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CHAPMAN-KOLMOGOROV EQUATION FOR NON-MARKOVIAN
SHIFT-INVARIANT MEASURES

By M. COURBAGE AND D. HAMDAN

Université Pierre et Marie Curie

We study the class Cr of probability measures invariant with respect to
the shift transformation on KZ (where K is a finite set of integers) which
satisfies the Chapman—Kolmogorov equation for a given stochastic matrix II.

We construct a dense subset of measures in C,; distinct from the Markov
measure. When II is irreducible and aperiodic, these measures are ergodic
but not weakly mixing. We show that the set of measures with infinite mem-
ory is Gs dense in C, and that the Markov measure is the unique measure
which maximizes the Kolmogorov—Sinai (K-S) entropy in C,. We give ex-
amples of ergodic measures in C,. with zero entropy.

1. Introduction. This work has been motivated by the description of the
irreversible approach to statistical equilibrium and the construction of Boltz-
mann entropy in a sense explained in [3] and [4]. This problem has been studied
for unstable dynamical systems such as the K-systems in [6] and [7]. Here we
consider systems which are not necessarily K-systems.

This work is also related to a problem studied by Lévy and Feller [5] con-
cerning the construction of non-Markovian stochastic processes which satisfy
the Chapman—Kolmogorov equation.

We formulate the problem as follows: Let (22,4, S, 1) be a dynamical sys-
tem; that is, (2, 4) is a measurable space and S is a one-to-one measurable
transformation on (€2, A) preserving the measure p. Consider a finite partition
P={Py,...,P,_1}of Q, where P; € A and u(P;) > 0 for all i. We say that P sat-
isfies the Chapman—Kolmogorov equation if the family of matrices II,, n > 0,
defined by

(IT);j = n(S™"P; | P))

is a semigroup: I1, +n = .11, V1, n' > 0.

The systems which are isomorphic to Markov shifts possess such a partition.
In this case the last equation is nothing but the Chapman—Kolmogorov equation
satisfied by the Markov chain.

The existence of such partitions entails a necessary spectral property of the
dynamical system; namely, it must have a spectrum with Lebesgue component
when the matrix IT; (denoted from now on as II) is aperiodic and irreducible. To
see this, recall that, in this case, the matrix II has an eigenvalue ) such that
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SHIFT-INVARIANT MEASURES 1663

|A| < 1. Let (o) € C* be an eigenvector of I1 for this eigenvalue, and

k-1
f= Z a;lp,.
izo

Let 1¢ be the measure on [0, 27[ whose Fourier coefficients are

2
i) = (.0 ) = [ e dpte),
where (Uf)(x) = f(S~1x). Let us denote \ = rei’. Then

(£, Uf) = Z a;oy(IT"); ;u( P;)

i, J
= rinlgint (Z |01i|2N(Pi)) ]

If, for simplicity, we take 2f=_01|a,~|2p(Pi) = 1, then yr has the following density
with respect to the Lebesgue measure:

+00

1 .
— |n| ,in(6 — x)
gx) o E r’*le

n=—00
1 1-—r2

"o (r — cos(6 — x))2 +sin%(0 —x)

This shows that sy is equivalent to the Lebesgue measure.

Here we investigate the existence of shift dynamical systems for which the
Chapman-Kolmogorov equation is satisfied for invariant measures that are not
Markov measures (see [11]). We consider the set C, of all invariant probability
measures on the shift space K% (where K = {0,1, ...,k — 1}) which satisfy the
Chapman—Kolmogorov equation with respect to the partition P; = {w € K%:w,
=1} for a given stochastic matrix II. In general, IT has to satisfy some properties
of aperiodicity or irreducibility.

In Section 2, we give a procedure to construct a dense class of measures in
C., denoted by S. For any strictly positive I, .S, contains measures which are
distinct from the Markov measure. When II is irreducible and aperiodic, all the
non-Markovian measures of S, are ergodic and not weakly mixing.

