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A CHARACTERIZATION OF STOPPING TIMES

By FRANK B. KNIGHT AND BERNARD MAISONNEUVE

University of Illinois and Université de Grenoble

Let R be a random time in Foo, the terminal element of a filtration 5
satisfying the usual hypotheses. It is shown that if optional sampling holds
at R for all bounded martingales, then R is optional. If 3; is the natural
pseudo-path filtration of a measurable process X;, then R is optional if (and
only if ) the conditional distribution of X, . given J5 is Zg, where Z; is an
optional version of the conditional distribution of X; . given ;.

1. Introduction and description of results. Let F;, 0 < ¢ < oo, be a
right-continuous filtration containing all P-nullsets on a complete probability
space (9, F, P). A random time R is simply any random variable with values in
[0,00]. If {R < ¢} € F; for all ¢, then R is a stopping time or optional time, and
the past up to time R may be defined as

(1.1) Fr={AcF AN{R<t}cT forallt).

If R is not a stopping time, treatment of the past and future of a process at
time R tends to be problematical. The above definition does not give a o-field.
It may be replaced by {A € F: for all ¢ there exists A; € F; such that AN {R < ¢}
=A;N{R < t}}, but even if R is the end of an optional set, this extension is by
no means the only reasonable possibility. Indeed, for such R it equals

(1.2) F3 = o{Y(R); Y(¢) a bounded, progressively measurable process},
‘whereas the usual extension of (1.1) is
(1.3) Fgr = o{Y(R); Y(¢) a bounded, optional process}

(see [6],XX, 26, where {U < s} may be replaced by {U < s} inview of ¥, = F,).If
R is a stopping time (1.1) to (1.3) are all equivalent (see [4], IV, 68, and [3], Theo-
rem 20). But if, for example, R is the last exit time from 0 before time 1 for a stan-
dard Brownian motion B with natural filtration F;, then 3 = o(sgn B(1)) V Fz.

General classes of R other than stopping times abound in the literature, for
example the “regular birth times” of Pittenger [9] and the “honest” times of
Barlow [1], of which the above R is an example. Another example (in which,
however, F5 = Fg ) is R = argmax BY = sup{s < ¢: B? = max, <, B2}, where B° is
B absorbed at —1. Relative to the natural filtration, this R is honest [it is the end
of the optional set {(t,w): B} = max,<;BJ}], but it is not a regular birth time
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because By, , ,, while Markovian given Fg, has a semigroup dependent explicitly
on Jg. Namely, it is well known that B — B%, ., has, given Fg, the semigroup of
a three-dimensional Bessel process starting at 0 and absorbed at 1+ B2, so that
—B% , . has the semigroup of a translated Bessel process absorbed at 1, whereas
the Bessel semigroup does not commute with translation.

In general, if R is not a stopping time, treatment of Xy, for adapted pro-
cesses X is relatively difficult. It thus becomes of interest to identify properties
of its behavior which characterize stopping times (so that one knows the mean-
ing of the stopping time concept in terms of the future of processes). Here, two
special cases come immediately to mind. If X; is a right-continuous, left-limited
(r.c1ll.) uniformly integrable martingale, say X; = E(H |5;), H € LX(¥), and if
R is a stopping time, then, given F3, the process Xz ,; is a martingale, as a
consequence of the optional sampling theorem of Doob. This property does not
characterize stopping times, even if we assume that ; is the natural filtration of
X:takeR = % (the first jump time of a bilateral Poisson process stopped at time
1). It does become characteristic (this is our first main result) if we require it
for all such martingales [note that in the preceding example optional sampling
fails at R for the martingale Xt2 —t]. In fact, we shall prove [Theorem 2.1(a)]
that R is optional if (and only if)

(1.4) E(H|3g) =Hg on{R < oo} for all H € b(%),

where H; denotes an r.c.L.l. version of E(H | ;). We remark that the choice of
“past” F is not critical—the same result holds with 3 in place of Fg. Further-
more, an analogous characterization holds from the left: (1.4) with Fz_ and
Hp,_ characterizes the previsible (or predictable) stopping times R.

Second, if X; is a strong Markov process on a Lusin space (E, &), relative to
the natural augmented filtration ¥; and a Borel family P*, x € E, of transi-
tion probabilities (see [10], I, Section 6] for definitions), then, for any initial
distribution u,

(1.5) P*(Xgp,. € A|9g) =P*(A), AcF°over {R < o0}

for all stopping times R. An interesting result of Pittenger [9], Corollary (4.3),
says that if X is a right process, (1.5) for all 1 characterizes stopping times. This
situation seems quite specialized until we remark that with any measurable
process X; there is associated its prediction process Z, which is a realization
of a Borel right process ([7], Definition 6.3). In more detail, let Q' = {all (E, &)-
valued, measurable paths w'} and F; = o{ [ f(w'w))du; s < t, f € b(E)}, F' =
F.,.Borrowing a term from [4], IV, (4), we call F; the pseudo-path filtration on Q'.
Let (M, M) be the Lusin space of probability measures on (Q, ¥). Then, for any
measurable process X; on (E, &), ZX is the unique (up to indistinguishability)
(M, M)-valued process satisfying

(@) P(X;e. € A|F5) =ZX(A), AcT.

