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VARIATIONAL INEQUALITIES WITH EXAMPLES
AND AN APPLICATION TO THE CENTRAL LIMIT THEOREM

By T. CACOULLOS, V. PAPATHANASIOU AND S. A. UTEV

University of Athens and Novosibirsk University

Upper bounds for the distance in variation between an arbitrary proba-
bility measure and the standard normal one are established via some inte-
grodifferential functionals including information. The results are illustrated
by gamma- and ¢-distributions. Moreover, as a by-product, another proof of
the central limit theorem is obtained.

1. Introduction and summary. LetX be anrv. with EX =0, Var(X) =1
and p(FYx, ¢) the usual distance in variation between the distribution of X with
d.f. Fx and the standard normal with d.f. &, namely,

(1.1) p(Fx,®) = sup | Fx(A) — ®(A)|,
A
where the supremum is taken over the class of Borel sets A. Utev (1989) ob-

tained the upper bound p(Fyx,®) < 3+/Ux — 1, in relation to the functional
[Borovkov and Utev (1983)]

_ Var [g(X)]
(1.2) Ux = S9P G 0B [/ (X7

where the supremum is taken over the class H; of absolutely continuous func-
tions g with 0 < E[g'(X)?] < oo; Ux > 1 characterizes normality (Ux = 1). The
proof is based on the equation [see Bolthausen (1984) and Stein (1972)]

(1.3) P'(x) = xp(x) + (Ta(x) — B(A)),
where .
(1.4) i) = &2 / (La®) - @(A))e ™ /2 dt.

This relation as well as Stein’s method hinges on Stein’s identity for a stan-
dard normal r.v. , namely,

(1.5) E[ng(m) = E[g'(n)].

The same identity turned up explicitly in Cacoullos (1982) in a different
context, namely, the derivation of variance bounds for any r.v. X, in the spirit of
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the Chernoff (1981) inequality. In fact, if X has density f with interval support,
mean y and variance o2, then, from Cacoullos and Papathanasiou (1989),

(1.6) Cov(X,g(X)) = ®E[w(X)g'(X)],

where the covariance kernel w(x) is defined by
1.7) 2wx)f(x) = / (u —t)f () dt, x €R.

If X is N(i, 02), then w(x) = 1, and, of course, (1.6) implies (1.5). Most impor-
tantly, the w-function characterizes the corresponding f, as shown by Cacoullos
and Papathanasiou (1989) and Cacoullos (1989). In particular, X is normal iff

(1.8) wkx)=1, xeR.

In the present paper the stability of the preceding characterization with re-
spect to the convergence in variation is established along with the correspond-
ing rate of convergence. This is achieved by making use of the basic identity
(1.5) and the next result, of independent interest, stated here as follows.

THEOREM 1.1. Let X be an rv. with EX = 0, Var(X) = a and an absolutely
continuous distribution F with an interval support. Then

p(F,®) < 2(Elw(X) - 1|+ |1 —al),
where w is the w-function associated with X.
The theorem is used in Section 3 to show the following result.

THEOREM 1.2. Let Xi,...,X,,... be a sequence of continuous r.v.’s with
means 0, variances 1 and absolutely continuous distributions each with an
interval support. Let fi,...,fn,... be the corresponding density functions and
wi,...,Wn, ... the corresponding w-functions. Then

(1.9) wn(Xn)fe 1 asn— oiff /00 /@) — ¢p@®)|dt - 0asn — oo.

Furthermore, motivated by (1.6) and the more general inequality obtained
from it, namely,

Var[g(X)] > o?E?[w(X)g'(X)],

we consider the functional [cf. (1.2)]

. Var [g(X)]
(110) JX —gleng‘ ;2E2[g——-—/(—}()]
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Clearly, Jx < 1 and equality holds iff X is normal [Cacoullos and Papathana-
siou (1989)]. Here the stability of this characterization, with respect to the
convergence in variation and the rate of convergence, is established in the
following theorem.

THEOREM 1.3. Let X be an rv. with EX =0, Var(X) = 1. Then
p(Fx,®) < (2 + \/%) V1-Jx.

An interesting by-product of this is obtained through the information

I(X) = / (I;(%))Zf(x) dx

and the result [cf. Huber (1981)] that if X has a continuously differentiable
density on the whole real line, then

E?[g'(X)]

Sup ————=

gcH, Var[g(X)]

It follows therefore that J. )}1 = I(X) Var(X) and Theorem 1.2 may be restated
as follows.

