1 — e~**2, the following occurs.
For all D, we have

(5.11) sup < Ks+/a24/?D.

heC(q,D)

h@)Y;
0<i<2e

CoMMENT. The order of the quantifiers is essential. The same event must
occur for all D.

PrOOF OF LEMMA 5.4. It is useful to think of H = H(q) as H(q,0,0). If
H' = H(q — 1), we are thus in a position to use (4.20). As we pointed out, both
sequences (Y;)), e g, and (Y, ), ¢ u- belong to B(2a). The second important fact is
that by Lemma 4.5(b) we have 2* € C(q — 1,D). By (4.20), we have

sup Z h@)Y;| <  sup Z hQ@)Y}
h€C(q,D) . h€C@-1,D) ; _
(5.12) 0<i<2e 0<i<29-1
+ sup rQ@Q)Y|.
h€Clg-1,D) Osgzq_l '

We have Yy<;<2-1/27 ()] < D. We apply Lemma 5.4 (b), taking as 7 the
smallest integer for which g < 27. Thus, with probability greater than or equal
to 1 — (1/(e22-1)y~1, for each value of D, the last term is less than or equal to

Ksv/2a29.
We observe that there is nothing to prove if s < 2. If s > 2, to prove (5.11), we
reiterate (5.12) and we observe that (since s > 2)

1 s—1
S @q-0) <k2?, > (‘F) <e™,
I<q 1<i<q

In this argument we use the fact that if ¢ = 0, then C(0, D) consists only of the
function zero, so that, for g = 1, the first term on the right-hand-side of (5.12)

is zero. O

Having understood what happens on grids of dimension 1, we can now turn
to grids of dimension 2. We consider the grid

H = H(qq,q92) = H(q1,q92,0) = {0,...,29* — 1} x {0,...,2%2 — 1}.
We consider the class C(q1, g2, D1, D3) of functions 4 on H that satisfy

Y k=0 and Y Ah@) <D; forj=1,2.
vEH vEH
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LEMMA 5.5. Consider a sequence (Y,),cny € Bla), where a > 2(q1 + q2) and
s > 0. Then with probability greater than or equal to 1 —q1qse~**2 we have that,
for all values of Dy and Dy,

sup
(5.13) h € C(q1,92,D1, D7)

3 rwyY,

u€eH
< Ks\/a(qy +q2)? max (201/2-9:/2D, 2:/2-0:/2D,))

Proor. For ! < q1, we consider the grid R; = H(q; — /,q2), and, for num-
bers A; and Ay, we consider the class C(q1 — [,q2,A1,A2) of functions ~ on R;
that satisfy

S hw=0, Y |h@| <A Y Ash(w) <A,

u€ER u€ER u€ER,

To apply (4.20), we observe (as is shown in particular by Lemmas 4.5 and 4.6)
that, for h € C(q1,q2,D1,D2), we have

h* € C(q1—1,92,D01,D2/2),  h~ €Ci(q1 —1,92,D1/2,D2/2).

Thus we have, by (4.20),

sup
h € C(g1,92,D1, D7)

> WY,

u€EH

hw)Y,
u€ER,

(5.14) < sup
he€Clg1—1,q92,D1,D2/2)

+ sup
h€cClg1—1, q2)D1/21 D2/2)

hWY;
u€Ry

bl

and we observe that the sequences (Y}}), ¢ g, and (Y, ), c g, belong to B(2a). Now,
we iterate the use of (5.14). We get

> rwY,

ueH

sup
h € C(q1,92,D1,Dp)

h@)Y!,
u€R

(5.15) < > sup
1<i<q, " €C1@1-1,92,D1/2, 2-'Dy)

+ sup
he C(O, q2, Dl, 2_q1D2)

> hwyy),

u€Rg,

where (Y.), e r, € B(2'a) and (Y;), e r,, € B(29a).
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The last term of (5.15) is of the type considered in Lemma 5.4; so, with prob-
ability greater than or equal to 1 — e~3*2, for all values of D; and Dy, it is at
most

(5.16) KsVa241292/22-01D, = Ks\/a292/2-91/2D,

To understand the contribution of the terms in the sum in the right-hand side
of (5.15), we need the following lemma. O

LEMMA 5.6. Supposea > 2(q1+q2),and that (Y,), cg € B(a). Consider s > 0.
Then with probability greater than or equal to 1 —q1e~**2 we have, for all values
of A1 and A,,

> Wy,
u€H

< ks\/a(gy +qo) max (201/2~92/24 | 992/2-a1/24,).

sup
(5.17) h €Ci1(q1,92,A1,A2)

Before we prove Lemma 5.6, we finish the proof of Lemma 5.5. We apply
(5.17) with g1 — [ rather than q, 2/a rather than a, A; = D; and Ay = 27!D,.
Then the right-hand side of (5.17) is at most

Ks+\/a2"/%(q; + g3) max (2q1/2 —92/2-1/2p, 949:/2 _91/2+l/22—lD2).