In Section 3 we show that the set of all measures with infinite memory is G5
dense in C,,.

In Section 4, we show that the entropy of the previously constructed class is
positive and that the Markov méasure is the unique one which maximizes the
entropy in C,..

Finally, we give examples of invariant ergodic measures satisfying the
Chapman-Kolmogorov equation with zero entropy. All these examples come
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from skew product dynamical systems, and the partition at different times is
independent, that is, u(S™" P; N P;) = y(P;)u(P;) forn > 1.

It is an interesting question whether there exist partitions satisfying the
Chapman—-Kolmogorov equation in the nonindependent case for dynamical sys-
tems with zero entropy.

In a paper published in 1982, Alexeyev [1] raised the question of a possible
realization of any given spectral type of a dynamical system by a bounded
function. The dynamical systems which we construct are examples of systems
(some of them are of zero entropy) whose Lebesgue spectral type is realized by
a function taking a finite number of values.

It would be interesting to answer the following question: for a dynamical
system having a Lebesgue component in its spectrum, is there a partition sat-
isfying the Chapman—Kolmogorov equation?

2. A classofinvariant measures verifying the Chapman-Kolmogorov
equation. LetK ={0,1,...,k— 1}, k> 2. Let Q = KZ be the set of all double
sequences w = (w;),w; € K,i € Z. Let o be the shift transformation (cw); = w; 41
and A the o-algebra generated by the cylinder sets {w Wiy =J1,- Wi, =Jn}
also denoted by {w;, =Ji,...,w;, =Jj,} if no more precision is necessary. Let IT
be a k x k stochastic matrix and p = (p;) be a row probability vector invariant
under II. Denote by u, the Markov measure on (2, A):

o)) Nw({wn =%X0y--- Wn+p = xp}) = Doy, 2y - - -Hx,,_l,x,,a

which we simply denote by p.(xo, . . .,x,). This measure is also called the (p, II)
Markov chain. .
Denote by C the set of all o-invariant probability measures v on (2, A) that

satisfy the Chapman—Kolmogorov equation, which we write as
2) v({wn =J | wo = i}) = AI");.

The set C, is a compact convex subspace of the set M(Q2, o) of all s-invariant
probability measures on (2, A) for the weak* topology.
Now, we shall give a procedure to construct measures in C, which may be

distinct from p,.
Let C,, , be the set of all probability measures on K"*! that are invariant

under the shift and satisfying (2), that is,
@) Z/L({w €K Lwy=y, w1 =x0,...,Wps1 =xp})
y

=,u({weK"+1:w0=x0,...,wp=xp}), 0<p<n-1,
(i) ,u({w e K" wo = x9,wp =xp}) = fir ({wo = X, Wp =xp}), 1<p<n.

We have shown in [3] that there are many such measures.
For simplicity, we denote

p({w e K"l wy=x0,...,ws =xk}) = ulxg, - - ., %), k<n.
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We also use this notation for any invariant measure on KN or KZ.

If (p;) is a strictly increasing sequence of integers with py = 0, and (;) a
sequence of measures such that y; € C; p, ., - p,, we define a measure vy on KN
by
vo({wo = %o, - ,Wp, =%py, ..., Wp, =Xp, })

= NO(xO: s vxpl)ru‘l(xpﬁl’ <oy Xpy prl) T M- 1(xpr- 1+1y - -1 Xp, ' Xp, _ 1)

(3

for any positive integer r. Consider now the sequence of measures

— 1 —
“m
Then any limit point v of this sequence for the weak* topology is a o-invariant

measure which satisfies the Chapman—Kolmogorov equation. To show this, it
is sufficient to satisfy

vo({ws = u, wy =v}) = pir ({ws = u, w =v}), t>s.
Let p; <s <p;j+1,pj <t <pj+1. Then

vo({ws = u, wy = v})
= Zﬂi(ws—m =U, Wpiyy =xPl+1)
X

X 'ui+1(wpi+2—m+1 =xpz+2 IUJ() =xp,+1) o '/Lj((&)t_pj =V I Wo =xpj)

= z 'u,’r(u)(HPHl _s)u,xpt+1(HpH2 _le)poI»poz .. .(Ht_p/)xpj,v
X
= pr (@I %)y, 0 = pr ({ws = w,we = v}).