=I(X).

COROLLARY 1.1. Let X be as in Theorem 1.3 and, furthermore, with a con-
tinuously differentiable density on the whole real line. Then

T 1
p(Fx, ®) < (2+\/;>,/1—I—(5.

A similar result was shown by Mayer-Wolf (1990).

The proofs of these theorems are given in Section 3 and auxiliary results in
Section 2. In Section 4 the results are illustrated by some examples, including
the ¢- and gamma-distributions. An application to the central limit theorem
(CLT) is presented in Section 5.

For other applications of these and similar characterizations to the clt, see
Chen and Lou (1987), Chen (1988) and Cacoullos, Papathanasiou and Utev
(1992). However, Chen’s approach differs from ours, based on the convergence
properties of the w-function.

2. Preliminaries. For our purposes we require the following results.

LEMMA 2.1 [Bolthausen (1984)]. Let (x) be defined by (1.4). Then 1'(x) is
given by (1.3) and

(2.1) sup |[¥(x)| < \/g,
(2.2) sup |¢'(x)| < 2.
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The following lemma summarizes the basic properties of the w-functions.
Further properties are given in Cacoullos, Papathanasiou and Utev (1992).

LEMMA 2.2. Let X be an r.v. as in (1.6) and wy its associated w-function [see
(1.7)]. Then

(a) The f*-transform of f defined by

(2.3) ) =wxfxx), x€R,
is also a density:
(2.4) E[wx(X)] = 1.
(b) For any constants a #0,b,
(2.5) Wax +5(2) =wx(?—;—b>,
(2.6) Cov(X,8(X)) = Var(X) E[wx(X)g'(X)].
(c) For independent r.v’s Xy, ..., X, and Sy =Xy + -+ Xn,
(2.7) Cov(X;,g(Sn)) = Var(X))E [wx,(X)g'(S»)],
(2.8) Var(S,) E [ws, (S»)g'(Sn)] = Z Var(X,)E [wx,(X;)g'(Sn)].

i=1

Proor. For aproofof(2.3) to (2.6), see Cacoullos and Papathanasiou (1989).
It suffices to show (2.7) for n = 2. We have, by (2.6),

Cov(X1,8(X1 +X»)) = E|Cov(X1,8(X:1 +Xy) | %)
= E{Var(X)E[wx, (X1)g/(X1 +X2) | X,] }
= Var(X)E [wyx, (X1g (X1 + X5)].

Hence, (2.7) holds for any n > 2.
As regards (2.8), observe that, by (2.7), we have

3 Var(X)E[wx,(X)g'(Sy)] = Y Cov(X;,g(Sn))
i=1 i=1

= Cov(S,,8(Sy)) = Var(S,)E [ws,(S»)g'(Sx)].
This completes the proof of the lemma. O

REMARK. The condition of an interval support is necessary for identity
(2.6); otherwise, the definition of w(x) becomes. unnecessarily too involved for
our purposes.
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3. Proofs of the main results.

Proor oF THEOREM 1.1. By identity (2.6) of Lemma 2.2,
(3.1) E[Xg(X)] = aE[w(X)g'(X)],
from which, by (2.4), we have
3.2 [EXg(X) - Eg'(X0)| < |E[(w(X) - 1)g'(X)|
+|1 - a| |E[w(X)g'(X)]].

Let us fix a Borel set A and take

8x) = 9(x) = &* /2 / " (I¢t € A) — B(A))e "2 dt.

Applying Lemma 2.1, we conclude

IP(X € A) — ®(A)| = |[EXy(X) — EY'(X)
< {E|w(X) — 1| + |1 — a|} ess sup|y'(X))|
< 2(Elw(X) - 1|+ [1 —al).

Thus Theorem 1.1 is proved. O

PROOF OF THEOREM 1.2. Assume that
wn(Xn)g 1 asn — oo
By definition (1.7) of the w-function and (2.4),

Ew,(X,)=1 forall n,
0 <wy,(x) forallx.

Hence, by Scheffé’s theorem,
Ew,(X,)-1 —-0 asn — co.

