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ON THE ALMOST SURE MINIMAL GROWTH RATE OF PARTIAL
SUM MAXIMA

By MicHAEL J. Krass! AND CuN-HuUl ZHANG?

University of California, Berkeley and Rutgers University

Let Sp = X1 + - -- + X, be partial sums of independent identically dis-
tributed random variables and let a, be an increasing sequence of positive
constants tending to oco. This paper concerns the almost sure lower limit
of max; < j <, Sj/an. We prove that the lower limit is either 0 or co under
mild conditions and give integral tests to determine which is the case. Let
7=inf{n > 1: S8, > 0} and 7— =inf{n > 1: S, < 0}. Several inequalities
are given that determine up to scale constants various quantities involving
truncated moments of the ladder variables S; and 7 under three different
conditions: ES, < oo, E|S,_| < oo and X symmetric. Moments of ladder
variables are also discussed.

1. Introduction. Let X, X;,X,,... denote a sequence of independent
indentically distributed (iid) nondegenerate random variables. For the random
walk generated by X and its partial sum maxima, we use the notation

So=0, Sn =X1+"‘+Xn, S,*L=01<11J{:x§nSj, n>1.

By the Hewitt—Savage zero-one law, for any normalizing constants a, > 0 there
exists a constant 0 < v < oo such that

(1.1 liminf S; /a, =v a.s.
n— oo

The purpose of this paper is to study the almost sure lower limit v when a, is
nondecreasing and tends to co. This is the only nontrivial case, as liminf, S}, /a;;
= liminf, S}, /a,, where a, = max; <;<,a;. Among other things, we show that
the value of v is always either 0 or co under mild conditions, and give inte-
gral tests to determine which is the case. Under various conditions on X, we
also obtain inequalities that bound moments and truncated moments of ladder
variables associated with the random walk {S,}.

Our problem has its origin in the desire on the part of many authors to refine,
extend and achieve a deeper understanding of the strong law of large numbers
(SLLN) and the law of the iterated logarithm. The specific question of concern
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1858 M. J. KLASS AND C.-H. ZHANG

here was introduced in 1965 by Hirsch, who considered independent mean zero
variables. In the iid case, his result becomes

(1.2) v=o00 if Zann_3/2<oo and v=0 if Zann_3/2=oo,

provided that EX = 0 and E|X|? < oo. In this paper, we study the almost sure
lower limit v under the general condition

(1.3) limsup S, =0 and liminfS,=-oc0 as.

n— o0 n— 0o

We shall use the notation a V b = max(a, b), a A b = min(a, b), x* =x VvV 0 and
x~ = (—x) V 0. We shall use the sign ~ to indicate that the ratio of two sides
tends to a finite positive constant.

Define
(1.4) 7 =1inf{n > 1: S, > 0}, 1o =inf{n > 1: S, > 0},
‘ r_=inf{n > 1: S, < 0}.

Let (Y3, ), B > 1, be iid copies of (S, 7),

(1~5) Yk=STk _STk_la Tk=Tk—Tk—17
where
(1.6) Ty =inf{n>Tk_1: Sn >STk_1}, Ty =0.

Because S, < St, for T, <n < T,1,

-1
(L7) liminf }/a, = liminf S, /a(Ty,1 — 1) = [lim sup a(Ths1 - 1)/Sp,|
— 00 — 00 k— 00

where a(-) is the linear interpolation of {a, }. This gives the connection between
the value of v and the ladder variables S, and .
Define

(1.8) J = /°° xdP{a(r) <x} _ $ anP{r = n}
0 =1

Ly P{S; >y}dy E@S; Aag)’

As our first theorem indicates, the series expression given by J essentially
determines the value of v.

THEOREM 1.1. Suppose (1.3) holds. Let v be given by (1.1) with constants
@n, n > 1, such that a, is increasing and an /n is decreasing. Then

1.9 v=o0 ifdJ<oo and v=0 ifd=o0.
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COROLLARY 1.2. Suppose EX = 0 and EX? < co. Then (1.2) holds. In
particular,

. S* oo, ifB< -1,
liminf —2— = .
n — oo \/r_z(logn)ﬂ 0, ifs>-1

ProoF. Because EX =0 and EX? < oo,

. e”¢ —e
Jim VnP{r >n} = 7= and ES,=e°\/EX?2/2,

where ¢ = 32 ;n"[P{S, > 0} — 1/2] € (—00,00) [cf. Feller (1971), pages 415

n

and 612]. Hence, by the monotonicity of a,,
J < oo iff Zn‘l/z(an—an_1)<oo iff Zann‘3/2<oo. |

Theorem 1.1 is a consequence of Theorem 2.1 in Section 2, which also covers
arbitrary nondecreasing a,, under a mild condition on the distribution of 7. See
Example 5.2 for a,, which grows arbitrarily rapidly. Though the integral test J
may appear somewhat mystifying, it has an intuitive content that can be made
fairly clear. Let

m(y) =sup{m: yE(S, Am)>m}, y>1.

The quantity m(k) represents the typical rate at which the random walk Sz, =
Y, +---+ Y}, grows in the sense that (as we show in Lemma 2.3)

P{Sp, < 4m®)} >1 fork>2 and P{Sg, < im®)} < /2e.