From now on, we shall be concerned with the case: p; = ni and u; = u for all
i € N, where n > 1is a fixed integer and 1 is a fixed measure in C, ,. In this

case, vy is given by

(3" VO({“-’O =X0,W1 =Xy, Wpn = xrn})
= ,u(x07 cee yxn),u/(xn+la -y Xop | xn) o ~u(x(,_ Dn+ls-- 1 Xrn I X(r — l)n)‘
It can be easily seen that v, is o"-invariant. Then v is given by

n—1

4) Z a'vp.

" LEMMA 1. If II is irreducible and aperiodic, the following conditions are
equivalent:

(i) v is strongly mixing.
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(i1) v is weakly mixing.
(iii) vg is o-invariant.

(iv) u is the projection of j, on K"*1 denoted by jir | gne1.
V) v =pg,.

Proor. (i) = (iii) If v is weakly mixing for o, it is also weakly mixing for
o™, hence ergodic for ¢”. Then (4) implies that o'y = v for any i.
(111) = (iv) We have

oo, - Xn —ie1) = w; =Xy, Wn = X — (X — i1 | Xn—i),
Vo(x0, -« %y —jr1) = uXoy ..., Xp—;41) fori=1,...,n.
Since oy = vy fori = 1,.. ., n, it follows that, for any p,
(% | %0, %p —1) = plxp | %p - 1),

that is, 4 = pr. The other implications (i) = (@i), (iv) = (v) and (v) = (@)
are evident. O

Thus our construction yields a measure v distinct from ., if p is distinct from
tr| gn+1. It has been shown in [3] that there are many such p when I is strictly
positive.

In what follows we make explicit, when necessary, the dependence of vy with
respect to . We also denote by ¢,, the mapping which associatestoeach u € C ,
the probability measure v € C;.

THEOREM 1. IfII" is an irreducible matrix, then, for any € Cp pn, v = ¢pu
is ergodic.

Proor. Itis sufficient to prove that

N-1
1 Cemy
(5) Nh_)moo N 2;0 v(ANo~*B) = v(Av(B)
for any A, B such that
A= {WO =X0y- -y Win =xln}y

B = {WO =Y0,---,Wpn =ypn}'
Let N be given by N =Mn +j,j € {0,...,n — 1}. Then

N 1 M-1n-1

-8 1 \ —tn—r
NZV(Ana B)’_Mn” ; rzou(Amf B)
(6) 1 Mn+j—-1
it > uWAnoc~B).

s=Mn
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The second term of the right-hand side of (6) tends to 0 as M — co. The first
one can be written by using the definition (4) of v

1 M-1n-1
: ANoc~™~"B)
Mn +j ; ;
(0 1 1, M
M "= ]-n_ 1 -1 q A -tn—I‘B
_Mn+jrz=;);;)ﬂ7;0yo( No ).

By the definition (3'), ovy is a o™-invariant nth order Markov chain. Then it is
isomorphic to the Markov shift on (K*)? under the isomorphism

x=(x;) € K% — o(x) € (K2,

(@), = (XnksXnk+1s- - s DR—1)-

It is easy to see that this Markov chain has the following transition matrix:

(8) Wx,—...xn,yl..‘yn =/‘L(y1r~'ayn lxn)~

The Chapman—Kolmogorov property and the irreducibility of II" imply that
this chain is ergodic. Therefore, the measures ¢%v are o™-ergodic for all q. This
leads to

M-1
9) lim 1 Z clo(AN o~ ™ ~"B) = ¢lvy(A)o"vo(c ™ 9B)

