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LAWS OF THE ITERATED LOGARITHM FOR LOCAL
TIMES OF THE EMPIRICAL PROCESS!

BY RICHARD F. BASS AND DAVAR KHOSHNEVISAN

University of Washington

We give exact expansions for the upper and lower tails of the distribu-
tion of the maximum of local time of standard Brownian bridge on interval
[0,1]. We use the above expansions to prove upper and lower laws of the
iterated logarithm for the maximum of the local time of the uniform em-
pirical process. This solves two open problems cited in the book of Shorack
and Wellner.

1. Introduction. Let X, Xo,... be independent random variables, each
distributed uniformly on the interval [0, 1]. Define the corresponding empiri-
cal process,

va(t) =v/n (Fp(t)—t), 0=<t<l,

where F,, is the usual empirical distribution function given by
1 n
Fo(t) ==Y 10q(X;).
nis

It is well known (see, e.g., [5]) that v, converges weakly to a Brownian bridge,
{w(t); 0 <t < 1}. Convergence here takes place in the space D([0,1]).

Suppose next that for some 7 € [0,00), f:[0, 7] — R! is a Borel measurable
function. When it makes sense, by local times for f we mean a family of
functions L}(f) such that for all ¢ € [0, 7] and all bounded Borel measurable
AR~ RY,

/ “h(f(s)ds = | r@zi(p ds.
0 —00

" The question of whether {L¥(v,);t € [0,1],x € R!} converges to {L¥(w);t €
[0,1], x € R'} was a problem of Smirnov cited in [24] which was recently solved
in Khoshnevisan [17]. This problem arises from statistical applications, since
(see [24], page 398):

(1.1) Li(va) = 07123 " 1y (va(s)).

s<t
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The above is, of course, a finite sum due to the sample path properties of
t = v,(t). In particular, \/n L(l’(vn) is the total number of times the empirical
distribution function, F,, crosses the theoretical one. For history and refer-
ences, see Shorack and Wellner [24] and Khoshnevisan [17].

This paper is concerned with the remaining open problems in [24] (see
page 400) on this matter. Let L}(f) = sup, L¥(f). We shall prove upper and
lower laws of the iterated logarithm for the quantity L}(v,). More precisely,
we prove the following theorem.

THEOREM 1.1. With probability 1,

0 *
lim sup —————Ll(y") = lim sup ————LI(V") =

=1.
nsoco 4/2Inlnn nsoo +/2Inlnn

THEOREM 1.2. With probability 1,

liminf vinlnn Li(va) = v2 .

It is interesting to note that the constant in Theorem 1.2 is quite different
from the one in the analogous result for Brownian motion, which involves the
first zero of a certain Bessel function (see [16] and Foldes [9]).

In the next section, we review some known facts concerning the exact distri-
bution of L}(w), where w is a Brownian bridge on [0, 1]. Section 3 applies the
results of Section 2 and Khoshnevisan [17] to prove Theorems 1.1 and 1.2. In
Section 4 we discuss how our methods can be used to study Kiefer processes.

2. Local times for the Brownian bridge. As in the Introduction, let @
denote the standard Brownian bridge on [0, 1], that is, a mean zero Gaussian
process with E(w(s)w(t)) = (s At) — st for all s, € [0,1]. It is known that
L} (w) exists and is jointly continuous in x and #; see [22]. The main theorem
of this section is the following:

THEOREM 2.1. For any B > 0:

(8) P(Li(w) < B) = 2(2m)°2B~3 %, j® exp(—2/272/ B2).
(b) P(L}(w) = B) =2332,(j%B% — 1) exp(— j2 B%/2).

(0) P(L{(w) > B) = exp(—(2]x| + B)?/2).

While both (a) and (b) are valid for all 8 > 0, the former is useful for small
B, whereas the latter is accurate for large values of B. Indeed the following
corollary is an immediate consequence of Theorem 2.1:

‘COROLLARY 2.2. (a) As B — 0, P(L}(w) < B) ~ 2(2m)52 83 exp(—272%/B2).

(b) As B — oo, P(L}(w) = B) ~ 2% exp(—p%/2).
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Corollary 2.2 and [16] together show that for large values of 8, P(L}(w) > B)
is (at least up to the exponential terms) of the same order as the corresponding
quantity for Brownian motion. However, it is surprising that for small B,
P(L;(w) < B) is substantially different from the Brownian motion analogue.
The latter involves the smallest positive zero of the modified Bessel function
of the first kind. For this see [9]. .