Applying Theorem 1.1, we obtain
/ | @) — ¢@®)| dt = 2p(F,, ®) < 4E|w,(X,) — 1| — 0.
Suppose that

(3.3) I, = /oo |[fn@) — ¢(t)|dt - 0 asn — oo.

Let {n'} be a sequence of positive integer numbers. It suffices to prove that
there exists a subsequence {n"} C {n'} such that

Elw,(X,n)—1 -0 asn” — oo.
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Taking {n"} C {n'} such that
0 <fur(x) = ¢lx) a.e.asn” — oo,

we obtain
[e9) oo
1 =/ x2fr () dx — / 22 P(x)dx = 1.
—00 —00
Hence, by Scheffé’s theorem,

/ | ) — G dx — 0,

and applying (3.3), we obtain

/°° | furr(x) — ¢p()|(1 +x2)dx — 0 asn” — oco.

Calculate

Bluon (X~ 1/ = | ‘— [ thotrdt— fu

< [_wl/_wt((fn”(t)—¢(t))dt dx+/_oo|fn”(x)-—¢(x)|dfc

< /000 </x°° t| fr(t) — ¢(t)|d¥) dx + /_ooo (/j}o It lfn/,(t)‘-_ ¢(t)l> dx + I,

o) 0
- /0 £ fur(t) - 30| dt + / Plfur (&) — $O|dt + L

dx

- / (1+82) | fur®) — $(®)]dt — 0 as n” — oo,
Thus Theorem 1.2 is proved. O

PrOOF OF THEOREM 1.3. By the definition (1.10) of the functional Jx [cf.
Utev (1989)],

JxE?[g'(X)] < Var[g(X)]

for all functions g € H;.
Setting g(x) = x + Mh(x), we obtain

JxE? ['(X)] =Jx (1 + ZAE[h’(X)] +)\2E? [h/(X)]) < Varg(X)
= (1+20E[XR(X)] + X Var [h(X)] ).
Hence we find '

2A(JxE[R(X)] - E[XA(X)] ) + A2 (Jx B2 [R(X)] — Var [h(X)])
=2\ - A2 <1-Jyx
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for all A, so that
la| = |JxE[h(X)] — E[Xh(X)]|

< VI-Jxlf| = VI-Jx\/Varh(X) - JxE2[h'(X)]

< V1 - JxVERAX).

Consequently,

E[R(X)] - E[XA(X)]| < |1 — Jx||[E[R(X)]] + /1 - Jx VERXX).

As in the proof of Theorem 1.1, setting
h(x) = Px) = /2 / (It € A) — B(A))e /2 dt
—00
and applying Lemma 2.1, we complete the proof of Theorem 1.3. O

4. Examples. Toillustrate Theorems 1.1 and 1.3, we consider the following
examples.

ExaMPLE 1. Let T, be an r.v. with ¢-distribution with n > 2 degrees of
freedom and density function

I'((n +1)/2)
VT (n/2) (1 +x2/n) " P2

One may derive the associated w-function wr,(¢) from the following identity
[see Cacoullos and Papathanasiou (1985)]:

fn(t) =

* n x2
- /_ootfn(t)dt =7 <1+ ;)fn(x).
Since E[T,] =0, Var(T,) =n/(n — 2), we find
_ 2
4.1) wr, () = B2 (1+ t—).
n-1 n
Define
n—2
X, = T,, F, = P(X, €A).

Using (2.5) of Lemma 2.2, we obtain, by (4.1),

n—2 x2
wn(t)=n—1<1+-n—2>’
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where w, is the w-function associated with X,,. Hence, by Theorem 1.1, we find

1 EX? 4
p(Fx,, ®) < 2E|wx,(X,) — 1| gz(n_ Tt — 1) = —
8
p(FT,,,(I)) < 2(E|WT,,(Tn)— 1| +IET721 — 1[) < m

This estimate is sharp [see Shimizu, (1987)].
The information of T, is

2
KT =E[_a lnfn(t)} _n+l

ot2 " n+3

Hence

n—2 n n+l
106 =1(y"521) = 250

and it follows from Theorem 1.3 or Corollary 1.1 that

s 1 1
o, B) < (2+\/;> 1‘1(_x;>=0<772>'

ExaMmPLE2. LetZbeanr.v. with EZ? < co and independent of the standard

normal variable n. Without loss of generality, we may take Z > 0, since Zn 4 |Z|n.
By definition, X = Zn has a strictly positive density on the whole real line,

and
EX=0, EX?=EZ’=a (say).