M- M
t=0

Hence we obtain by substituting (9) in (7) and (6):

1 N-1
. el -5
Nh—I»nooN s§=0 v(ANo~°B)

1 n-—1 1 n—-1
= Z - Z c?vy(A) - " vo(c ™ 9B)
r=0 q=0

1 n—1
= > ou(Aw(c™B)
n a0

n—1

= 23" 0%u(4)- uB) (o-invariance of v)

g=0

= v(A)v(B). \ g

REMARK. The construction of the measures ¢,u can be extended to a larger
class of u than C ,.In fact, let D , be the set of probability measures on K" * 1
such that

,u({w € K" hw; = x0, wisp =xp}> = pr ({wo = x0, wp =%p})
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and such that the measure v, associated with it according to (3') is ¢”-invariant.
Itis easy to see from the preceding proof that the theorem holds for the measures
én v associated with this larger class of .

Additional examples of the ergodic measures of C. have been proposed by an
associate editor of The Annals of Probability. They are constructed according
to (3) where one takes p; =n — 1, pa = n, po = i, p1 = pr and such that v is
o"-invariant, that is,

vo( wo =g, .. . ,Wpn = Xpn)

= 1oy %n— DA(En | %a1)
Xli(xn+1,--o,x2n—1 lxn)u(xzn |x2n—1) Xoeee
X (5o~ w15 — 1 13— ) 4 | %pm—1)

= u(xo)u(xl Ixo) --~N(xn-1 | xO’-~-’xn-2)N(xn lxn—l)
X 1(%ns1 | %n) X oo X f1(%on—1 | Xny - %on —2) (%on | X2n—1) X -
><//4(-7‘3(1:—1)n+1 lx(p—l)n) Xoeee
X (%o — 1 | %(p = Dy - - -+ %pn — 2) W(%pn | %pn — 1)

Since vy is o™-invariant, let v be defined by

It can be seen from the preceding discussion that this is a function of a Markov
chain. The state space of this Markov chain is | J;, _; K™. The allowable transi-
tions are transitions from (xq,...,%y) to (x1,...,%Xm+1), m < n — 1, with proba-
bility

P(xl,...,xm),(xl, e Xy Xma1) u(xm+1 I X1y yxm)

and from (x1, . ..,x,) to y € K with probability P, . x,),y = #y | %n).

The stationary probability row vector is {(1/n)u(xo, . ..,%m)}, 0 <m <n-1.
The function is the projection onto the last coordinate. It follows easily from
the irreducibility of II* and the Chapman—Kolmogorov property of x that the
preceding chain is irreducible. Now a function of an ergodic process is ergodic,
so the ergodicity of v follows.

THEOREM 2. Let R,v denote the restriction of the measure v € C to Kr+1,
Then ¢,R,v converges to v in the weak™ topology.

PRrOOF. It follows from the definition of v, [formula (3')] that we have, for
any fixed set ({wo =xo,...,ws =%s}) and fori +s <n,

o' vo(Rav) ({wo = %0, .. ., ws =%s}) = v({wo = %o, ..., ws =%s}).
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Thus
lim 1"2‘:1 o o) ({wo = x0, - . . ,ws = %})
n—ocon 4
.1
= nlimm - 2 v({wo =x0, ..., ws =%s})
=v({wo =0, ... ,ws =xs}). O

COROLLARY 1. The set Sy =, $nCnr,n is dense in Cx.

COROLLARY 2. IfIlisirreducible and aperiodic, the set of ergodic measures
isdense in C,.

It can be useful to compute the fixed points of ¢,R,. A trivial fixed point is
tx. The following theorem gives a complete characterization.

THEOREM 3. The only fixed point of ¢, R, is pir.