By inspection of (1.8) and the definition of m(-), we see that J = Em~(a(7)).
Invoking the Borel-Cantelli lemma and standard results on computation of
expectations, we have

(1.10) J < oo iff P{a(r,1) > cm(k)io.} =0

for any (and all) ¢ > 0 due to the monotonicity of m(k)/k. Now, because m(k) pro-
vides the order of magnitude of a suitable percentile of St,, it is not surprising
that for all ¢ > 0,

P{a(r+1) > ¢Sr, i.0.} = P{a(m+1) > m(k) i.0.}
[this is parts (i) and (ii) of Theorem 2.1] and hence
J < oo iff P{a(¢k+1) > ¢S, i.0.}=0

for any (and all) ¢ > 0. Because 7, +1 < T+1—1, J = oo implies P{a(T} 1 —-1) >
¢Sr, i.0.} = 1 for all ¢ > 0. Due to the results of Feller (1946) in the iid infinite



1860 M. J. KLASS AND C.-H. ZHANG

mean case, we expect that when 7, , ; is large, T} , 1 — 1 will be of no larger order.
Hence, J < oo should imply [in view of (1.7)] that

P{a(Ty,1 —1) > ¢Sy, i.0.} = P{a(r41) > St i.0.}

for any (and all) ¢ > 0 even when the latter probability is zero, and this is the
essential content of Theorem 1.1.

The integral test J has a form analogous to the integral tests of Erickson
(1973) and Chow and Zhang (1986). Hence, their probabilistic content is essen-
tially the same. For example, if E|X| = oo, Erickson showed that for any (and
all) finite c,

. X, . *  xdP{X <x}
limsup ——2*L _—_ > 8. ﬁ'/ =
e Xy v+ Xy - MR PR Xsyydy ©

Put m_(y) = sup{m: yE(X~ Am) > m}. Then m_(n) represents the typical
growth rate of ¥,7_, X" and Erickson’s result says

n
P{Xn+1 >cy X i.o.} =P{X,,1>m_(n)io.}.
j=1

To determine whether o/ is finite or not, we need to obtain computable infor-
mation concerning the marginal distributions of the ladder variables S, and 7.
In most cases, it suffices to know the order of the truncated moments E(S, A x)
and E(r A n). We shall find these orders and derive equivalent integral tests in
terms of the distribution of X itself for three families of distributions: (i) when
ES, < o0, (ii) when E|S,_| < oo and (iii) when X is symmetric.

In Section 3 we assume ES, < co. Because E(S, Ax) — ES, < 0o, J < oo iff
Ea(7) < oco. It turns out that the inequalities

(1.11) ES:/2n < ES*,,/E(r An) < 4ES:/n

hold for all distributions with EX = 0. This gives the order of E(r A n) for the
case ES; < oo, because ES? ,, = O(1) and the order of ES;} was obtained by
Klass (1980).

In Section 4 we assume E|S, | < co. The order of E(r_ A n) is obtained by
(1.11) with a change of the sign, and the orders of E(S. A x) and E(r A n) are
obtained based on the order of E(7_ A n) and the duality inequalities

(1.12) n<E(r An)E(r— An)<2n

and

118)  LES Am< [ =2YND piy <01 < 2E(S, Ax).
2 ~Jo E(IS-_|Ay)

In Section 5 we consider symmetric random variables and obtain

(1.14) 3/E(X2 Aa2) < /P{Sy, > 0}EGS, Ax) < (§)/*\/E(X2 nx?).
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The order of E(7 A n) is the same as that of E(7_ A n) in this case and is given
by (1.12).

In Section 6 we utilize inequalities (1.11)—(1.14) to investigate moments of
ladder variables. Section 7 contains additional discussion.

2. An integral test based on ladder variables. Let Y}, 7, Ty, k > 1, be
given by (1.5) and (1.6) and let

(2.1) u =limsupa(7.,1)/St, as.
k— oo

THEOREM 2.1. Suppose (1.3) holds. Let v and u be given by (1.1) and (2.1),
respectively, with an increasing sequence of constants 0 < a, — oo.

(1) If J = o0, then u = co.

(i) IfJ < oo, then u = 0.

(iii) IfJ = o0, then v = 0.

@iv) If J < oo and a, /n is decreasing, then v = co.
) If J < 0o and

(2.2) limsup E(r A n)/(nP{r > n}) < oo,

n— oo

then v = oo.

REMARKS. (1) By (iii)~(v) of Theorem 2.1, (1.9) holds if either a,/n is de-
creasing or (2.2) is satisfied.

(2) IfE(r An) ~ E(r_ An) (e.g., symmetric X), then (2.2) holds [cf. (4.1), (3.9),
(5.9) and (5.10)].

LEMMA 2.2. Let Z,Z1,Z,,..., be iid nonnegative random variables with
P{Z > 0} > 0. Define U(t) = 1+ X2 ,P{Z1+ -+ +Z, < t},t > 0. Then, for
allt >0,

t
t< U(t)/ P{Z > x}dx < 2t,
0

and foralla > 0and t > 0,
min(1,a/2)Ut) < Ulat) < max(1,2a)U(#).

A proof of Lemma 2.2 can be found in Erickson (1973). To make the paper
self-contained, here is a simple proof.