(b) Z{ is r.cll. in a suitable topology on M (equivalently, zx
is X -optional), where 3¥ = X~1(%,,) augmented by all P-
nullsets. )

(16)
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It follows that ZX(A) is the iTtX -optional projection of Iy, ¢ ApAc€ . In
particular, if R is a stopping time,

1.7 P(Xp,. €A |5E)=2FA) on{R<x}, AcT.

Our main result for measurable processes is that (1.7) characterizes stop-
ping times R. We note that the direct extension of Pittenger’s result to this
situation would only yield that R is a stopping time if and only if, given Fg,
Zg , is Markovian with the same transition function as ZX (besides the need
to show that a single initial distribution p suffices). This is obviously a poorer
characterization than (1.7), which does not invoke the Markov property of ZX.

As in the case of (1.4), there is an analogous characterization from the left:
R is previsible if and only if (1.7) holds with 9,’{_ and ZZ . Finally, we show
that Pittenger’s result (with fixed p) follows from (1.7), which in turn gives the
alternative characterization of R in terms of the Markov property of ZI"{ vt

2. Theorems and proofs. We begin with the characterization by optional
sampling. As in Section 1, ¥ is a filtration satisfying the usual hypotheses
(Fo— = Fy), R is an arbitrary random time, F5 is defined by (1.3) and

(2.1) Fr- =o{Y(R); Y(t) a bounded, previsible process }.

THEOREM 2.1. (a) Suppose that, for all H € b(F),
E(H | ?R) =Hp on {R < OO},

where H; is an r.c.l.l. version of E(H | F;). Then R is a stopping time.
(b) Suppose that for all H € b(F), E(H | Fg_) = Hg_ on {R < oo} (where
H,_ = Hy). Then R is previsible.

PROOF. These results are consequences, with A, = I; > Rry, of the following,
which is of independent interest.

LEMMA 2.1. Let A, be an r.c. increasing process defined on (Q, F, P) and such
that EA; < oo for each t.

(a) IFEHA,) = Ef[o, nHsdAs; 0 < t, H € b(9), then A, is adapted to F; (i.e.,

A, is optional).
(b) IfFE(HA,) = Ef[O,t] H,_dA,; 0 <t, H e b(F), then A, is previsible.

PRrROOF. (a) Replacing H by H, (stopping the martingale at ), we also have

E(HtAt) =E Hs/(tdAs
’ [0,2]

=E H dA;.
[0,¢ .
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Hence E(HA,) = E(H; A;), and it follows that, setting A, = E(A; | %),

E(HA,) = E(H,A))
= E(HA',).

This means that the measures A, - dP and A/, - dP are equal, hence A; = A,
P-a.s. It follows that A; € F;, as asserted. :

(b) If we repeat the preceding argument under the assumption of (b), we
can only show that A; € F;_. However, setting K; = H1| ,i(s), with previsible
projection K = Hs_ 1y ,i(s), the assumption of (b) gives

(2.2) E/ K,dA, = E/ PK.dA; foreachr > 0.
0 0

Now the set of such K is closed under products, and the class of all K € 6(R* x F)
for which (2.2) holds is a vector space, closed under monotone bounded limits,
and generates R* x F. It follows by a monotone class theorem ([4], I, 21) that
(2.2) holds for all K. According to [5], VI, (59.2), this proves that A, is previsible,
finishing the proof of Lemma 2.1, and hence Theorem 2.1. O

We turn next to the characterization by conditional future (1.7) and its left
counterpart. We consider a (Borel) measurable process X; (no continuity as-
sumption is made), its pseudo-path filtration B‘;X , 3% = 5% and its prediction
process ZX as in (1.6). We recall that, for f € b(3"), ZX f and ZX f are the op-
tional and previsible projections of £(X; . .). We also recall the splicing operators
on Y x Rt x Q' — Q, given by

, N wi(s), s <t
(wl/t/w2)s - {wlz(s _ t), s>t

In the sequel X(w) will denote the element X.(w) of Q. The mapping ¢:
t,w,w') — (Xw)/t/w') is (P ® F,F) measurable (P denotes the previsible
o-field relative to ). In fact, for r > 0, f € b(&),

rAt

- (r—0*
/ F(Xw)/t/w')(s)ds = / £(Xw)) ds + / £ (w'(s)) ds,
0 0 0
the first term is previsible in (¢, w), and the second is measurable in (¢, w’).
The following result is known (see [8], Theorem 2), but we shall need its proof
as well as the result itself.