ProOOF. Letv = ¢,R,v. It is sufficient to show that, for any s <n,
(10) U(xg, ... %s) = pr(xo, - - -, Xs)-

We show this by induction. In fact, (10) is true for s = 1. Suppose it is true
for s < n. Then, we compute ¢,R,v(xo, . . .,%s+1) as in the proof of the Theorem
2: for any i < n — s we have

UiVo(RnV)({wo =X0y- - Ws1 =xs+1}) = U(xg,. - Xs41)-

Forn —s<i<n-—1,wehave

UiVO(RnV)({WO =Xy Ws+1 = xs+1})
= U(Xgy X~ IV (Fn b1y Xsw1 | Xn i)
= pr(xo, . . . \Xs41)-
Here, we used the hypothesis according to which v coincides with i, on the
coordinates (wy, . . . ,ws). This entails that
v(xg,. .. Xs41) = dnRpv(xo, . .. 1 Xs+1)
n-—s s
= V(an"~)xs+1)+_/‘Lﬂ'(xo,"-)xs+1)
n n

and completes the proof. O

3. Chains with Infinite Memory in C,. An invariant measure v on K z
is called a p-order Markov chain if, for any n > p,
11) I/(wn=xn|wo=x0,~-,wn-1=xn—1)

=v(wp =% | Wn—p =Xri—pyee ey Wn—1=%n—1)-
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In what follows, all Markov chains are stationary.

An invariant measure v is called a chain of infinite memory if it is not a
Markov chain of any finite order.

We shall investigate the existence and the abundance of such infinite memory
measures in C. It will be shown that they are generic.

LEMMA 2. Let p;, i = 1,...,r, be a family of distinct irreducible Markov
chains on the same state space K. If, for any i#j and any y € K there x € K such
that p;(x,y)p(x,y) > 0, then the measure

r
1/=Zaip,-, O0<ao < I,Zai=1,
i=1
has infinite memory.

PRrROOF. Suppose that v is a p-order Markov chain. Then, by (11), we have
(12)  vwo, .-, wn W (Wn—py- - Wp—1) = Uwo, . .. ,Wp - DV Wn —p, - -+, Wn)

for any n > p. It follows, using the definition of v,

a;0y [u,-(wo, ey W(Wh —py ey Wh—1)
as 2

_Ni(“-’o,-"awn—l)/ij(wn—pr-',wn)] =0.

Let A = {wp = x0,...,w; = %1}, B ={wo =¥0,---,wp =%p} and C = {wo =
Y0s---,wWp—1=yp—1}. Then, for I <n —p, (13) implies

(14) Z & [,ui(A No™~PB)u(C) — (AN o~ _p)C)uj(B)] =0.
i, J

Now, we take the Césaro mean over n > p + ! and we use the ergodicity of
the measures y; to get

(15) > i A) [iB)y(C) — p(C)pi(B)] = 0.
ihJ

Equation (15) also holds for any A € A. Let A’ be the support of y;. The
measures /;, being ergodic, have disjoint supports. Therefore, 1;,(A*) = 0 for
i #j. Hence (15) implies

a; i AD) [ (BW(C) — 1i(C(B)] = 0.
Consequently, .
(16) p(BW(C) — 1 (C)V(B) = 0.

Now, for the Markov chains y; and pj, the condition, for any y there exists
x € K such that p;(x,y)u(x,y) > 0, is equivalent to the condition, for any y and
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p € Nthereis (yo,...,yp—2) such that u;(yo,...,5p - 2,9)1(¥0,- -, ¥p—2,5) > 0.
Then, by using (16), we obtain, for any y, _ 1 and yp,

i (o | p—1) = i (¥p | ¥0s- - ¥p-1) =v(¥p | Y0, ¥p-1)
=/J'j(yp !yO,“"yp—l)
= (¥ | ¥p-1),

that is, y; = p;, a contradiction. O

The fact that a convex combination of invariant probability measures may
be a process with infinite memory can be obtained under hypotheses different
from those of Lemma 2. The following lemma, which results from a question of
the referee, gives such hypotheses.