Proor. Let

@) =inf{n >1: Z;+---+Z, >t}

and
r-@) =inf{n > 1: ZyAt)+ - +(Zn NE) > t}.
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Then E7_(¢t) < E7(t) = U(t) < ET_(t +¢) for all € > 0, so that the first statement
follows from the Wald equation

t <Er_(OEEZAt)=E{Zy+ - +Z,_o} < 2

and the continuity of E(Z A t) in ¢. The second statement is an immediate con-
sequence of the first one. O

LEMMA 2.3. LetY,Ys,...,Y; be iid nonnegative random variables. Define
my =sup{m: yEY Am >m}.Set S =Y1+---+Y;. Then,

k
P{SScmﬁZmin((l—%) ,1—%) Ve>1land k > 1,

and

(1-6)2
2

P{S < émy;} < exp[-blogé+ 6 — 1] < exp [— } VO<§<1.

PROOF. SetY!=Y;Amyand§' =Y, +.--+Y]. Letp = P{Y > m;} and let P*
be the conditional probability given S = S’. Because m;, = kE(Y Am;), p < k71,
and E*Y; = (1 — p)~Y(my,/k — myp), so that

P(S < emy) > (1 - plP*{S’ < omy)
> (1 —p)’“(l - E*S')

cmp
_ _ % _ l—kp)
={-p) (1 c(1-p)
_1c—1+Fk—-c)p
—

=(1-p)f

Because the logarithm of the right-hand side is concave in p, the minimum is
attained at p = 0 or p = 1/k, which gives the first inequality. For the second
inequality, we have

P{S < 6my} < P{S’ < 6my} < exp(6t)E exp(—tS’/my).

Due to the convexity of exp(—ty/m;) in y, the maximum of E exp(—tY’/my)
(subject to 0 < Y’ < m;, and EY’ = m;/k) is attained by the distribution with
P{Y' =m;} = 1/k, so that '
6t -1 1 —t * —t
P{S <émy} <e 1_E+7§e < explét+e* —1].

The proof is completed by setting ¢ = —log§ and taking the Taylor expansion
até=1. 0O
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The following technique of integrating by parts is used repeatedly in the rest
of the paper: for any nonnegative right-continuous functions A(-) and G(-) on
(0, o) such that A(-) is nondecreasing with ~2(0+) = 0 and G(-) is nonincreasing
with G(co—) = 0, we have

2.3) _ / he—)dGw) = [ G® dro),
t>0

t>0

(2.4) Z h(n)[G(n) - G(n +1)] = Z G(n)[h(n) — h(n — 1)].

n=1 n=1

If either A(-) or G(-) is bounded on (0, 00), then (2.3) is equivalent to the usual
formula [;° h(z—) dF(®) = [;°(1 — F(2)) dh(¢) for a distribution function F. Oth-
erwise, we can split the integration [AdG = [(hy + h2)d(G; + G3) into four
integrations with h1(¢) = A(t) A h(1), ho(t) = (A(E) — R(1))*, G1(t) = G(t) AG(1) and
Gz(t) =(G(t) — G(l))+, where fhz dG2 = sz dhz =0.

PrOOF OF THEOREM 2.1. (i) For M > 0, let By, = {a(7+1) > Mcm(k)} and
A, = {S1, < cm(k)}, where by Lemma 2.3 the constant ¢ can be chosen such

that P{A,} > ¢, V k, for some ¢ > 0. Then A;, is independent of B;,Bj.1,...,
and by (1.10), {Bg i.0.} = 1. It follows from Lemma 3.2 of Klass (1976) that

P{a(rk+1) > MST;, i.O.} >e>0.

The desired conclusion follows from the Hewitt—Savage zero-one law.
(ii) Because St,/k — ES; > 0, we only need to consider the case Ea(r) = co.
It follows from Theorem 3 of Chow and Zhang (1986) that

k k
Za(72j+1) ZY“’J—) 0 as,
j=0

Jj=1
k+1 k
Za(sz) ZY2j+1 — 0 a.s.
Jj=1 Jj=0
so that
k+1 k k+1
(2.5) Yoam) /Y Y= a)/Sy, -0 as.
j=1 j=1 j=1

(iii) Immediate consequence of (i) and (1.7), because T, 1 — 1 > 7,1, B > 1.

(iv) Because a,/n is decreasing, a(Ty.1) < ZJ’?: La(r). If Ea(T) = oo, then
v = oo by (1.7) and (2.5). Set b(x) = a~(ex). If Ea(r) < oo, then b(x)/x is nonde-
creasing in x and Eb~1(7) = e"1Ea(r) < co. Because ET = oo, it follows from the
SLLN of Feller (1946) that

k+1
P{a(Ty41) > ek,i0.} =P{ 37> blk), i.o.} =0.
1
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The proof is completed by (1.7), because St, /k — ES; > 0.
(v) For ¢ > 0, define

ZE[ _fE;;T) /\1].