This is independent of /. Thus, with probability greater than or equal to
1 — g1g2e°*2 the sum in (5.15) is at most

Kqi(q1 + q2)s\/Emax(2‘h/2 ~a02/2p, 292/2- ‘J1/2D2),
and this finishes the proof of Lemma 5.5. O

ProoF oF LEMMA 5.6. We use again the same reduction procedure. For
I < ngy, we consider the grid S; = H(g1,q2 — ). For numbers B; and B;, we
consider the class Cq,2(q1,92 — I, B1,B2) of functions & on S; that satisfy

> hw)=0, > |k(w)| < min(By, By).

u€sS u€S

Using (4.20) together with Lemmas 4.5 and 4.6, we see that

sup > hwY,| < sup > h@Y;
h€Ci@1,92:A1,49) | ey h€Cilq1,92-1,A1/2,49) | , cg,
+ sup hw)Y, |.
h€C1,2(91,92—-1,41/2,4:/2) | g,
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Iteration of this relation yields

sup
he cl(qu 02,A1,A2)

(5.18)

Z h(u)Y,
u€EH

> )Y

h €C12q1,9 2—l 27141,49) | e,

* o

+ sup Z h(u)Y; ’
he cl(qu 07 2—42A1 ’Az) ue qu

where the sequences (Y? * Jues, belong to B(2'a), and (Y*)uesq to B(2%2a). As in
the proof of Lemma 5.5, we see that with probability greater than or equal to
1 —e~**2, for each values of A; and A,, the last term is at most

Ksv/a292291/2 (2—QzA1) = Ks\/a2q1/2—qz/2A1.

To evaluate the other terms, we note that if & € C; 2(q1,q2 — [,27'A;, Ay),

> hw)Y:

uES

< max|Yl| > |h@)
u€ES
< |Yl|m1n( Ay, Ay).

(5.19)

Using Lemma 5.2 for r = 1, we see that

(5.20) max |Y;| < Ksva2i(qs +qv),
u ]

with probability greater than or equal to 1 — 2(e29:+92—!)=s > 1 — 2¢~s.
It is easy to see that

> 2"2min(27'A1, A5) = ) min(27%/24,,2/%4,)
1 l

<K+AA,y

< Kmax(2¢h/2 —02/2A1, 2112/2—01/2A2)'
This completes the proof. O

When applying this reduction method to grids of dimension 1 and 2, the
reader must have observed an interesting difference. In dimension 1 the last
term dominates, while in dimension 2 all the terms are of equal weight. This is
what make the dimension 2 case important and difficult. In particular, the kind
of methods used in the previous two lemmas cannot yield the Ajtai-Komlos—
Tusnady theorem [one obtains a factor logn rather than the correct (logn)'/2].
In dimension 3 (or more) the situation again is different, since then the first
term dominates (which makes the approach possible).

The factor (g; + g2)? in Lemma 5.5 is not optimal (neither is the bound on
the probability of failure). The reader could wonder how we can use a crude
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result to obtain an optimal one. The answer is that Lemma 5.5 will be used
as an easy way to show that certain terms are of smaller order. A typical case
is Proposition 5.7. When controlling the main terms, however, we will not be
permitted to have any extraneous factor such as this (g; +¢2)?. The origin of that
term is twofold. First, one factor q; +g2 comes from the phenomenon, mentioned
above, that in dimension 2 the terms of the reduction in the proof of Lemma 5.5
are of the same order. This factor will disappear by itself in dimension 3. The
other factor is rooted in the use of (5.19) and (5.20). In order to remove this
factor, we will have to use the information provided by Lemmas 4.2 and 4.3
rather than cruder information on ¥, ¢ g, Ajf ().
First, let us dispose of f3,.