LEMMA 3. Let p;, i=1,...,r, be a family of distinct stationary measures on
KZ. If 1y is an irreducible and aperiodic Markov chain, then every nontrivial
convex combination v of u;, i = 1,...,r, has infinite memory.

PROOF. Suppose that v is a pth order Markov chain. By passing to a state
space whose elements are blocks of p-coordinates, (K%, v,o?) and (K%, uq,0”)
are isomorphic to first-order Markov chains whose transition probabilities from
x = (x1,...,%p) toy =(y1,...,¥p) are, respectively, given by

Wx,y =V(y1 |x17"',xp)y(y2|x2)'~-7xp7yl) X Xy(yp |xp)y17---)yp—1)

and

1P _ @D 1) (¢))
Wx,y = Tayy X Tyrye X0 X My 1,y

where % is the stochastic matrix associated with 11

It is easy to see that WV is irreducible if and only if (e is irreducible,

and ((71r))1’ is irreducible for all p if and only if ¥ is irreducible and aperiodic.
Thus, under the hypotheses of the lemma, W is irreducible for any p, and
therefore the same is true for W, which implies that ((K?)Z,v,oP) is ergodic.
This contradicts the fact that v is a barycenter of y;’s. O

THEOREM 4. IfII? is irreducible, then, for any p € Cy o such that p# pix|gs,
¢ou is a chain of infinite memory.

PrOOF. By the definition, vy is a o2-invariant second-order Markov chain.
Then (K%, vy, 0?) is isomorphic to the Markov shift ((K2)%, vy, o) where the
isomorphism ¢ is given by

x = (x;) € K% — o(x) € (K?)?,

(1), = (xan, 2o 41).
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The Markov chain on the space K2 has the transition matrix W?! given by

:u(anxlaxZ)/J‘(x3 | x2)
g, %1)

1 —
W(x07x1),(x2,x3) =

and the invariant row probability vector for this chain is u(xg,x1).
The same is true for (K%, o1y, 0?) which is isomorphic to a Markov shift on
(K2)Z. Here, the transition matrix W2 is given by

2
W(xo,xl),(xz,xs) = N(x27x3 l xl)

and the invariant row probability vector is p(xg,x1).

If 112 is irreducible, then W! and W? are irreducible and (K?%,v,02) and
(KZ,01y,02) are ergodic. Now, we have to show that W! and W? satisfy the
hypothesis of Lemma 2, namely, for any (i, j) € K? there exist (xo,x1) such that

W(x0x1), G,) = 0,

where W, imm) = Wy, mm Wei, mm- From the expression of W' and W? we
see that

Wan, eumy > 0 iff plk, 1, m)udl, m,n) > 0.

But, for any (m, n) such that u(m,n) > 0, there exist ! such that x(l,m,n) > 0.
As u(l,m) > 0, there also exist & such that u(k,l,m) > 0. So we may apply
Lemma 2 to deduce that ¢(vy + 0v9)/2 is a chain of infinite memory and so is
(v + ovp). This completes the proof. O

THEOREM 5. If 12 is irreducible, then the set of all measures in C, with
infinite memory is a Gs dense set in C,.

PrOOF. Let us denote by C, the set of all measures of C, that are pth
order Markov chains [satisfying (11)]. We shall prove that C,\C, is dense in
C.. For this, it is enough to show that for any A € €, there exists a sequence of
measures in C,;\C, which convergesto X. Let . € C; 2, 4 # pir| gs and v = ¢op. By
the preceding theorem, v € C,\C, for any p. For ¢ € [0,1] put \; = tv + (1 — DA
As C, is convex, \; € C,. There exists a sequence #,\,0, such that \;, € C,;\C,.
For, on the contrary, we can find £ > 0 such that )\; € C, for any ¢ €]0,¢]. Then
the Markov property (11), applied to ), implies a polynomial relationship of
the form

A2 +Bt+C=0 Vteloel

Here, the coefficients A,B and C depend on A and v. Their nullity implies
that the Markov property (11) also holds for v, a contradiction. This shows
that C,\C, is dense in C,. Since C,\C, is open, for any p by Baire’s theorem

Mp=1(Cx\Cp) is dense in C. O
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REMARK. The proof of Theorem 5 can be repeated for the set of all sta-
tionary measures M(K%, o) and shows that the set of all invariant measures
with infinite memory is generic in M(K%, o). Theorem 5 tells us that this prop-
erty is preserved even when we restrict to measures satisfying the Chapman—
Kolmogorov equation.