An application of Khoshnevisan ([17], Theorem 2) shows that Lj(v,) con-
verges in distribution to Lj(w). Corollary 2.2(b) might then be of particular
use for asymptotic confidence evaluations based on Lj(v,).

Theorem 2.1 is contained in some prior work in the literature which we
would like to mention here: as a consequence of Biane ([3], Theorem 4), Ver-
vaat [25] and Jeulin ([14], page 264), L} has the same distribution as 2M and
2R, where M is the maximum of a Brownian excursion and R is the range of a
Brownian bridge. The distribution of M and R can then be read off by putting
together the work of Gnedenko [13], Kiefer [18] and Gikhman [12]. (The rele-
vance of Kiefer’s results is due to Williams’ identification ([23], pages 88-89),
of the law of Brownian excursion with that of a Bessel(3) bridge.) See also
[8], [15] and [21]. This is a nice argument, and we encourage the reader to
read Zhan and Yor [27] for details. Theorem 2.1(c) is due to Borodin [6], [7].
The equivalence of Theorem 2.1(a) and (b) is due to Kiefer [18]. Using the
equivalence in law of L} and 2R, the distribution of L}/2 can be found and
tabulated in [24], pages 39 and 144.

We present below a proof of Theorem 2.1 which does not use Brownian ex-
cursion. The proof is an adaptation of the method used by Borodin [7] to obtain
the analogous results for Brownian motion. See also [9] and [10], Section 4,
for a number of interesting extensions to Borodin’s work.

Let B(.) be a standard Brownian motion and Sy be an exponential time
independent of B with mean 20~2. We have the following proposition.

PROPOSITION 2.3. For all 6,8 and s > 0,

d T _ 6(e?P —20Be — 1)
@1 P(B(So) <% L5, (B) < B) | =5 1)

PrROOF. This proposition is a consequence of the Ray—Knight theorems. We
use the version given in Biane and Yor [4], Theorem 1. By letting a — 0 in
that theorem, we see that conditional on {LOSG(B) =s, B(Sy) =0},

) . 9 W(x), if x >0,
{Lg5,(B);x e R}= { W' (-x), ifx=>0,

Whel;'e Z means equality in distribution and W and W’ are independent copies
of a one-dimensional diffusion starting at s, absorbing at zero, with infinites-
imal generator: .2 f(x) = 2xf"(x) — 20xf"(x).
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Note S(x) = exp(0x) satisfies .S = 0, hence S is the scale function for W
and W'. Let 7, = inf{s > 0: W(s) = x}. Since W gets absorbed upon hitting 0,
P(L%,(B) < B| LY, (B) = s, B(Se) =0)
= P(sup W(x) < B,sup W'(x) < B)
x X

= (P(sgp W(x) < B))*

= (P(ro < 75 | W(0) = 5))?

- (5550

by the definition of scale function.

The proposition follows from the above, the fact that L° has an exponen-
tial distribution with parameter 6 and is independent of B( Sy), which has a
bilateral exponential distribution with parameter 6 ([4], Theorem 1(i)), and
integration. O

By expanding the right-hand side of Proposition 2.3 in powers of e~ and
inverting the Laplace transform term by term (cf. [26], Example II, (67.4), and
[21], Section 4]), we get the next lemma.

LEMMA 2.4. For all positive t and B,

dP(B(¢) < x; L}(B & —B2j?
BORLB<B) | owess(EL)

Jj=—o0

where a;(t) = (2mt)~Y2 — B2(27)~1/2¢73/2 j2,

PRrROOF OF THEOREM 2.1. By Khoshnevisan ([17], Proposition A.2) and
Lemma 2.4,

P(Li(w) < B) =P(Li(B) < B| B(1) = 0)

(2.2) = (2m)12 i aj(l)exp(—szz/z)-

s

Statement (b) is immediate from this; (a) follows by applying the Poisson sum-
mation formula (see [11], XIX, (5.3), or [2], Section-9). We omit the proof of
Theorem 2.1(c); it may be found in [6], page 35, or [7], page 67. O

'8. Empirical processes. We now begin the proofs of Theorems 1.1
and 1.2. The proofs rest on some preliminary lemmas which are presented
below. Suppose f:[0,1] — R possesses loeal times. Then we shall define for
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all ¢ > 0,

3.1 u(f;e) = sup IL(f) — LY(f)I.
X,Y€E
lx—ylze

A key ingredient to the proofs of Theorems 1.1 and 1.2 is our next lemma. The
ideas behind this lemma appeared earlier in [1].