PROPOSITION 5.7. Consider a sequence (Y,),¢ H,, that belongs to B(c2k0). Then
with probability greater than or equal to 1 — Kn?2~19" we have

VA >0, sup

< K23 A+/en®27 /2,
feS(D) ’

S i@

uEHko

CoMMENT. The factor 2-/2 is what makes the factor n3 unimportant.

PROOF OF PRrOPOSITION 5.7. There is no loss of generality to assume that
ng(kg) = n. We use Lemma 4.4 to see that we can apply Lemma 5.5 with a2k
rather than a,q; = n — nj(ko) and D; = K232~k +nk)A for j = 1,2. We obtain
the result by taking s = 10n and by plugging these values into (5.13), and
observing that

_ko , ko) +nalko) _ _natko) __n
2 2 -2 2

We now turn to the center of the proof of (5.3), the study of the contribution
of f3, k < ko. To simplify notation, we think of £ as fixed.

Consider q1,q2,93 and, for j < 3 and [ < &, consider numbers (c;j ;) and (d;, ;).
Consider a subset J of {1,2,3}. On the grid H = H(q1,92,93) we consider the
class C5(q1,92,9s,(c;, 1), (d},1)) of functions A that satisfy ¥, ¢ gh(u) = 0 and for
which there exist numbers a; ;(u) forj < 3,/ <k and u € H such that

O

(5.21) jed = VYueH, h@)] <Y aj,iw),
1<k

(5.22) j¢d = YueH, Ah@<) a@),
1<k

and such that the numbers a;, ;(u) satisfy

(5.23) VI<E, > ajw) < ¢,
ueEH
(5.24) VI <k, n}sag aj,l(u) < d~,l.
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To understand these conditions, we observe that the content of Lemmas 4.2
and 4.3 is as follows. Consider the unique i < 3 such that n;(k + 1) = n;(k) + 1,
and set J = {i}. Set

(5.25) dj;=2""1*"1p;, .
Set
(5.26) ¢ = o—k+n;k) - nj(l),@l(f),

where §)(f) = 16 %547~ U, (f). [The purpose of the introduction of B,(f) is
to merge conditions (4.11) and (4.12), in order to simplify notation.] Then

(5.27) fr € Cs(n — ny(R),n — ny(k),n — na(k), (c;,1), (d;,1)).

We now turn to the reduction procedure. Consider i ¢ J and such that g; > 0.
Set H' = H(q},q5,93), where g} = g; if j # i, q; = g; — 1. We write (4.20) as

Y rWY, p| > h@Y; Y WY, |.

u€H u€EH u€EH

(5.28) sup
hec

+ sup

h e
It follows from Lemmas 4.5 and 4.6 that if

C =Cs(q1,92,93,(c;,1),(d; 1),

we have

c* c Cs(qh, 95,45, (c) ), (] ),
where
(5.29) Vi<k, cé,, =¢i 1,
(5.30) VI<E Vj#i, ci 1= 31,
(5.31) VI<E, di;=2d;,,
(5.32) VI<E Vj#i, dj,=d;,

Also, we have

C™ CCyu {i} (qlla qlza qg, (CJI',l)a (d;’l))

for the same sequencesc; , and d/ ; as above. [Observe that by doing this we give
up a factor 2 in (5.29) and (5.31); the loss of this factor is actually unimportant,
and doing this simplifies notations.]
We note that, as usual, if (Y,),cg € B(a), then (Y, en, (Y, huen € B2a).
Having applied (5.28) once, we iterate its application. We follow the rule that,
when reducing a term such as the left-hand side of (5.28), we always reduce the
value of g; for the smallest j such that g; > 1, j ¢ J. The purpose of this rule is
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that it insures at most 3n different terms can be created in the decomposition.
We do not decompose a term if it is of either of the following types:

Type I. One of the g; is zero.
TypeIl. J ={1,2,3}.