IfI, < oo, then £° ;74,1/a"(eSr,) < coa.s. so that Ty, 1/a~1(eSr,) — Oa.s. by
the Kronecker lemma, which implies P{a(T} 1) > eSr,i.0.} = 0. Thus, we only
need to show I, < oo for all 0 < € < 1. Now,

%IE ZZ/ P{Tk+1>ta 1(1";‘311,e }

§// ;p{?sn} { ;)<x}dt
< /0 1 /0 ” E(-S—xmdp{a(g) < x} dt (by Lemma 2.2)
51+/01/0°°P{a(%) >x}dE(S,—f—/\—x5dt [by (2.3)]

0o 1
— -1 x
= 1+/0 /OP{7'>ta (x)}dtdE(ST/\x)
_ 1_'_/°°E(T/\a‘1(x))d x

0

) CES, /\x)
1+0(1)/ P{r>a '@} dme——

i s e [by (2.2)]

= —_ < 3)].
1+0(1) /0 E(s, v dP{a(r) <x} [by(2.3)]
Hence, J < oo implies I. < oo for all 0 < € < 1 and the proof is complete. O

3. ThecaseES, < oco. Unlessotherwise stated, we shall assume ES, < oo
in this section. Because (1.3) is always assumed and EX* < oo, we also have
EX = 0. As mentioned earlier in the introduction, our conditions imply that
J < oo iff Ea(r) < oo, and that the order of E(r A n) is related to the order

of ES;.
For each y > 0 let K(y) be the unique positive real number satisfying
X\ IXI)
1 E A =1..
@D » [(K(y)) (&0

Then K(y)/./y is increasing and K(y)/y is decreasing. It follows from Klass
(1980) that

-1
Kn)E|Z, — Z,| (1 +e™ (% - 1)) < 2K(n),
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where Z; and Z, are iid Poisson random variables with common mean 1/2.
The quantity E|Z; — Z,| = 0.673*, and the sequence (1 + e~ "(n"/n! — 1))~1 is
minimized at n = 4 with minimum 0.849*. Taking a convenient value, we have

(3.2) K(n)/2 < E|S,| < 2K(n).

The following theorem is a consequence of Theorem 3.4 presented later in
this section.

THEOREM 3.1. Suppose ES; < co. Let a,, n > 1, be positive constants such
that a,/n is decreasing and a, /n® is increasing for some 0 < ¢ < 1. Let J be
given by (1.8). Then

. > n an an+1

REMARK. Chow (1986) proved that ES, < oo if and only if

%2

/o Jo ¥y Ax)dP{-X <y}

In particular, ES; < 0o if P{—X >y} ~ yP(log y)* and P{X >y} ~ y~P(log y)*
witho' < a—1and EX=0.

dP{X <x} < o0.

EXAMPLE 3.2. Suppose P{—X > y} ~ yP(log y)* and either E(X*)? < oo
or P{X >y} ~ y~P(log y)* with o/ < a — 1, where p and « are constants such
that 1 <p <2,a< -lifp=1and a > —1ifp = 2. Then, ES, < 00, K(y) ~
[y(log y)*1¥/P for 1 < p < 2 and K(y) ~ [y(log y)**1]V/P for p = 1 or 2. It follows
from Theorem 3.1 that

R AP ogny =

S, _Joo, BB
0, B=p,

where
a+l, p=1,

B*=1¢(a/p) -1, 1<p<2,
(a—1)/2, p=2.

Lemma 3.3 below enables us to approximate E(r A n) in conjunction
with (3.2).

LEMMA 3.3. Let 7 be given by (1.4). Suppose 0 < EX < co. Then

ES* ES* ES: 2ES*
n < TAR < 2n < n
2n " E(rAn) - n ~— n

3.3) n>1.

I’
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REMARKS. (i) We shall also use the analogous formula for E(r— A n) and
ES ;.. An:
(ii) By Klass (1989),

(3.4) ES; <ES; <2ES;, n>1.

ProOF. Define
Yion=80_s+tuam =Sy B21,
and
opn=inf{k>1: Tp=71+---+7 >n}.
Then n < £ (1 An) < 2n, so that by Wald’s equation,

(3.5) n < Eo,E(r An) < 2n.

Moreover,

Hence,
(3.6) ES; < Eo,EY{, <ES;, <2ES,.
Because EY7 , = ES; , ,, we have (3.3) by inserting (3.5) into (3.6). O

Instead of proving Theorem 3.1 directly, we have the following stronger
theorem.

THEOREM 3.4. Suppose ES, < co. Let a,,n > 1, be positive constants such
that a, is increasing and a, /n is decreasing. Let J be given by (1.8).

(i) If £ 10, /(nK(n)) < oo, then J < oco.
(i) If there exists a constant M < oo such that £92 ,ai/72 < May/n for all
n > 1, then J < oo iff 832 1a,/(nK(n)) < co.
(iii) If there exists a constant M < oo such that EJ'L 19i/j < Ma, for all n >

1, then

e n n—1 \ap.
oo dff ;(K(n) ‘K(n—l))‘n’ <o
(iv) If 2an > Gpy1+ay_1,n > 2; then

n—1

o n
J < oo iff ’;(K(n)—K(n_l))(an—an_1)<oo.
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REMARKS. (i) Ifa,/n® is increasing for some 0 < € < 1, then

n n n
. an e —1 Qan e—1 _Qn
E %EAIS ne E J < nej[ x dx = P
: . 0
Jj=1 Jj=1

so that Theorem 3.4(iii) and (2.4) imply Theorem 3.1. Likewise, the condition
for Theorem 3.4(ii) holds if @, /n! ~ ¢ is decreasing for some ¢ > 0.