4. Kolmogorov-Sinai entropy for C, measures. We first compute the
K-S entropy h(v, o) where v = ¢, u. By using the affinity of entropy, we have

n-1

1 .
nh(v,0) = h(v,0") = ~ Z; h(d'vg,0™) = hlovg, o™).

In the last equality we used the fact that all the systems (K%, o1, o") are iso-
morphic and have therefore the same entropy. Now, the system (K%, olvy, o") is
isomorphic to the Markov chain on the state space K" with the transition matrix

Wi, o0 — 10, Gy o0 1) = M(W1 = %n, -, Wn = X3n 1 | wo =2 1)
and the invariant row probability vector u(xg, . ..,x, _1). Thus we obtain

nh(v,o) = h(ovy,o") = — Z wxo, . . ., x,) log pulxo, . . ., %n)

Xg .- Xn
+ > ulaco) log (o).
L)
Let us denote by H,(xo, . ..,x,) and H,(x; | x1 ...x;) the entropies

H,(xg,...,x,) = — Z wxo, . . -, xp)log ulxg, . . ., xn),

X0 ... Xn
Hy(xo | x1,...,%) = — Z plxo, . . ., xx)log p(xo | 1, ... ,%).
X ... Xp
h(v, o) can also be written as
1
(16" h(v,0) = ;Hu(xl,...,xn [ x0),

where
H,(x1,...,%, | x0) = Z wlag, %1, . . ., xn)0g pu(x1, ... % | %0).
X0 ... Xp
It follows from the relationship
H,(xo,...,%n) = Hy(xo) + Hy(xo | 21) + - - +H, (%o | x1...%5)

and from (16’) that

an h(v,0) = r—lL(HH(xo 1) + o4 Hy (o | 21,0 2) ).
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Now, H,,(xg | x1) = h(pu,) and H,,(xg | x1...x3) < H,,(xg | x1). We shall use these
relationships to prove the following result.

THEOREM 6. (i) For any v € C,, h(v) < h(u,).

(i) If h(ur) > 0 and p € Cr p, then h(¢np) > 0 for any n.

(iii) If v € Cr and R, (v) is the restriction of v to K™ *1, then h(¢,R, (1)) \, h(v)
asn — oo.

(iv) pr is the unique measure which maximizes the entropy in C;.

Proor. (i) It is well known that A(v) < H,(xy | x1); on the other hand, H,
(xo | x1) is equal to A(u,).

(ii) This can be seen from (17).

(iii) We apply (16’) to x = R,v and we use the monotonicity property of
(1/n)H (x1, ..., 2, | x0) ([11]) to see that A($,R,(v)) decreases to A(v) as n — oo.

(iv) Let v € C, such that A(v) = h(u,). It follows from (17) applied to u =
R,(v) that

H,(xo | x1,...,%0) =H(xq | x1)

for any n > 1. Now, the invariance of v implies that we have, for any p,
H,(xo | x1,...,%p) =Hy(xp | %0, ,% 1)
By using these two relationships we obtain
Hy(xn | %05 s2%n—1) = Hy(%n | %0 —1).