Consider the left-hand side of (5.28), in the case where the class C is the
class of (5.27). The decomposition procedure previously described shows that
this quantity is bounded by the sum of terms of type I or II, and we evaluate
the contribution of each term. We start with the easy part, that is, the terms
of type I, for which we will obtain a bound similar to that of Proposition 5.8.
Let us examine one term of type I. It concerns a class Cy of functions on the
grid Hy = H(q1,92,93), where one of the numbers g; is zero. For specificity, we
assume that g3 = 0. For j < 3, set p; = n — nj(k) — g;; this is the number of
times the coordinate of rank j has been reduced. Set p = p1 +ps +ps. If, from the
information we have on Cy [from (5.27) and iteration of (5.29)—(5.32)], we keep
only the information on ¥, ¢ g,|h(v)| and ¥, ¢ g, Ajh(w), and if in the bounds for
these quantities we replace n;(!) by 0 and S;(f) by KA2%" (as was done in the
proof of Lemma 4.4), we see that, forj=1,2,

jed = Y |h@)| < K27kru® e —p AN
u€H,

igd = Y |Ahw)| < K27Rru®rri=p A9,
uEHo

(5.33)

Certainly J must contain at least one element. If J contains exactly one
element, we appeal to Lemma 5.6 with s = 10n to see that if the sequence
(Y})y e H, belongs to B(a), where a > 2(q1 + gq2), then, with probability greater
than or equal to 1 — Kn2~107,

> RWY,

vE€H,

(5.34) sup < K+/an? max(Uy, U),

h€Cy

where
Ul = A23n2_k +n1(k)+p1 —P2[n —n1(k) — p11/2 — [n — na2(k) — p2l/2
- A23n2—k +[n1(R) +na(R)] /2 +(py +p2)/2 -bp,

In a similar fashion, U, is bounded by the same quantity. Since a = ¢2**?, the
left-hand side of (5.34) is bounded by

K \/En22‘k/2 +In1(k) +n2(k)/2 —ps/2 A 93

Since g3 = 0, we have p3 = n — n3(k), so this quantity is K./cn?2-"/2A2%",

If J = {1,2} one can observe that a condition on ¥ |a(x)| such as (5.23) is actu-
ally stronger than the corresponding condition on Ajh(x). Then the above proof
works. Alternatively, one can observe that what we need has been established
in the proof of Lemma 5.6.



FROM UNIFORM TO EMPIRICAL MEASURE 953

In summary, with probability greater than or equal to 1 — Kn32~1%", the
contribution of all the terms of type I will not exceed K+/cn32-"/2A23",

We now turn to the elements of type II. Such an element concerns a class Co
of functions on a grid H(q1,q2,qs3). Consider p; = n — nj(k) — g;, the number of
times that the component of rank j has been reduced. Set p = p1 +pz + p3. We
will say that the term is of type II(p). (The choice of s in particular will depend
upon p.) There are at most 3p terms of type II(p).

From (5.27) and (5.29)—(5.32), it should be clear that a function 4 in C, satisfies

(5.35) V<8, VueH, |h@|<) e,
1<k
where
(5.36) Vj<3,VI<E, > ajw) <277,
uEHo

< 9—P+pj = k+nik) — nj(l)ﬂl(f)
(537) Vj<3,VI<k  max ¢)< 2pign® Dy, |
u 0

< 2p +nj(k) - nj(l)bl+ 1-

Consider a sequence (Y)), ¢ u, that belongs to B(a), where a = 2k+pc, To bound
|Su e 5, R(w)Yy|, we use Lemma 5.3. We have

N =card Hy = 23" ~P~%,

The first task is to bound ¥; <, A*(0) for any integer -, where r., = [N27?"].
Consider a subset U of Hy with card U < r,. Using (5.35), we see that, for
anyj <3,

(5.38) Shwi< > Y g
uelU 0<I<k u€H,

Also, if p > 0 is an integer (to be determined later), we can write, for any
J<3,

(5.39) > h@)| < YooY g+ > > e

uelU 1>p u€Hy uel l<p
Using (5.36), we have
Yo S g Y 2mrrrm kB onOpf)
(5.40) I>p u€H <;fi];j_k+nj(k>—nj(p) Z 8,(F)
- p<I<E o

By (5.37), we have

VueHy, Y au@<)y 22n®-n0p,,
(5.41) I<p I<p
< 2p+1bp,
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where we have used (4.8) in the last inequality.
Since

card U <r, <N272 =2%-p—kg-2"
we see that the last term of (5.39) is at most
gin—k+lg=2p < g3n—k+lg=2" oyp(9p+39)
< 98n —k+192e* % -2
by (3.2). In particular, if p + 41 < +, this is at most
(5.42) 93n—k+1-27"1

We now choose p. We set § = [41 +p/6]. If v < 6, we take p = 0, and by (5.38)
and (5.40) we have .