LEMMA 2.2. Let h € b(F), H = h(X). Then the processes H; and H;_ of
Theorem 2.1 are indistinguishable from h; and h;, where fort > 0, w € Q, h(w)
and h(w) denote the integrals of h(X(w)/t/-)) = h(p(t,w,- )) with respect to
Z¥(w) and Z{¥ (w), respectively. -

ProoF. For g(t,w,w’) = u(t,w)vw’), u € b(P), v € b(F), the optional and
previsible projections of g(¢, w, X; . .(w)) are the integrals of g(t, w, - ) with respect
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to ZX(w) and Z¥ (w), respectively, and this extends to all g € b(P ® F) by a
monotone class argument. Lemma 2.2 is proved by taking g = & - ¢, since then
Hw) =gt,w,X;,.(w)) forallt. O

THEOREM 2.2. Let R be a random time on (1, ?X,P).

(a) Suppose that P(Xg,. € A | F5) = ZX¥ (A)on {R < o} for Ac F. Then R
is a stopping time relative to ?FtX.

(b) Suppose that P(Xg.. € A | FF_) = Z¥ (A) on {R < oo}, where FE = 5%
and 2& = 2%,

Then R is previsible.

Proor. For h € b(F), H = h(X), the identity Hw) = h(p(Rw),w,
Xrw)+ (w))) on {R < oo} and the same argument as for Lemma 2.2 show that
under (a) one has E(H | ) = hg on {R < co}. But kg = Hg a.s. on {R < oo} by
Lemma 2.2. The equality E(H | Fz) = Hg on {R < oo} extends to all H € b(F*),
since FX = X-1(9) up to null sets. Thus Theorem 2.2(a) follows from Theo-
rem 2.1(a); similarly, Theorem 2.2(b) follows from Theorem 2.1(b). O

REMARK. The converses to Theorems 2.2(a) and (b) are straightforward.
See, for example, [7], Chapter 1.

We turn finally to an extension of Corollary (4.3) of Pittenger [9], which has
been the catalyst for this paper. It may be derived directly from Theorem 2.1,
but the proof given here, based on Theorem 2.2, also illustrates the use of zZx
when X is a right-continuous or an r.c.L1. process.

THEOREM 2.3. Let (Q,F,5F/,X;,0;,P*) be a family of processes on a Lusin
space (E, &), where P* on F° is assumed &-measurable, F!' being the right-
continuous P*-augmentation of the minimal filtration 3}0 (see [101, 3.3, for these
definitions, and for the shift 6,).

(a) If X; is right-continuous and the strong Markov property holds, then R €
F is a stopping time if (and only if)
P“(63'B| %) =P**(B) on {R <}, Be3°
() If X is r.c.l.l. and the moderate Markov property holds (for the definition,
see [2], Section 2.4), then R is previsible if (and only if )

P(63'B | ) =P**-(B) on{R<o}, Be7"

Proor. We remark first that if X; is right-continuous, then X~ maps ¥
onto F°. Indeed, for f € C®(E), we have
d+

t
X = o / F(X)ds € X-UF) for0<t,
0
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so that X; is X~1(F/_)-measurable, while f f(X,)ds is 7, 0-measurable by a
Riemann sum approximation [and this extends tof € b(&) by a monotone class
argument]. From this we see that 3* = X, Then by the remark following
Theorem 2.2 we have for stopping times T<ooandA € F

P (X71(A)) = P+ (671 (X71(A) | 54)

= P*(Xr,. € A|FF)
= ZTX(A), P-a.s.

Similarly, it follows that if X is r.c.l.l. and T is previsible, then P* {XT{(A) =
PXr-(X~1(A))} = 1. But since both ZX(A) and P¥(X~1(A)) are optional, it
follows by the optional section theorem that P*{ZX(A) = PX(X~1(A)) for all t} =
1. Similarly, by the previsible section theorem, we have ZX (A) = PX-(X~1(A))
for all ¢ under the assumptions of (b), and since X~ 1(¥) = F 0, Theorem 2.3
follows from Theorem 2.2. O

As a concluding remark, we obtain the following result.

COROLLARY 2.3. Under the conditions of Theorem 2.2, R is a stopping time if
(and only if ), given F5, Z X . is Markovian with the same transition function Q2

as Z{X. Moreover, R is previsible if (and only if ), given ?r'R_, Zf‘f .. 18 Markovian
with initial distribution QZI){— {ZX € dz} and transition function Q=.

ProoF. It is known (see [7], loc. cit.) that ZX is r.cll., with the strong
and moderate Markov properties relative to @* (@? does not depend on X,
although that is irrelevant here). Likewise, it is known that for given P the
natural augmented filtration of Z¥ is f}'tX . We need to apply Theorem 2.3 to
(Q,%,5%,ZX,Q%), where the role of 4 is assumed by the P-distribution of zZ¥.
There is one minor difficulty; namely, the translation operators (if any) of X; are
not inherited by ZX. Here one may transfer ZX to a canonical “prediction space”
Qz (asin [7], 2.3), but a simpler expedient is to check that Theorem 2.3 remains
true without translation operators, if we replace 65 Y(B) by {Xg,. € A}, for
A € 7' such that B = X~1(A), and replace B by {X. € A} on the right in (a) and
(b). Indeed, this only makes the proof a little simpler, and the result follows. O
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