(ii) In order to use the bounds of E(r An)in Lemma 3.3, we have to integrate
by parts twice to translate P{r = n} in (1.8) into E(r A n). This caused us to
consider several different conditions on a,.

We shall list a few facts that are useful here and in later sections. Let Z be
a nonnegative random variable and b,,%,, n > 1, be positive constants such
that b, /n is decreasing, k,/+/n is increasing and c1k, < EZ An < cgk, for some
constants 0 < ¢; < ¢z < 0o. Then the following inequalities hold:

(3.7 bn —b,_1<bp—(n—1b,/n = by/n,
(3.8) En—kn_1>kn— /0 —1ka/v/n > ka/(2n)
and

(3.9 (4cp)" 12k, < nP{Z > n} < coky.

The first inequality of (3.9) is a consequence of
(m — 1)nP{Z > n} > E(Z A (mn)) — E(Z An) > c1kmn — ckn > (c1v/m — c2)kn,
as (c1y/m —c3)/(m — 1) > (4dc2)~1c? with m being the integer part of 4(cy /c1)? + 1.

PROOF OF THEOREM 3.4. Because ES,; < o0, E(S;Aa,) — ES, < 0o, so that
by (1.8), J < oo iff Ea, < co. Because a, is increasing and a, /n is decreasing,
by (2.4),

(3.10) Ea, =) P{r>n}lan—a,_1).
n=1

It follows from Lemma 3.3, (3.2) and (3.4) that there exist constants 0 < ¢; <
¢g < oo (dependent on the distribution of X but not on n) such that

(3.11) cin/K(n) < E(r An) < con/K(n).

(1) By (3.7) (with a, = b,), (3.10) and (3.11),

n=1 n=1

Ea, < ZP{T >n}la,/n < ZE(T An)a, /n? < cy Zan/(nK(n)).
n=1 .
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(i) Because X72,a,/n? < 00, a,/n — 0. Because

(o o]

Z (ZJP{T = J}) (@n —an-1)/n

n=1 \j=1
ZJP{T = J}Z(an - an—l)/n
Jj=1

n=j

[e.o] oo
<N iP{r = j}D_an/n® [by (3.7)]
Jj=1 n=j
<MkEa,,
by (8.10), Ea, < X2 ,E(r An)Xan, — a,_1)/n < (M + 1)Ea., so that by (3.11)
and (2.4),
Ea, <o iff Z(an —an_1)/K(n) < oo,
n=1

iff Y (1/K(n) - 1/K(n + 1))a, < co.

n=1

The conclusion follows from (3.7) and (3.8) with b, = &, = K(n).
(iii) Because a, < ¥7_,a;/j < May, by (2.4) we have

Ea, < o iff iP{'r = n}Zaj/j < 00,

n=1 Jj=1
> a
: n
iff E 7;14&'2:n} < 00,
n=1
> a an +1
. n n+
iff nEﬂE('r/\n)(n n+1)<oo.

The proof is completed by (3.11) and the monotonicity of n/K(n).
(iv) Because a, is concave, we have by (3.10), (2.4) and (3.11),

o0
Ea, < oo iff ZE(T/\n)(2a,, —Qpi1—QAp—1) < 00,

n=2

oo
. n R
iff nE=2K—(’;5(2an—an+1—an_1)<oo. -

-4. The case E|S,_| < co. We shall assume E|S,_| < co in this section.
Again, this and (1.3) give us EX = 0. Proceeding in a similar manner as in
Section 3, we obtain bounds for E(r_ A n). A duality lemma below connects the
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truncated moments of ascending and descending ladder variables, so that we
can find the order of E(S,; Ax) and E(T A n).

THEOREM 4.1. Let J be given by (1.8). Suppose E|S,_| < oo and a, > 0 is
increasing in n. Then

2 Kn) K@n+1)
J<oo it ZE(X+(X+/\an))( n+l ><°°

EXAMPLE 4.2. Suppose P{X >y} ~y~P(log y)* and either E(X~)? < oo or
P{-X >y} ~yP(logy)* witho/ <a—1,where1 < p <2 a< —-lifp=1,
and a > —1if p = 2. Then the function K(- ) is as in Example 3 2 so that

hmmfi— 0, B<f%
nme n17eogn) | 0, f2p,
where
5 = a/p-1/(p-1), 1<p<2,
"l @-1)/2, p=2
and forp =1,

lim

inf S* 00, ﬁ<_1/|a+1|v
n—oco exp|(logn)loglog n)ﬁ]

0, 8>-1/la+1].

It is worthwhile to observe here that the critical normalizing sequence forp = 1
is much smaller than those for 1 <p < 2.

LEMMA 4.3. Let 7 and 7— be defined by (2.1). Suppose EX = 0. Then

(4.1) n<E(fTAnE(_An)<2n
and
y(y Ax)
4.2) E(S Ax) < / B8 gy 4P <9} < 2805, A2

REMARKS. (1) The double inequality (4.1) holds without the assumption
that EX = 0.