(5.43) Z |h(u)| < 9—p+pj—k+nik) Z Bi(F).

uel 0<I<h
If v > 6, we take p = v — 6. In that case, by (5.39), (5.40) and (5.42) we have
(5.44) Z |h(u)| < 2 P+p —R+m8) —nly = 0) Z Bi(f) + g3n—k+1-27"1
i y—0<I<k
We now choose j. We observe that for £’ < k& we have
> pj+nik)—nk)=p+k—F,
J<3
so that there exists j < 3 such that
pj+njk) —nik") < Hp+k—Fk).
Thus (taking &’ = 0) from (5.43) it follows that, if v < 4, we have

(5.45) > |h)| <27 B-RE N g,

uelU 0<I<E

while, if v > 8, from (5.44) it follows (taking &’ = v — 6) that
(5.46) Z |h(u)| < 2—2p/3—2k/3—~y/3+0/3 Z ﬂl(f)+23n—k+1_2‘7—1‘

uelU y—0<I<k

Since these inequalities hold whenever card U < r.,, (5.45) and (5.46) provide
bounds for ¥; <, ~A*(2).

Consider now the largest integer 7 such that 27 < c2**P, There is no loss of
generality to assume that ¢ > 242, so that 7 > k& + p + 42. By (5.35), (5.41) (used
for p =k + 1) and (3.2) we have

max |h(u)| < 2P *1b;,q < 27+ exp(2+40).
u EHO
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Thus, when 22" < N we have, since 7 >k +p + 42 > k + 42,
2 — 27 +7/24p+1 428+ 4
r,27/2 max [h(u)| < N27 % +7/2rprit
u € Hy -
< Nop+l+7/2-27" t

< 23n—k/2+p/2-2’=+1’—"

since 7/2 — 27 "1 < (k +p)/2 — 2k+P—1,
We now appeal to Lemma 5.3. With probability greater than or equal to
1 — (eN)~**!, whether we are in case (a) or (b) of this lemma, we have

> |h@)||Y.| < Ksy/c2'P*®/2(A(p, k) + B(p, k),
u € Hy

where

A(p,k) = Z 2'7/2—2p/3—2k/3—'y/3+9/3 Z ﬂl(f)a

v<lo vy—0<I<k
B(p,k) = Z 23n—k+2+7/2—2’7‘l +23n—k/2+p/2—2k”’_1
v20

and where [ is the largest integer for which 22° < N. [We have used the fact
that the first term of the right-hand side of (5.46) dominates the right-hand
side of (5.45).]

If we exchange the summations in the definition of A(p, k), we see that if
we set

1, = min( + 8,1;) < 6 +min(, o),

we have

A(p,k) < 9—2p/3-2k/3+6/3 Zﬂl(f)< Z 27/6)

1<k v<h
< K22p/3 —2k/3+6/3 Z 2l1/6ﬁl(f)~
1<k

Since, by definition of [y, we have 2 < 8n, we have l; < log, 3n. Thus,
recalling the value of 6, we have, replacing [, by its bound above, that

(5.47) 2(p+k)/2A(p, k) < K2—p/12 Z 2(1/6) min(l,log, 3n)— k/eﬂl( f)
1<k

We now define s = s(k, p) as follows. If both &,p < n, we take s(k, p) = 10. We
then have

(eN)—s+l < (23n—k—p)—3+1 < (2n)-—s+1 < 2—9n‘
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If either & > n or p > n, we take s = 10n. Then
(eN)—s+1 Se—Qn < 2—9n‘

Since there are at most 3p grids of type II(p), we see that with probability
greater than or equal to 1 —n32~ %, for each k < n and each p, the contribution
all the terms of type II(p) is at most

(5.48) K+/cps(p, k2" *P/2(A(p,k) + B(p, k).
We now observe the following:
Z 9(1/6) min(, log; 3n)—k/6 < Z 2U-h/6 < g

k>l E>1
n z 9(1/6) min(, log, 3n)—k/6 <n z ology 3n—k/6 < KnQlog, 3n —n/6 <K;
k>n k>n
2:p2“"/12 < o0;
p20
ny p2 P2 <n?2 "2 <K
p2n

We also observe that, by trivial bounds,
B(p,k) < K(23n—k_2!’/6 + 23,,_2,”&_2).