LEMMA 3.1. Suppose f1 and f2 are Borel measurable functions on
[0,1] which possess local times. Suppose further that for some 8,7m,& > 0,
IIf% — f2llo < &8 and u(f1;6) + u(f2; ) < m. Then sup,r |L(f1) — Li(f2)| <
46+ 1.

Lemma 3.1 shows that if two processes are uniformly close and if their
respective local times are sufficiently smooth, then their local times are also
uniformly close. We shall have need for this basic estimate on several occasions
in the course of the proofs. Indeed, the major obstacle in proving Theorems 1.1
and 1.2 is a lack of maximal inequalities in the variable n [see the proof of
(3.8) below]. Lemma 3.1 is used to overcome this difficulty.

PROOF. Define ¥(x) =[1 — xsgn(x)]1[_1,13(x). Note that ¥ > 0, |¥(x) —
Y(y)| <|x—y| forall x,y € R and [°; ¥(x)dx = 1. Define an approximation
to the identity (¥, ),.o by letting ¥,(x) = e~ 1¥(x/¢) for all x € R. It follows
that for all x,y e R and all £ > 0,

(8.2a) ¥,.(x)=>0, oo V. (x)dx=1 and VY,(x)=0 forall|x|> e,
(3.2b) |Ps(x) — Ve(y)l < 6722 — yl.

For j =1,2,3 and ¢ > 0 define Rj(¢) = sup, |R;(x;¢)|, where for j =1,2,
Rj(x;6) = Li(f)) — [ Li(f)¥.(a - x)da
and
Ry(x;0) = [(L3(f1) - L3(f2)¥o(a - 2) da.
By (3.2a) for j =1,2,

(3.3) Rj(e)= sup f:s(L’;(fj) = Li(fj)¥:(a—x) da‘ < wufj;e).

By the definition of local times together with (3.2b),
1 .
Ra(e) = sup| [ (W.(F1(5) = %) = ¥o(Fa(s) - x)) ds]
(3.4), < sup sup [V, (f1(s) — x) — Vs(f3(s) — x)|

x 0<s<1

<& 2||f1- falloo
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Since by the triangle inequality, sup, |L¥(f1) — L¥(f2)| < ZJ?’=1 Rj(¢), the
lemma follows from (3.4) and (3.3). O

LEMMA 3.2. Let w, be any sequence of Brownian bridges on [0, 1]. Suppose
er > 0 is a nonrandom sequence which satisfies liminf, ., In(1/e;)/Ink >
0. Then for all y € (0,1/2) and any subsequence (np), with probability 1,
u{@n,; er) = O(s}).

PROOF. Arguing as in the case of ordinary Brownian motion (see [22]),
there exists a constant ¢y > 0 so that for all &,A >0and all n > 1,

sup P(ILi(wn) — LY(wn)| = £21) < coexp(—A%/co).
x,yeR
|lx—yl<e

Then by a metric entropy argument (this follows, e.g., by a minor modification
of Lacey [20], Theorem 2.2), there exists ¢; so that for all £,A > 0 and all
n>1,

(3.5) IP(;.L(wn;s) > 2./zIn(1/z) + 31/2,\) < ¢1 exp(—A%/cy).

Substitute n = ny, £ = &3 and A = (2¢1In k)2 in (3.5) to obtain the following:

P((@ny; 1) 2 2V/exIn(1/23) + V2184 Ik ) < 1k,
which sums. By the Borel-Cantelli lemma, with probability 1, as £ — oo,

w(wny; 24) = O(Ver(n kv In(1/24)) ).

The lemma follows from the assumption on the decay rate of &,. O

LEMMA 3.3. Suppose {, — 00 is a sequence of positive numbers satisfying
In¢, = O(Inn) as n — oo. Then as n — oo,

InP(Li(vy). > &n) ~ InP(LY(vn) > £n) ~ =L2/2.