(2) It follows from Lemmas 3.3 and 4.3 and (3 2) that for mean zero
random walks,

K?%(n)/(64n) < ES: , ,ES; A, < 32K2%(n)/n.
(3) Chow (1986) proved (4.2) up to a scale constant.
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(4) Because both y/E(|S,_| Ay) and E(|S,_| Ay) are increasing in y, (4.2)
implies that for all positive numbers x; and x,

4.3) 2E(S: Ax)E(|Sr_| Axg) > / (y Ax1)(y Axg)dP{X <y}
0
Consequently, we also have

2E(S, Axy)(|Sr_| Axs) > / (y A1)y Axg)dP{-X < y}.
0

Proor. Let7, and T}, be defined by (1.5) and (1.6). It follows from the duality
principle of random walks [Feller (1971), page 394] that

P{r- >n}=P{S,>8;, 0< j<n—1}=Y P{Ty=n},

k=0
so that
n—1
E(r_An)= ZP{T_ >j} = ZP{T;[ +.+T1 <n},
Jj=0 k=0

which implies (4.1) by Lemma 2.2. For (4.2) we have
P{|S._| >=x}

0
=Y P{8;>0,...,8,_1>0,8, < =}
n=1

=/_ [1+ZP{81>0,...,Sn_1>O,Sn_1<—x—y}}dP{X§y}
- n=2
=/ [1+ZP{S,,>Sj,OSan—l,S,,>0,Sn<y—x}}
x n=1
x dP{-X <y}
=/ S P{S, <y —x}dP{-X <y}.
* k=0

Therefore, for ¢ > 0

y Ac ®
@44 E(|S,_|Ac) / / ZP{STk <y-x}dxdP{-X <y}.
It follows from Lemma 2.2 that for 0 <x<(yAc),

> P{Sp, <y-x} <> P{Sr, <y} <2y/E(S: Ay)
k=0 k=0
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and

> P{Sr, <y-x}>(y —2)/E(S. Ay —x)) > (y — x)/E(S, Ay).
k=0

Inserting these inequalities into (4.4) and integrating out dx, we have

 y(yAc)

T, gy APX Sy} <2B(S. no.

YE(s, 1ne) <
2 0

The proof is complete because the argument still works if we replace X by —X
and strict (weak) ladder variables by weak (strict) ladder variables. O

PrOOF OoF THEOREM 4.1. By (4.2) and the argument leading to (3.11), there
exist constants 0 < ¢; < ¢ < 0o (dependent on the distribution of X but not on

n) such that
45)  ciES, Ax) < / y(y Ax)AP{X <y} < csB(S, Ax) Vx>0,
0

and c;K(n)/n < 1/E(1_ An) < cK(n)/(2n), so that by (4.1), c1K(n) < E(r An) <
c2K(n). Because K(y)/,/y is increasing, by (3.9),

(4.6) (4c3)" 12K (n) < nP{r > n} < E(r An) < coK(n).

Because both a,/E(X*(X* A a,)) and K(n)/n are monotone, by (2.4), J < oo is
equivalent to the following statements:

> P{r =n}a,/E(X*(X* Aan)) < oo [by (4.5)],
n=1

3 P{r>n} [a,, JE(XH(X* Aan)) = an_1/E(X*(X* Aay _ 1))] < 0,

n=2

> [an/E(X X A a,))] [K@)/n — K@+ D/t + D] < o [by (4.6)].
n=1 O

5. Symmetric case. We shall consider the symmetric case P{X > x} =
P{-X > x} in this section. The order of E(r An) (and therefore P{r > n})is given
by the duality inequality (4.1). The order of E(S, A x) is given by Lemma 5.3.

THEOREM 5.1. Let J be given by (1.8) with an increasing sequence a, > 0.
Suppose that X is symmetric (with E|X| < oo or = 00). Then (1.9) holds (whether
@, /n is decreasing or not) and

(5.1) J<oo iff f:a,,n—f*/z / VE(X2Na2) < 0.
n=1
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EXAMPLE 5.2. Let X be symmetric and P{X > y} ~ y~P(log y)* with 0 <
p<2anda > -1lifp = 2. Then E(X? Ax?) ~ x2~P(logx)* if 0 < p < 2,
and E(X? A x?) ~ (logx)**1 if p = 2. It follows from Theorem 5.1 that for
0<p<y

lim inf S, o BF,
e logn)? 0, 8>p",

where
. {(a—Z)/P, 0<p<2,

(@a-1)/2, p=2

and forp =0 > q,

lim

n —»ggf exp [nl/lal(log n)ﬁ]

S* 00, ﬁ<2/av
{0, 8>2/a.

The following lemma gives an inverse of (4.3) with x; = x9 up to a con-
stant scale.

LEMMA 5.3. Suppoe X is symmetric. Define 7 and 19 by (1.4). Then, for all
positive real numbers x,

(5.2) L/E(X2Ax2) <ES, Ax)y/P{Sy >0} < (2)*/E(X2 A?).

REMARK. Clearly, P{X >0} <P{S,, >0} <1.

Proor. We shall first consider the continuous case and then take the
limit.