First, we consider the situation when

1

By (1.8) and Theorem 1.1, we can derive that
p(Fx,®) < 2(Elw(X) - 1| +|1 —a|)

= g/ / (u - g><I>(£>F|z|(du)
a ) _ 0 u u
2 [ *© 1 (x

< - u® —al —®| = | dxF;/(du) + 2|1 — af
aJo —o00 |u| u '

= gE[Z2 —a|+2[1-al.
o :

dx +2|1 —a

Hence, if E(Z?) = 1 = a, then we obtain the following bound:
(4.3) p(Fx,®) < 2E|Z* — 1].
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Let us now show that, if
P(Z=0)=0,
then the estimate (4.3) is valid without the restriction (4.2). Define
P(Z.cA)=P(ZcA||Z >e¢).
Then
|P(Zn € A) — P(n € A)| < P(|Z| < €) + P(|Z| > €)|P(Z.n € A) — P(n € A)|.

Hence, by Theorem 1.1, we conclude that

p(Fz,,®) < limosup{P(IZI <e)

+2P(|Z| > 5)( E|Z? - EZ?| + |EZ? - 1|)}

EZ?
= 8P(Z = 0)+2P(Z#0)E||Z* - 1|12 £0)] = 2E[2* - 1],

because EZ2 — EZ2/P(Z#0), P(|Z| > €) — P(Z#0).
In general, we obtain

p(Fz,,®) < 3E|Z2 - 1],
since P[Z = 0] = E[|Z% - 1|/I(Z = 0)].
We formulate our result in the following lemma [cf. Shimizu (1987)].

LEMMA 4.1. Let Z be an r.v. with EZ? = 1 and independent of the standard
normal random variable n. Then

p(Fz,, ®) < 3E|Z* - 1|.
ExAMPLE 3. LetY have a gamma-distribution with density
flx) = k—lg—x x> 0.

I‘(k)

We have E(Y) = k, Var[Y] = k and, by (1.11) [cf. Cacoullos and Papathanasiou
(1985)],

IR T AN S S
f(x)w(x)—kr(k) / t—Fke "t 1dt

_ “1)de~t = x
- (k) / _ htt = fx)%,
45) 1Y) = —E(M> ko l)E(W> _ 1

(4.4)

oY? k-2



1616 CACOULLOS, PAPATHANASIOU AND UTEV

Let w;, denote the w-function of Y}, = (Y — k)/vk and let F}, denote its d.f. Then,
by (2.5), the w-function of Y}, is, by virtue of (4.4),

t k t
wi(t) = wy _ 45 ® = w(VEE + VE) = ":/\{ =+t
where the information, by (4.5), is
Y-k k
Hence, from Theorem 1.1,
2

p(Fp, ®) < 2E|wi(Y) — 1] < 2+/Varwp(Yy) = 7

Analogously, it follows from Theorem 1.3 or Corollary 1.1 that

T\ | 1 m k-2 (2vV2+.r)

It was shown by Chen and Lou (1987) that

(& +1)?
k2

Uy, =

Hence, from (1.4), we obtain

/ 3 1
p(Fp, ®) <3 Uyk—1=—\7_; 2+Z'

These estimates have right behavior in £ due to the Edgeworth expansion, since

E[exp(itY,)] = B" [exp(i—\/t—,_LY1>]

and

EY,=0, VarY;=1  EY3=2

5. Application to the central limit theorem.

THEOREM 5.1. Let X, X;, Xy, ... be independent random variables with a
common absolutely continuous distribution with an interval support and EX =
0, Var X = 1. Define S, = X1 +--- + X,,, F,(A) = P(S,,/\/n € A). Then

o(F,,®) — 0 asn — co.
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ProoF. Applying identity (2.8) of Lemma 2.2, we obtain

E[ws,(S»)G(S,)] = ( wa (X)G(S, ))

i=1

By the law of large numbers and property (2.4) of Lemma 2.2,

n
%wai(xi) % Ewy(X)=1 asn — co.
i=1

Hence, by Scheffé’s theorem, for every bounded function G(X),
E|(ws,(Sn) - D)G(S,)] 0 asn — oo.
Setting G(x) = sign(w(x) — 1), we obtain
E|lws,(S,) -1 -0 asn — .
Hence, by Theorem 1.1 and property (2.5) of Lemma 2.2,