It follows from (5.47) and these relations (and interchanging the sums) that
the sum of the terms (5.48) for &, p > 0 is bounded by

k(24 ),

1<0
but since
Bilf)=4> 47~ la(f),
r>1
we have
ST BHSKEY a(f) <K2P"A.
1>0 1>0

We have completed the proof of (5.3). To complete the proof of Theorem 5.1, it
remains to prove the following proposition.

PROPOSITION 5.8. With probability greater than or equal to 1 — K2~ the
following occurs. For any A > 0, any partition (By), > o of Gy, such that each By, is
union of sets of Py, and any family of numbers z(C),C € P, C C By, that satisfies
(5.49) k>0,CeP,,CCcB, = 2z(C)<b,,

(5.50) > 3 2 ®xC) <K2A
k>0CCB,
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we have
(5.51) >y (Z|Y,?|>z(C)SK23"\/E(A+ D).
kzogcg;, ueC
€Pn

Indeed, once Proposition 5.8 is proved, by (4.2) we have

Z f”(u)Yl?

u€G,

< K23 /c(A +1).

Thus, combining with (5.3), we see that with probability greater than or equal
to 1 — K2~ % whenever f € S(A), we have

> f@y,

u€Gy,

< K2 /e(A + 1),

from which, as already mentioned, Theorem 5.1 follows.

We start the proof of Proposition 5.8. Set ¢ = 41. Consider the largest integer
7 such that 27 exp(27**) < 23", For k < T, set my, = [2%" ~5®) exp (— 28 *#)]. We
observe that 7 is of order logn, so that, for n large enough, 7 < k. For £ > 7,
set my, = 1. The key to Proposition 5.8 is the following statement.

LEMMA5.9. With probability greater than or equai to 1—K2~ %" the following
occurs. Consider k > 0, and consider any set B C G, that is the union of at most
my, atoms of Py. Then

(5.52) 172 < Kmp2'®e.
u€B

Proor. The proof of this lemma is a variation on the proof of Lemma 5.2.
We recall from the proof of this lemma that if J C G, and |A| < 1, we have

(5.53) Eexp)\ZYio < exp (MccardJ).
ied

Consider now the r.v. W = maxg ¥, ¢ 5|Y,|, where the supremum is taken
over all families of sets B that are the union of at most m;, atoms of P,. We have

5.54 w<2 Y|,
(5.54) < Jmea;c% b

where J is the family of subsets of G, that are contained in the union of at
most m; atoms of Py. If we combines (5.53), (5.54) and the crude (but effective)
inequality exp max(x;) < ¥ expx;, we get that, for |\| < 1, we have

Eexp )\g < card J exp(\%c2*®m,,).
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Now,

card 7 < 223w)mk (23n—s(k))

mg

3n — s(k) \ Mk
< 92®m, e25n — sk .
< T

For k < 7, we have €23 —s® /m, < exp(K2¥) = exp(K2°®), so that card J <
exp(K2*®m,,). For k > 7, we have

23n—s(k) < 23n —s(1) 23n -T < exp(27-+p) < exp(2s(k)+p)’

so that again card J < exp K2*®m,, Thus in any case, taking X = 1/,/c, we have

Eexp —‘—]-V-z < expK2*®m,,

2y
Thus, we have
P(W > 2+/ct) < exp (-t + K2°®m,).

If we observe that 2°®m, > n/K, the result follows by taking ¢ = 2K2:®m,,. O

We now go back to the proof of (5.51). We assume that the event of Lemma
5.10 occurs. Given 0 < k < 7, we consider a subset Bj, of B;, that is the union
of at most m;, atoms of P, and for which ¥y ¢ p; |Y0| is as large as possible. By
(5.49), we have

(5.55) > ( > |Y,?|>z(0) < Kmp2®/aby 1.
CcB, \ueC
CeP,

For k < 7 let B} = B;\B,, and for k > 7 let B} = By. It should be clear that for
any atom C of P, contained in B}/, one has

> v < K2®ve,

ueC
so that
(5.56) > (Z |Y,?|>z(C) <K Y 22®z(0.
ccBy \ueC CCB,
CeP,

If we recall that 22®m, < 237 exp(—28*#) and b ,; < exp(2¥*#~1), the result
then follows from (5.50), by summation of the inequalities (5.55) and (5.56).
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