Step 1. Suppose X has a continuous distribution function. Clearly, Pl{ry =7}
= P{S,;, > 0} = 1. Because X is symmetric, S, has the same distribution as
|Sr_|, so that by (4.3) we have

2(E(S, Ax)]* = 2E(S, A0E(|S,_| Ax)
> B(X* Ax)? = E(X2 A2?) /2.

This gives the first inequality in (5.2).
For the second inequality, let T' = mf{n > 1| X, > x}, p =P{|X| <x} and
let P* be the conditional probability given |X,| < x, n > 1. Because

P{r<T}= ZP{T n<T}= anp*{T n},

‘n=1
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by a theorem of Baxter (1985) and the fact that P*{S, > 0} =1/2,
(5.3) Pir>T}=1-E'p" =+/1-p,

where E* is the expectation under P* [cf. Spitzer (1960), page 156]. Also, we have

oo
ES.I{T >} = Y E*S.I{r =n}p" <pE*S..

n=1

Because X is a symmetric random variable with a continuous distribution func-
tion, by Spitzer’s [(1960), page 158] formula, E*S, = \/E*X?2/2. It follows that

ES,I{T > r} < p\/E*X2/2 < \/EX?I{|X| < x} /2.
Let A = x2P{|X| > x}/E(X? Ax?). Then 0 < X < 1 and by (5.3) and the above
inequalities,
E(S, Ax) < xP{T < 7} + ES{T > 1}
< xy/T—p + /EX{|X| < x}/2
= [VX+ /(A= N/2)y/E(X2 Ax2).

Because v/ + /(1 — \)/2 is maximized at A = 2/3 with a maximum of 1/3/2,
we have the second inequality in (5.2).

Step 2. (Taking the limit.) Let Z,, n > 1, be iid standard normal random
variabels. For ¢ > 0 define

X! = X, +¢Z, S =X+ --+X, ' =inf{n > 1: S}, > 0}.

Because E[(X')? A x?] — E(X2 A x2) as € — 0 and (5.2) holds for (X, S’,/), it
suffices for us to show that

(5.4) ES', Ax) — 1/P{S,, >0}E(S, Ax) ase— O+.
0

Let (Yo, %, 70,%), £ > 1, be iid copies of (S, 7o) defined by
(5.5) Yo,r =81, =S104_1» 70,k =To,k —To,z-1,

where T , = inf{n > To ;_1: Sp > St,,_,} and T o = 0. It turns out that as
e — 0+,

(5.6) =7 and S, -8 as.
with
(5.7 7 =inf{To s > 1: Sg,, > 00r Zy +---+Zr, , > 0}.
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Define & =Zr, ,_,s1+--+Z1,, and N =inf{k > 1: & +--- + & > 0}. Then

(5.8) P{S,.=0}=)Y P{Sr,,=0,N=k}=) P*S, =0}P{N=k},
k=1 k=1

where P* is the conditional probability given St,, = 0,k > 1. Because &,
k > 1, are iid symmetric continuous random variables under P*, it follows from
Baxter’s theorem and the fact P*{¢; +--- +&, > 0} = 1 that

o0
D *P*{N=k}=E*9"=1-v1-6, 0<6<1,
k=1

so that by (5.8),

P{S,. =0} =1— /P{S,, > 0}.

Consequently, by (5.6) and (5.7),

E(S'; Ax) — E(S;+ Ax) =P{S;« > 0}E(S, Ax) = /P{S., > 0}E(S, Ax).
This gives (5.4) and the proof is complete. O

PROOF OF THEOREM 5.1. Let 7y ; and Yy ; be asin(5.5)and §, = I{Yy ; = 0}.
By the definition of 7 and 7,

[eS) k-1
r=> mx ] 8
k=1 j=1

so that

E(roAn) < E(r An)< Y P*~Y6§ = 1}E(ry An) = E(ry An)/P{Sy, > 0}.

k=1
Because E(7_ An) = E(tyg An), by Lemma 4.3
(5.9 n < E(r An)® < 2n/P{S,, > 0}.

By (3.9),

(6.10)  (4y/2/P{8, >0}) " < VAP{r>n} < \/2/P{S, > 0}.

Therefore, (2.2) holds, so that (1.9) holds by Theorem 2.1(iii) and (v).
Because a,/E(S; A a,) is increasing, J < oo is equivalent to the following
statements:

> P{r > n}{an/ES: Aan) —an_1/E(S: Na,_1)] <-c0 by (2.4);
Z n~1/2 [an/E(S: Aan) —an_1/E(S7 Aa, — 1)] < oo by (5.10);

> a2 /\/E(X? Aa2) < oo by (2.4) and

Lemma 5.3. O



PARTIAL SUM MAXIMA 1875

6. Moments of ladder variables. In this section we consider conditions

for the finiteness of ES? and E7” for 0 < p < 1, which are problems of indepen-
dent interest.

6.1. The finiteness of ESP. Suppose EX = 0. For p > 1, Chow (1986) proved
that ESP < oo iff

o oo -1
/ P+ [/ y(y Ax) dP{-X Sy}} dP{X < x} < oo,
0 0
which can be written as
/ [K_(y)PP 1y dP{X < K_(3)} < oo,
0

where essentially as in (3.1), K_() is defined by

- l(x)_{;w)z § (Kﬁy))l -t

For 0 < p < 1, Chow and Lai (1978) showed that E(X*)P*! < co is a sufficient
condition for ES? < oco. This sufficient condition was also shown to be necessary
by Wolff (1984) under E(X~)? < co and by Hogan (1984) under E|S,_| < co.