PrROOF. Fix y € (0,1/2). By Khoshnevisan ([17], Remark (1), page 338),
on a suitable probability space there are versions v}, of v, and a sequence of
Brownian bridges w, such that for all ¢ > 0,

(3.6) lim sup n°P(sup |L¥(w,) — L¥(¥,)| = n™""%) < oo.

n—>oo X

Therefore, for all ¢ > 0, the following must be eventually true:
P(L}(vn) = {n) <P(Li(@p) = L —n7"2) 4 n7°
=P(Lij(w) = {n—n""?) +n~°
< 2£7(exp(—{7/2)(1+0(1))) +n~°,
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by Corollary 2.2(b). A similar lower bound holds, using Theorem 2.1(c), with
L%(vy), L{(w,) and n~° replaced by L{(v,), LY(w,) and —n~¢, respectively.
The growth condition on ¢, finishes the result. O

LEMMA 3.4. Suppose ep > 0 satisfies liminf; , ., In(1/&;)/Ink > 0. Then
for all v € (0,1/2) and all subsequences (np), with probability 1, as k — oo,
w(vny; 82) = O(e] +n,""%).

PrROOF. Fix an arbitrary y € (0,1/2). By (8.6) and the Borel-Cantelli
lemma, on a suitable probability space one can construct versions v}, of v,
and a sequence of Brownian bridges w, such that

sup |L¥(w,) — L¥(v,)| = o(n™"?) aus.
xeR
An application of Lemma 3.2 completes the proof. O

We can now begin the proof of Theorem 1.1. As in the classical law of the
iterated logarithm, the proof is divided into two halves: an upper bound and
a lower bound. It suffices to prove that for all £ > 0, the following hold with
probability 1:

(8.7a) Li(vn) < (1+ &)v2Inlnn eventually,
(3.7b) L‘l’(vn) >(1-¢&)~/2Inlnn i.o.

PROOF OF (8.7a). Fix £ > 0, y € (0,1/2). Define ¢, = (1 + &)v/2Inlnn.
Clearly, In ¢, = O(In n) and hence Lemma 3.3 applies. Thus with probability 1
there exists N, such that for all n > N,

P(L;(Vn) = (1 + S)M) < (]n n)—(1+e)-

Fix p € ((1+ £)71,1) and define n; = n(k) = [exp(k”)]. Then the above
' probability estimate implies the following:

5 P(Liw) = (L+ 2)/2Inlnng ) < Y &0+ < oo,

k=10 £>10
By the easy half of the Borel-Cantelli lemma, with probability 1,
L*
lim sup Lilnw) 1+e.

koo 2Inlnn, —

Although the sequence, {ny; k > 1} depends on &, since ¢ > 0 is arbitrary, it
suffices to prove that with probability 1,

3.8) max sup|L§(vm) — Li(vaw)| = o( VinInny ).

NE<M=Nks1 xR
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This amounts to “filling in” the gaps between n; and nzy;. To do this, we
start with the following elementary observation: for all n, < m < ngy1 and all
te[0,1],

(3.9) vm(t) = V/np/m vauy(t) + V1 — np/m vi®(¢),

where for all integers a < b, »? is the empirical process based on Xg,1,..., X3,
that is,
(3.10) vh(t) = Z (1po,(X ;) — 8).

v b - @ j=a+1

Furthermore, v, and vg are independent processes.
It is easy to check that for all & large, ny.1 — nr < pnzk?1. Therefore for k
large,

max |lvm — vpk)llo < (1 —Vnp/npa ) 12n) lloo
NRp=<m=ng41
+v1- nk/nk+1  max 1228 )

<m=<npgq1

< 2pklP- ”/2[||vn<k>noo+ _max 19725 |65 ).

<m=ngy1

It follows from the functional law of the iterated logarithm for v, (see [24],
page 504) that with probability 1, as & — oo,

12nk) lloo V kmax ||v’,;fk)||oo = O(\/lnlnnk) = O( lnk).

<m=<ngq1
Since p < 1, by Kolmogorov’s 0—1 law with probability 1 there exists c3, K, €
(0,00) such that for all £ > K,

(8.11) max ||[¥m — Vnkylloo < e3P V2 In k.