It is well known [10] that this is equivalent to

(%n | %0y 1% —1) = v(%a | %0)-
That is, v is a Markov chain, hence v = y,. O

REMARK. It can be seen from the proof of Theorem 6 that it may hold in a
more general setting. Let us denote by C* the set of all invariant measures v
such that

viwg =1, wr =) = prlwe =t, wr =j) foranyr <k

Hence C,, =, C%. The proof of Theorem 6 can be repeated for C}, instead of C,
and all the statements of the theorem hold. This theorem is similar to the Parry
theorem for the topological Markov chains ([11], page 194) and the variational
principle for Gibbs states ([2], Chapter 1).

'In Section 1 we have observed that the existence of partition satisfying the
Chapman—Kolmogorov equation entails that the system has a Lebesgue spec-
tral component. Yet, it does not necessarily entail that the system has a strictly
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positive Kolmogorov-Sinai entropy. Examples of pairwise independent station-
ary processes { X, } with zero entropy can be exhibited by using the examples
of Janson [8]. These examples correspond to the following dynamical system
T: (x, y) € ST x S1) — (x, o(x)+y), where S is the unit circle and ¢ is a mapping
preserving the Lebesgue measure on the circle. The invariant measure for this
transformation is the Lebesgue measure on S! x S!. It is well known that this
dynamical system has zero entropy. The stationary process X, is the projection
on the second variable of T"(x, y), that is, X,, = ny(x) + y. However, this is not
an ergodic process, for the function X; — X = ¢(x) is invariant under the shift
but not almost everywhere constant. A similar example of an ergodic system
may be considered, with 7' defined on S* x S! by T'(x, y) = (rx, p(x) +y), where
7% = x +a and @(x) = px,p € Z. Here, we shall give another example of an
ergodic process with pairwise independent variables, having zero entropy. The
following transformation, introduced by Mathew and Nadkarni [9] to display
a spectrum with a Lebesgue component of multiplicity 2, turns out to be an
example of a system with zero K-S entropy having a partition satisfying the
Chapman—Kolmogorov equation.

Consider first the Von Neumann transformation 7 on [0, 1] defined as follows:
The interval F; = [0,1/2] is translated to the interval [1/2,1], the interval
Fy = [1/2,1/2 + (1/2)?] is translated to the interval [1/22,1/2] and so on. This
is schematized as follows:

N

P l

0 11618 1/ 172 34 /8 15/ 1

- " N~ —~— —

N

Let F; be the first half of F}, and Fjs its second half. Define the function ¢(x)

if
o) = { _1, ifx € Fpq,

1, ifx e Fkg.

A new transformation 7 is built acting on the space @ = [0,1] x {-1,1}
equipped with the measure p which is the product of the Lebesgue measure on
the interval [0, 1] and the measure giving the probability 1/2 to each of —1 and
+1. T is defined by

T(x,0) = (Tx,d)(x)a), x€[0,11 and o€ {-1,+1}.
Let P be the partition of 2 into two cells Py and P, defined by

Py = [0,1/2] x {1} U [1/2,1] x {1},
Pr=[1/2,1] x {~1} U [0,1/2[ x {1}.

Let x(x) be the function
xx) =1p,x) - 1/2, ~ x€[0,1].
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To any function f(x) defined on [0, 1], associate its “odd extension” )?(x, o) on Q
defined by

-f(x)7 o= —lv
[, o=1.

flx,0) = of (x) = {

Clearly, x is orthogonal to 1. Let U be the operator defined on Ly(2) by
Uf=foT.

We have, for any function y(x),

Uz, 0) = (%, p(x)0) = ¢px)oih(rx).
If one introduces the operator V on L2([0, 1]) defined by

Vip(x) = pleyp(rx),
then the above relationship is written as
(18) Uy = V.
Mathew and Nadkarni [9] have proved that
(V*x,x) =0 Vn=#0.

Then, by using (18), we obtain

(UX,X) = (cV"x,0x)
=(V"x,x)=0

and this implies that
M(T_nPi nPj) =1/4 Vn+#0.
Therefore, the Chapmarn~Kolmogorov equation is satisfied for the matrix

e 1)
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