THEOREM 6.1. Let 7 be given by (1.4). Suppose X is symmetric (with E|X|
< o0). Then,for0 <p <1,

JP(5,, > 0}ESE < (3)Y?p|p - 1|/0 P =2\ JE(X2 Aa?) dx

and
\/P{ST0 > O}ES"T’ > %plp - ll/0 x"’“zw/E(X2 /\xz) dx.

Theorem 6.1 follows immediately from Lemma 5.3 and (2.3). The integration
Jo° 2P~ 2\/E(X? A x?)dx is finite if E| X|?*¢ < oo for some ¢ > 0, and is infinite
if E| X|% = oco. Thus, our sufficient and necessary condition for ES? < oo is quite
different from E(X*)?*! < oo, when X is symmetric.

EXAMPLE6.2. LetX be symmetric with P{X >y} ~y~%(log )%, 0<p < L.
Then, E|X|% < co and ES? = cc.

.6.2. The finiteness of ETP. If X is an integer-valued random variable with
EX =0 and P{X < -1} =0, then

P{ro>n|Sy}=8,/n
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via a generalization of the ballot problem, so that

Erf =1+ [(n+1)? — nP]E|S,|/(2n).

n=1
Under the general assumption EX = 0, Chow (1988) proved that for 1 < p <2,

o0
> n 1-VPE|S,| < 0o

n=1
iff
/ [GY2(2) + og(1 + DG®)} dt < oo,
0
where G(t) = P{|X| > t}. Based on the ballot problem, he also conjectured that
¥ nP~2E|S,| < oo is a sufficient and necessary condition for E7P < co under

the assumption E(X~)? < oo (private communication). Theorem 6.3(ii) shows
that his conjecture is true under the weaker assumption E|S,_| < .

THEOREM 6.3. Let 7 be given by (1.4) and K(-) by (3.1). Suppose EX = 0.
(i) IfES; < oo, then ETP < oo forp < 1/2and for 1/2 <p < 1,

Er? <o iff / x-”“l[K(x)]—ldx < 0.
1
(ii) IfE|S;_| < o0, then E\/T = 0o and for 0 < p < 1/2,

E? < iﬁ'/ x? 7 2K(x) dx < o0 iﬁ"/ P=P{|X| > x}dx < oo.
1 1

Proor. Part (i) follows from Theorem 3.1. Part (ii) follows from (4.6) in the
proof of Theorem 4.1 and (3.2):

oo o o]
ErP <oo iff Y nPT?K(n)<oco iff Y nP”2E|S,| < co.

n=1 n=1

Because K(y)/./y is increasing, E\/T = co. It follows from Chow [(1988), page
180] that

S o0
S ES o it / P{|X| > x}dx < oo, % <a<l

-
n=1

Setting & = 1 — p completes the proof. O
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7. Remarks. It follows from the methods in Section 3 [i.e., (3.2)-(3.6)] that
ES? ., /E(t An) has the order of K(n)/n as n — co. However, ES; , , is not of
the form E(S; A x,). If we can find a sequence x, such that ES} ,,/E(S, A x,)
is bounded away from both 0 and oo, then E(S, A x,) has the order of E(+ A
n)K(n)/n and the integral test in (1.9) can be determined by the distribution
of 7 alone. The following proposition shows that K(n) = x, is such a function
under a mild condition on the distribution of X.

PROPOSITION 7.1. Let 7 be given by (1.4) and K(-) by (3.1). Suppose EX = 0.
Then, for alln > 1,

E(S. AK(n)) < 9ES? ,,,
and
ES;,, < (1+40M)E(S, AK(n)),
where
M= SgliK(n)E(X ~K(n)"/E(X? AK2(n)).
Proor. By (3.2)-(3.4) we have

K(n) . 4K(n)

(7.1) E(r An)—= <8ESI,, ~ ES; ,, < =—="E(r_An).

By the first of the above inequalities,
E[S, AK(n)] < ES},,+K@®)P{r >n}

<ES:,,+Kn)E(r An)/n
< 9ES; ...
To obtain an inequality in the other direction, we have
TAR
*  <E[S, X, — K(n))*
7.2) ES:,, <E[S /\K(n)]+E§( ; — K(n))
= E[S. AK(n)] + E(r An)E(X - K(n))".
By (4.3),
1.3 E(X-K@)" < (M/K(n)E(X? AK*n))

< (M/K(n)4E(S; AK(n))E[|S,_| AK(n)],
while by the second inequality of (7.1),

E[|S;_| AK(n)] <ES; A, +K®E(r- An)/n

(7.4) .
< 5K(n)E(r_ An)/n.



1878 M. J. KLASS AND C.-H. ZHANG
Putting (7.2)-(7.4) together, we obtain

ES} pn < E(Sr AK(M) [1+E(r An)(4M /K ) E(IS;_| A K(m))

TAR
< E(S; AK(n)) [1+20ME(r A n)E(r_ An)/n]
<1+ 40M)E(ST AK(n)) by (4.1). .
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