S, 1
ws,, )
= 2E|an(Sn) -1/ -0 asn — oo.

p(Fn, @) < 2E

Thus the lemma is proved. O

Asregards the CLT for the general case of iid r.v’s X3, X5, ..., not necessarily
with an interval support, it should be observed that, by considering another
sequenceY,Yq,. .. ofiid standard normal r.v.’s, one can apply Theorem 5.1 again
to the sequence of sums X; + Y;, so that

[exp(zt—- ZXkﬂ = o' 2E exp(zt—-— Z(Xk + Yk))

250 _42 2
— et /2%t =et/2,

which implies that the usual CLT holds for the X;.

REFERENCES

BOLTHAUSEN, E. (1984). An estimate of the remainder in a combinatorial central limit theorem.
Z. Wahrsch. Verw. Gebiete 66 379-386.

BoroVKOV, A. A. and UTEv, S. A. (1983). On an inequality and a related characterization of the
normal distribution. Theory Probab. Appl. 28 209-218.

BrascaMP, H. J. and Ligs, E. H. (1976). On extensions of the Brunn—Minkowski and Prekopa—
Leindner theorems including inequalities for the log concave functions and with appli-
cations to the diffusion equation. J. Funct. Anal. 22 366-389.



1618 CACOULLOS, PAPATHANASIOU AND UTEV

BROWN, L. D. (1982). A proof of the central limit theorem motivated by the Cramér-Rao inequal-
ity. In Statistics and Probability: Essays in Honor of C. R. Rao (G. Kallianpur, P. R.
Krishnaiah and J. K. Ghosh, eds.) 140-148. North-Holland, Amsterdam.

CacouLLos, T. (1982). On upper and lower bounds for the variance of a fuunction of a random
variable. Ann. Probab. 10 799-809.

Cacourros, T. (1989). Dual Poincaré-type inequalities via the Cramér-Rao and the Cauchy—
Schwarz inequalities and related characterizations. In Statistical Data Analysis and
Inference (Y. Dodge, ed.) 239-250. North-Holland, Amsterdam.

CaAcouLLos, T. and PAPATHANASIOU, V. (1985). On upper bounds for the variance of functions of
random variables. Statist. Probab. Lett. 3 175-184.

CacouLLos, T. and PAPATHANASIOU, V. (1989). Characterizations of distributions by variance
bounds. Statist Probab. Lett. 7 351-356.

CAcouLLOS, T., PAPATHANASIOU, V. and UTEv, S. (1992). Another characterization of the normal
law and a proof of the central limit theorem connected with it. Theory Probab. Appl. 37
648-657 (in Russian).

CHEN, L. H. Y. (1988). The central limit theorem and Poincaré type inequalities. Ann. Probab. 16
300-304.

CHEN, L. H. Y. and Lou, J. N. (1987). Characterization of probability distributions by Poincaré-
type inequalities. Ann. Inst. H. Poincaré 23 91-110.

CHERNOFF, H. (1981). A note on an inequality involving the normal distribution. Ann. Probab. 9
533-535.

HUBER, P. (1981). Robust Statistics. Wiley, New York.

MAYER-WOLF, E. (1990). The Cramér-Rao functional and limiting laws. Ann. Probab. 18 840-850.

SHiMIzU, R. (1987). Error bounds for asymptotic expansion of the scale mixtures of the normal
distribution. Ann. Inst. Statist. Math. 39 611-622.

STEIN, C. M. (1972). A bound for the error in the normal approximation to the distribution of a
sum of dependent random variables. Proc. Sixth Berkeley Symp. Math. Statist. Probab.
2 583-602. Univ. California Press, Berkeley.

UTEV, S. A. (1989). Probability problems connected with a certain integrodifferential inequality.
Siberian Math. J. 30 490-493.

UTEV, S. A. (1994). The application of integrodifferential inequalities in probability theory. Un-
published manuscript.

T. CACOULLOS S. A. UTEV

V. PAPATHANASIOU NoVOSIBIRSK UNIVERSITY
DEPARTMENT OF MATHEMATICS NOVOSIBIRSK
UNIVERSITY OF ATHENS Russia
PANEPISTEMIOPOLIS

15710 ATHENS
GREECE