Np<M=ng41

Define 8, = kP~ 1/2(In k)l./z, e = (28,/y)Y %) and np = gz + n;7/2, Since as
k— o00,In(1/er)/Ink ~ (1 - p)/2 > 0, Lemma 3.4 can be used to argue that
with probability 1, as 2 — oo,

(3.12) max wu(v;; er) = O(ng).

nE<Jjs<nps

Therefore, we can apply (3.11), (3.12) and Lemma 3.3 with &£ = g5, 7 = 74,
8 =06k, f1=vn1) and fa = vy, (uniformly over n; < m < nzy1) to see that

» Imax Sup|Lx(Vn(k)) Liwn)l = O(s328 + m) = o(k7723+7)) = o(1).

NESMZNeyl ]

This easily implies (3.8), thus completing the proof of (3.7a). O
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PROOF OF (3.7b). For all £ > 1 define n(k) = n, = k* and d(k) = d;, =
ng4+1 — ng. Notice that as & — o0, d, ~ np1. It is sufficient to prove that with
probability 1,

0
(3.13) lim sup -ZLZntk+1) o 4

koo 2Inlnnpy, —

Recall the definition of »§ from (3.10). Since VZEIIZL—I) has the same distribution

as vq(x), by Lemma 3.3 for all £ > 0, there exists N, such that for all 2 > N,

P(LY(}(h1) 2 (1 - £)v2InIndy ) = (Indy) =09 ~ (kIn k)~0-2),

In other words,

> P(LYwpR.,) = (1~ £)V2InInd, ) = .

k=10

Since {VZE:L); k > 1} are independent processes and & > 0 is arbitrary, the

independence half of the Borel-Cantelli lemma shows that almost surely

Lo(v”(k) ) LO(Vn(k) )
(3.14) lim sup 1 n(ktl) = lim sup 1Wnk+1)) 4

koo /2InINngp1 koo /2Inlndp

By (3.9),forall t € [0,1] and all £ > 1,
Vn(hr1) () = Ik Mae1 Vaey () + V1 — (a/naer) Viipsr) (8-
Hence,

1n(es1) = V(e lloo
< VAR ek oo + (1 = VI = (Ra/miin) ) Iphiy o
< (k) 2 wn loo(1 + 0(1)) + (4k) 2P, 1 lloo(1 + 0(1)).
However,‘ by the law of the iterated logarithm for empirical processes,
Iamlleo V 15041 loo = O(vVInInny ) = O(VIn).
Therefore,
(3.15) Incksn) = Vigrp) loo = O((In k/k)Y2).

Let us fix some y € (0,1/2). Define, 8; = (Ink/k)Y2, &}, = (28;/7)Y?*") and
m=ep+ n;I{Z. Then the same argument as that leading to (3.12) shows that
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with probability 1,

w(Vn(ks1); 1) + #(V,,(k+1), er) = O(ne).

This together with (8.15) and Lemma 3.1 with & = &4, n = m4, 6 = 8, f1 =

Vnk+1) and fo = VZEZ)H) gives the following almost sure estimate:

sup| L (va(hs1) = Li(p0 )| = O(&328, + mp) = o(1).
X€

The above coupled with (3.14) together imply (3.13) and hence 3.7(b).
Starting from Theorem 2.1(c), the proof of the lim sup behavior of Ll(vn)
is similar. O

This completes the proof of Theorem 1.1. The proof of Theorem 1.2 is vir-
tually identical.

4. Kiefer processes. A Kiefer process {K(s,t);s > 0,t € [0,1]} is a cen-
tered Gaussian process with covariance given by

E K(s,u)K(t,v) = (sAt)(u Av—uv).

See [24] for further information. Let K,(-) = K(n,-). We recall the following
result of Komlés, Major and Tusnady [19]: on an appropriate probability space:
there are versions v/, of v,, such that, almost surely as n — oo,

sup |K,(t) — v, (¢)| = O(n~2(Inn)?).
0<t<1

The arguments of the previous section can be used to show that on the afore-
mentioned probability space, for any ¢ > 0, almost surely,

4.1) sup sup|Li(K,) — Li(¥,)| = o(n~1/1%%%).
0<t<1l xeR

In particular, applying Theorems 1.1 and 1.2 to v, we obtain the following
results:

LO
4.2) lim sup Li(Kn) _ = lim sup ————— LK) _ 1 as,
n—soo +/2Inlnn n—oo +/2lnlnn
(4.3) lim inf Vinlnn LY(K,)=v2 m, as.

Furthermore, the argument leading to (3.8) can be modified to show that
the variable n in (4.2) and (4.3) need not be integer—valued.
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